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pathoetiology and treatment of autoimmune diseases.

Introduction

The 2018 Nobel Prize in Physiology or Medicine was awarded to
James P. Allison and Tasuku Honjo for their work on the role of
inhibitory immune “checkpoint” receptors in the regulation of
antitumor immunity. Their work and the work of others in the field
laid the foundation for a revolution in cancer treatment, unleash-
ing the immune system to attack cancer. Allison’s early intuition
was correct: “What we needed to do was to release the brakes of
the immune system to fight cancer.” Allison demonstrated that
cytotoxic T lymphocyte antigen 4 (CTLA-4), a protein expressed by
activated T cells, acts as an important check on immune activation,
in particular inhibiting the response to cancer. Subsequent research
has focused on other immune checkpoints, most prominently the
receptor programmed cell death protein 1 (PD-1) and its ligand
(PD-L1) (1-3). Immune checkpoint inhibitors (ICIs) targeting these
proteins are now approved by the US FDA to treat a variety of types
of cancers, such as melanoma, lung, kidney, bladder, gastric, and
liver tumors. Physiologically, CTLA-4, PD-1, and PD-L1 play critical
roles in peripheral tolerance, as clearly demonstrated both in ani-
mal models and in patients with haploinsufficiency in CTLA-4. Not
surprisingly, pharmacologic disruption of these checkpoints leads
to awide range of inflammatory toxicities, collectively referred to as
immune-related adverse events (irAEs) (ref. 4 and Table 1). These
toxicities can affect any organ system of the body, although most
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Immunotherapy has transformed the treatment landscape for a wide range of human cancers. Immune checkpoint inhibitors
(ICls), monoclonal antibodies that block the immune-regulatory “checkpoint” receptors CTLA-4, PD-1, or its ligand PD-L1,

can produce durable responses in some patients. However, coupled with their success, these treatments commonly evoke a
wide range of immune-related adverse events (irAEs) that can affect any organ system and can be treatment-limiting and
life-threatening, such as diabetic ketoacidosis, which appears to be more frequent than initially described. The majority of
irAEs from checkpoint blockade involve either barrier tissues (e.g., gastrointestinal mucosa or skin) or endocrine organs,
although any organ system can be affected. Often, irAEs resemble spontaneous autoimmune diseases, such as inflammatory
bowel disease, autoimmune thyroid disease, type 1diabetes mellitus (T1D), and autoimmune pancreatitis. Yet whether similar
molecular or pathologic mechanisms underlie these apparent autoimmune adverse events and classical autoimmune diseases
is presently unknown. Interestingly, evidence links HLA alleles associated with high risk for autoimmune disease with ICI-
induced T1D and colitis. Understanding the genetic risks and immunologic mechanisms driving ICI-mediated inflammatory
toxicities may not only identify therapeutic targets useful for managing irAEs, but may also provide new insights into the

occur either at barrier organs (e.g., the gastrointestinal or pulmo-
nary mucosa) or in endocrine glands (4, 5). Many of these irAEs are
mild, yet they can carry considerable morbidity, and in rare cases
these toxicities can be fatal, particularly when recognized late (6).
Elucidating the mechanisms underlying irAEs caused by
CTLA-4 and PD-1 pathway inhibition may provide essential clues
to understanding the pathogenesis of autoimmune diseases,
potentially leading to the identification of novel treatments. In
support of this concept, CTLA-4 haploinsufficiency, a rare genetic
disorder, severely impairs the normal regulation of the immune
system, resulting in inflammatory intestinal disease, multilineage
autoimmune cytopenias, and respiratory infections (7). Further-
more, conditional deletion of Ctla-4 on regulatory T cells (Tregs)
during adulthood leads to resistance to experimental autoimmune
encephalomyelitis, the mouse model of multiple sclerosis (8); this
suggests that peripheral Treg expansion and/or increased Treg
activation as a result of CTLA-4 blockade could prevent auto-
immune disease. Finally, the CTLA-4 splice variant li-CTLA-4,
a ligand-independent isoform, reduces diabetes incidence and
insulitis in nonobese diabetic (NOD) mice, when expressed at
physiologic levels in CTLA-4-sufficient animals (9). li-CTLA-4
is expressed in naive and activated T cells and can modify T cell
signaling despite its lack of a B7 binding domain. Here, we will
explore how these and other mechanistic insights into irAEs pro-
vide the groundwork for understanding how to limit the toxicity of
immunotherapy as well as treat autoimmune disease.

Mechanisms of CTLA-4 and PD-1/PD-L1 signaling
CTLA-4 playsa critical role in the chain of eventsleading to T cell acti-
vation and regulation. CTLA-4 upregulation occurs following T cell
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Table 1. Inmune-related adverse events from cancer immunotherapy

Anti-PD-(L)1
All grades Grade 3-4

AllirAEs 74% 14%
Fatigue 1% 1%
Pruritus 15% <1%
Rash 10% <1%
Diarrhea 1% 1%
Nausea 12% <1%
Pneumonitis 4% 1%
Transaminase elevation 5% 1%
Hypophysitis 1% <1%
Hypothyroidism 8% <1%
Adrenal insufficiency 1% <1%
Autoimmune diabetes® <1%

Neuropathy 1% <1%
Arthralgia/arthritis 8% <1%
Myocarditis <1%

Anti-CTLA-4 Anti-PD-(L)1 + anti-CTLA-4
All grades Grade 3-4 All grades Grade 3-4

89% 34% 90% 55%
25% 2% 36% 4%
25% 1% 34% 2%
23% 1% A% 5%
36% 8% 44% 10%
19% 1% 25% 2%
1% 1% 7% 1%
5% 2% 19% 9%
4% 2%

3% <1% 15% <1%
1% <1% 4% 2%
<1% <1%

<1% <1% <1% <1%
5% <1% 1% <1%
3% 2%

Based on data reported in refs. 71, 117-119. AIn one study autoimmune diabetes and DKA appear to be much more frequent (56).

receptor (TCR) engagement (signal 1 of T cell activation) and reduces
TCR signaling by competing with the costimulatory molecule CD28
for the B7 ligands B7-1 (CD80) and B7-2 (CD86), for which CTLA-4
has higher avidity and affinity (Figure 1 and Figure 2A) (10-12). B7-1
and B7-2 binding leads to positive costimulatory signals through
CD28, and competitive inhibition of both molecules by CTLA-4 is
essential to produce a negative effect on T cell activation (13).

The upregulation of CTLA-4 is not the only mechanism regu-
lating T cell activation. CTLA-4 is present in intracellular vesicles
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Figure 1. Schematic representation of CTLA-4 and PD-1blockade of T
cell activation and attenuation. Molecular interactions and downstream
signaling as a result of ligation of CTLA-4 and PD-1with their correspond-
ing ligands.
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that are recruited into the immunologic synapse (2). The degree
of CTLA-4 recruitment to the immunologic synapse correlates
with TCR signal strength, and it is stabilized by B7 ligand binding
and outcompetes CD28 (14). Through this mechanism, CTLA-4
dampens positive costimulation by CD28 and in turn decreases
CD28 downstream signaling that is primarily mediated by PI3K
and AKT (15, 16). CTLA-4 regulation of T cell activity takes place
not only in lymphoid organs but also in peripheral tissues, given
that B7 ligands are expressed (to a certain extent) by antigen-
presenting cells within tissues, including tumors, and can also be
expressed by activated T cells.

The primary biological function of the PD-1/PD-L1 pathway is
to maintain peripheral tolerance in the setting of chronic inflam-
mation. PD-1, like CTLA-4, is expressed after T cell activation, but
its expression increases upon repeated stimulation (17). PD-1 has
also been found on several other cell types, including B cells (17).
PD-L1 is upregulated by inflammatory cytokines such as IFN-y on
awide variety of tissues, including many tumors (18-20). A second
ligand for PD-1, PD-L2, is expressed primarily on cells of hema-
tologic origin. PD-1 and its ligand PD-L1 exhibit a critical role in
tumor progression and appear to play a central role in mediating
tumor immune escape. PD-1 regulates T cell activation through
interaction with PD-L1 and PD-L2 (Figure 1 and Figure 2A) (18-
20). Upon engagement with PD-L1 and PD-L2, PD-1 delivers a
negative costimulatory signal through the tyrosine phosphatase
SHP2, leading to diminished activation. The recruitment of SHP2
directly attenuates TCR signaling through dephosphorylation of
proximal signaling elements (Figure 1). Recently it has been shown
that CD28 is an important target for PD-1-induced attenuation of
T cell signaling (21).

Structure of anti-CTLA-4 and anti-PD-1
antibodies

At present, ipilimumab is the only approved antibody targeting
CTLA-4, while three antibodies against PD-1 (nivolumab, pem-


https://www.jci.org
https://www.jci.org
https://www.jci.org/130/1

The Journal of Clinical Investigation

REVIEW

A
Suppression of T cell activation by
T cell activation antibody blockade Additional therapeutic mechanisms
T cell C1 complex
CD28 TCR CTLA-4 CTLA-4 CD28 CTLA-4 CTLA-4 CD28
@ AKE)] 4 f" ©
. W i ! W
Antibody-dependent
MHC/ B7-1 B7-1 CTLA-4 depletion of Tregs B7-1
peptide B7-2 B7-2 Tumor-infiltrating B7-2
APC APC Pituitary cell APC
T cell
PD-1 PD-1 PD-1 PD-1 CD28 PD-LA1 B7-1
AL * JL 4Anti—PD-L1 ik 4 k ¢><
Q AS® = 0 Q = ) &
W - W W W
PD-L1 PD-L1 PD-L1 PD-L1
PD-L1* APC or other PD-L1* APC or other
Tumor cell Tumor cell Pancreatic f cell immune cell immune cell
B
) Mutated
Fab region Hinge / / hinge /
J = J =
Q2o7™ = G M@= =@ MG
Fc region
- J 9 J 9 J 9
IgG1NQ lgG1fut 19G4 .00
nonglycosylated nonfucosylated mutated hinge

Figure 2. Immune checkpoint inhibitor mechanisms and design. (A) Mechanisms by which T cell activation by CTLA-4 and PD-1 blockade therapy may
cause pituitary and pancreatic {3 cell damage. CTLA-4 is expressed by normal pituitary cells. Following CTLA-4 blockade (i.e., ipilimumab), the classic
complement pathway is activated, resulting in severe inflammation (hypophysitis) and destruction of pituitary cells (23). T cell activation by PD-1 blockade
(i.e., nivolumab) can cause pancreatic B cell destruction. Interestingly, PD-L1 s specifically upregulated on pancreatic B cells of patients with T1D, and

it is induced by both type | and Il interferons via IRF1(74). Several additional mechanisms are thought to contribute to the efficacy of anti-CTLA-4 and
anti-PD-1 therapy (right). These include antibody-mediated depletion of Tregs, enhancement of T cell-positive costimulation within the tumor micro-
environment, blockade of host-derived PD-L1 signals from nontumor cells in the microenvironment, and blockade of interactions between PD-L1 and B7-1
(2). Some of these additional mechanisms theoretically play a role in the development of specific organ inflammatory toxicities related to anti-CTLA-4
and anti-PD-1immunotherapy. (B) Therapeutic mAbs targeting CTLA-4, PD-1, or PD-L1. Left: IgG1is the isotype of the majority of approved mAb immuno-
therapies, such as anti-CTLA-4 or anti-CD20 (rituximab). This mAb drives potent antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent
cellular phagocytosis (ADCP), and complement-dependent cytotoxicity (CDC), engaging both cellular and humoral immune responses. Center: IgG1-induced
ADCC can be increased by defucosylation of the glycan sequences (IgG1fut). This modification, obtained using a specific CHO cell line, enhances mAb

binding to FcyRIlla/CD16. The approved anti-CD20 obinutuzumab is engineered with reduced fucose content. Right: IgG4

<0 1S @N engineered isotype of

IgG4 that displays reduced ADCC and ADCP and no CDC. A serine-to-proline substitution at position 228 (5228P) in the hinge region prevents Fab arm

exchanges that frequently occur between IgG4 molecules. 18G4, .,

brolizumab, and cemiplimab) have been approved for various
indications, as have three antibodies against PD-L1 (avelumab,
durvalumab, and atezolizumab). The success of ICI antibod-
ies in cancer immunotherapy has substantially improved the
mechanistic understanding of the regulation of T cell responses,
although ICIs targeting negative regulatory molecules are able
to elicit durable immune responses only in a subgroup of cancer
patients (22). ICIs can cause a variety of cell toxicities, includ-
ing antibody-dependent cellular cytotoxicity (ADCC), antibody-

mAbs, such as anti-PD-1 nivolumab, are mainly blocking agents.

dependent cellular phagocytosis (ADCP), and complement-
dependent cytotoxicity (CDC) (23, 24).

Ipilimumab is a human IgG1 monoclonal antibody (mAb) that
targets CTLA-4. Ipilimumab induces ADCC, ADCP, and CDC
in vitro, and in turn elicits both humoral and cellular responses.
IgGl-induced ADCC can be enhanced by defucosylation of the Fc
region’s glycan sequences (IgG1fut) (Figure 2B). The IgG4 immu-
notherapeutic antibodies nivolumab and pembrolizumab are
both IgG4 This variant of IgG4, an engineered isotype with a

$228P°
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serine-to-proline substitution at position 228 (S228P) in the hinge
region, prevents Fab arm exchanges that otherwise frequently
occur between IgG4 molecules. In in vitro assays, IgG4 shows
reduced ADCC and ADCP and no CDC (25). Thus, these IgG4,,,,
mAbs mainly block the activation of PD-1 (Figure 2B). Glycosyla-
tion of the Fc region of IgGs has major implications for the safety
and clinical efficacy of therapeutic antibodies. For example, the
enhancement of ADCC is attributed to the increased affinity of
non-fucosylated IgG for FcyRIIla expressed on natural killer (NK)
cells (26-28).

CTLA-4 and PD-1 pathways contribute to barrier
tolerance

Inflammation at barrier organs (skin, pulmonary epithelium, and
gastrointestinal mucosa) is a common toxicity in patients treated
with antibodies against CTLA-4 or PD-1/PD-L1 (5). However,
differences in the frequency and severity of this inflammation
indicate important differences in the regulatory roles of CTLA-4
and PD-1/PD-L1 (5). The majority of irAEs caused by antibodies
against CTLA-4 or PD-1/PD-L1 are mild to moderate in severi-
ty, such as autoimmune thyroid disease. More rarely these irAEs
are serious or occasionally life-threatening, such as severe colitis,
pneumonitis, encephalitis, toxic epidermal necrolysis, myocar-
ditis, autoimmune type 1 diabetes (T1D) presenting in diabetic
ketoacidosis (DKA), and primary adrenal insufficiency caused by
autoimmune adrenalitis (6).

CTLA-4 has a critical role for maintaining immune homeo-
stasis in the gut. Blockade of CTLA-4 with ipilimumab induces
inflammation in the colon (colitis) and/or small intestine (enteri-
tis) in a high frequency of patients. Approximately 10% of patients
treated with ipilimumab will develop severe, even life-threatening
colitis, often within the first two or three cycles of treatment (5,
29-35). The frequency and severity of colitis is dose-dependent,
suggesting that we have not yet seen the full effect of complete
CTLA-4 inhibition. Once initiated, colitis can rapidly progress
over a period of days if left untreated, causing severe dehydration
and risking colonic perforation (5, 29-31, 34, 35).

In contrast, while PD-1 and PD-L1 blockade produces mild
colonic inflammation at a reasonably high frequency, inflamma-
tion that escalates to the point of requiring intervention is uncom-
mon. Severe enterocolitis occurs in fewer than 2% of patients in
most clinical trials (5, 32, 33, 35-43). The difference in frequen-
cy and severity demonstrates that gastrointestinal mucosal tol-
erance is dominated by CTLA-4, with PD-1 playing a relatively
minor role (5, 32, 33, 36-43). In addition, many patients with mild
PD-1-induced colitis can have stable or slowly escalating symp-
toms over a period of weeks or months, even with continued
immunotherapy treatment (5). This period of stable, smoldering
inflammation suggests that other regulatory mechanisms com-
pensate to prevent complete loss of mucosal tolerance in these
patients, a clear distinction from the rapid evolution of colitis
driven by CTLA-4 blockade (5).

Not surprisingly, the homeostatic roles for PD-1 and CTLA-
4 do not precisely overlap, as blocking both pathways induces
more frequent and more severe enterocolitis than is seen with
blockade of either pathway alone (5, 44). The effect is also
somewhat synergistic (more than additive), an indication that

jci.org  Volume130  Number1  January 2020

The Journal of Clinical Investigation

CTLA-4 and PD-1 have some role in compensating for each oth-
er’s absence in the setting of single pathway inhibition, though
this degree of synergy is far less than is seen for some other
organs, such as the liver (5, 44, 45).

Although CTLA-4 clearly plays a more important role in gut
homeostasis than does PD-1/PD-L1, the opposite appears to be
true in the lungs. Pneumonitis is more common in patients treated
with antibodies that block PD-1 or PD-L1 than in patients treated
with ipilimumab (29, 31,36-41, 46). Differences in the patient pop-
ulations treated with these drugs likely account for some, though
not all, of this difference. PD-1/PD-L1 blockade is approved for
the treatment of lung cancer, which has a higher incidence of
pneumonitis than other malignancies, while ipilimumab is not.
Whether this distinction relates to important differences in the
immune inflammatory mechanisms or to the antigenic targets in
these two tissues remains to be determined.

Inciting events and antigenic targets

One of the most valuable aspects of studying the mechanisms
driving the inflammatory toxicities of ICIs is that the timing of the
immune perturbation is well defined. However, presently we have
a paucity of data on disease-associated biomarkers following ICI
treatment, and still have a rudimentary understanding of the asso-
ciation between irAEs and cancer outcome. Skin reactions appear
to be more frequent among patients treated with ICIs who have
preexisting rheumatoid factor, whereas thyroid dysfunction seems
to be more frequent among patients with preexisting anti-thyroid
autoantibodies (47, 48). Hence, organ-specific autoantibodies
developing under ICI treatment could be potential biomarkers
of ICI toxicity and efficacy, though further data will be required
before we can determine whether this is the case.

Patients have a clear start date on therapy, may have biolog-
ical samples available before treatment, and often have samples
during treatment but before emergence of clinical toxicity. This
is in direct distinction to patients with spontaneous autoimmune
disease, for whom the initial immune perturbation is unknown
and may have occurred years or decades before the onset of clini-
cally apparent disease (5). Without a clearly defined disease dura-
tion, determining which disease-associated immune changes are
driving inflammation and which are consequences of the underly-
ing pathology can be extremely difficult.

ICI-related autoimmune/inflammatory
responses

Despite the theoretical advantages of studying irAEs, at present
too little is known about the underlying immune pathogenesis of
these toxicities to draw mechanistic conclusions about the inciting
events. The rapid onset of colitis after CTLA-4 blockade suggests
that cells capable of driving colonic inflammation may be present
at baseline in many individuals, or at the least that triggers are
common and commonly encountered. In contrast, the delayed
onset of PD-1 blockade-associated colitis suggests that trig-
gers beyond PD-1 inhibition may play an important role in most
patients (5, 32, 33, 49). Colonic infections, alterations in the micro-
biome, dietary changes, and toxic injuries are all potential factors
that could break tolerance and precipitate colitis in patients who
initially maintained it in the setting of PD-1 blockade.
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The antigenic targets in checkpoint colitis are similarly unclear
at present. Based on our current understanding of the mecha-
nism of action of CTLA-4 and PD-1/PD-L1 blockade, antigen-
specific T cells are presumed to be the key orchestrators of colitis
as they are in driving antitumor responses. Although in theory, self-
proteins could be recognized in ICI-induced colitis, the microbial
and dietary antigen diversity along the gastrointestinal mucosa pro-
vides a prolific source of non-self proteins that could be recognized
as well, and these are the more plausible antigenic targets. Prelim-
inary evidence indicates difference in the baseline microbiomes
of patients who develop colitis on ICIs compared with those who
do not, and in animal models, histopathologic changes associated
with CTLA-4 treatment are influenced by microbiota, with Bac-
teroides and Burkholderiales associated with preserved intestinal
architecture and improved antitumor responses (50, 51). This does
not directly implicate specific microbial organisms as the targets
of T cell-mediated immunity, however, as these differences may
reflect differences in dietary or other environmental exposures, or
differences in baseline inflammatory states induced by microbial
products. Further implicating the microbiome in ICI-colitis, fecal
microbiota transplant has been reported to be effective in two
patients with colitis refractory to standard treatment (52).

ICI-related autoimmune endocrinopathies
Autoimmune endocrinopathies, including T1D, hypopituitar-
ism, hypothyroidism, hypogonadism, and hypoadrenalism, have
emerged as frequent and clinically meaningful adverse events
(53, 54). The most common of the reported endocrinopathies
with ipilimumab has been thyroid dysfunction (55).

In several studies and in large phase III clinical trials, thyroid
dysfunction (hypothyroidism, hyperthyroidism, and thyroiditis)
was reported in 6% to 20% of patients (55-57). Myxedema crisis
has also been described (58). The majority of patients affected by
ICI-induced thyroid dysfunction are asymptomatic, and conser-
vative therapy during the thyrotoxic phase of thyroiditis is usually
sufficient. Anti-CTLA-4 and anti-PD-1 usually leads to permanent
hypothyroidism after an average of 1 month following the thyro-
toxic phase of the disease and 3 months from initiation of immu-
notherapy, and lifelong thyroid hormone replacement is neces-
sary (54, 58). Interestingly, the risk for thyroid dysfunction may be
related to the existence of preexisting autoantibodies (47, 48).
Graves’ disease is a rare cause of immunotherapy-related hyperthy-
roidism generally following the use of ipilimumab. Graves’ ophthal-
mopathy may also occur (59, 60). High-dose steroids and antithy-
roid drugs are used successfully to treat this condition (54, 61).

Autoimmune hypophysitis is on therise, particularly after ini-
tiation of ipilimumab treatment (53). An interesting mechanism
has been proposed in which CTLA-4 is expressed by normal
pituitary cells, and administration of an anti-CTLA-4 mAb acti-
vates classic complement pathway, resulting in destruction of
pituitary cells (Figure 24A) (23, 53).

Primary adrenal insufficiency caused by autoimmune adrenal-
itis predominantly occurs in patients affected by melanoma treated
with anti-PD-1immunotherapy (62). The majority of these patients
recovered clinically on hydrocortisone replacement therapy and
on fludrocortisone if necessary (63). In ICI-induced autoimmune
adrenalitis, once therapy with hydrocortisone and fludrocortisone

REVIEW

is initiated and the symptoms have resolved, patients should con-
tinue maintenance therapy (54, 64, 65). This recommendation
is also clearly indicated in recent guidelines for the management
of endocrine complications of ICIs (66). The mechanism of ICI-
induced autoimmune adrenalitis is unknown.

In an original report of five subjects with diabetes mellitus,
aged 55-83 years, their presentation ranged from symptoms of
hyperglycemia, such as polyuria, to DKA requiring treatment in
the intensive care unit (67). Remarkably, a marked increase of
ICI-related autoimmune diabetes was reported, with over 50%
of cases reported in 2017. Overall, half of the patients with ICI-
related diabetes presented in DKA (50.2%) (56). Although arche-
typal T1D develops years or even decades after the appearance of
islet autoantibodies, autoimmune diabetes induced by ICIs pres-
ents weeks to months after initiation of ICI therapy. Islet auto-
antibodies are frequently present in these patients, though with
a prevalence lower than in T1D, and their association with HLA-
DQ/DR alleles conferring T1D risk appears to be stronger than in
T1D. In ICI-induced T1D, cytotoxic T lymphocytes responding to
islet peptides have also been described (68).

Furthermore, there have been several reports describing
rapid-onset as well as fulminant T1D, the latter usually character-
ized by rapid onset and absence of diabetes-related antibodies in
patients treated with anti-PD-1/PD-L1 antibodies or, rarely, with
ipilimumab (54, 69-73).

A recent study indicates that PD-L1 is specifically upreg-
ulated on pancreatic B cells from patients with TID, and it is
induced by both type I and II interferons via interferon regula-
tory factor 1 (IRF1) (74). This PD-L1 upregulation was correlated
with the presence of CD8" T cells within the islets. A provocative
hypothesis is that p cells displaying high PD-L1 expression may
resist T cell-mediated apoptosis over a longer period of time
and persist despite sustained islet T cell responses, similarly to
PD-L1-expressing cancer cells (Figure 2A) (75). Interestingly, in
NOD mice, long-term-surviving f cells in the setting of ongoing
immune responses express high levels of PD-L1, and blockade
of PD-L1 precipitates rapid onset of fulminant diabetes (75).
Stamatouli et al. described 27 patients with ICI-induced dia-
betes. This syndrome has similarities and differences compared
with classic T1D (76). There was a predominance of HLA-DR4,
which was present in 76% of patients, whereas other HLA alleles
associated with high risk of spontaneous T1D were not overrep-
resented, including HLA-DR3, -DQ2, and -DQ8. Approximately
40% of the patients described by Stamatouli et al. exhibited islet
autoantibodies that are found in spontaneous T1D, a prevalence
lower than that of islet autoantibodies found in spontaneous
T1D (76). A possible explanation of the latter finding is that ICI-
induced T cell and autoantibody responses may recognize as-yet
unidentified islet autoantigen(s). In the Stamatouli et al. report,
more detailed clinical information (serology and HLA-DQ
and -DR haplotypes) should have been provided regarding a
group of patients with T1D not treated with ICIs. Furthermore,
in ICI-induced T1D, random glucagon levels were not reduced,
suggesting that a cells were still functioning.

T1D was diagnosed in one patient who developed autoim-
mune syndrome type 2 (including Addison’s disease and hypoph-
ysitis) after treatment with atezolizumab (77). The HLA genotype
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release damage-associated molecular patterns (DAMPs; e.g., heat shock

proteins, ATP, nucleic acids) that can also activate DCs. Left: The activated DCs travel to lymph nodes, whereby they present MHC class I-bound neo-

antigens to naive CD8* T cells. HLA class | genotype can influence cancer r

esponse to checkpoint blockade immunotherapy (107). TCRs binding to the

MHC class I-bound neoantigen along with B7-CD28 binding results in the activation of CD8* T cells specific for the neoantigen. Right: Cytotoxic CD8* T
cells traffic to the tumor site following a chemokine signal (e.g., CXCL9/10 secretion binding to CXCR3 on the T cells). At the tumor site, TCR binding to

MHC class I-bound neoantigens to tumor cells has two outcomes: First, it

induces IFN-y secretion, which is bound by IFN-y receptors in nearby tumor

and normal cells, leading to upregulation of MHC class | antigen presentation in those cells. In tumor cells, this facilitates further TCR engagement and

cytotoxic activity. Concurrently, IFN-y also induces PD-L1 expression. Seco

nd, it leads to T cell activation and tumor killing through Fas/FasL apoptotic

signaling, granzyme and perforin secretion, and direct cell membrane lysis.

was DRB1*04 and DQB1*03 haplotype, typically associated with
T1D, whereas islet cell antibodies were not detected. Other cases
of polyendocrinopathies resulting from ICI treatment have been
reported (65, 78). Interestingly, PD-1 inhibitors can induce wors-
ening of preexisting type 2 diabetes (69), and an increase in hemo-
globin A _in nondiabetic patients (34).

Immune-related pancreatic exocrine insufficiency was
described in a case series of patients treated with ICIs (79). Inter-
estingly, immune-related pancreatic exocrine insufficiency caused
by pancreatitis was linked to pembrolizumab or nivolumab for
metastatic melanoma, and a meta-analysis has shown that CTLA-
4 inhibitors alone as well as combination treatment of nivolumab
and ipilimumab are associated with increased risk of amylase or
lipase elevation (80, 81). Overall, these observations suggest an
opportunity to identify those at highest risk of ICI-induced auto-
immune diseases, which may yield insights into spontaneous
autoimmune disease, and improve our ability to treat these irAEs.

Restoration of immune homeostasis

For most irAEs, with the notable exception of the endocrine tox-
icities, corticosteroids are first-line treatments, including for ICI-
induced colitis (5, 32, 33, 82, 83). In the majority of patients, corti-
costeroids are sufficient to resolve symptoms, although a substan-
tial fraction of patients will require further immune suppression
(32, 33, 84). Because of its frequency and severity, treatment and
restoration of immune homeostasis is best understood for ICI-

]
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induced colitis, though evenfor thisirAE few mechanistic detailsare
known. For patients with ICI-induced colitis who do not respond to
corticosteroids, the TNF-o-blocking antibody infliximab is highly
effective, implicating TNF-o in the molecular pathogenesis of
ICI-induced colitis (5, 32-34, 82, 83, 85). The presumption is that
other anti-TNF-a therapies would also be effective, but these drugs
have not been evaluated directly. Most patients require one to three
doses of infliximab to resolve colitis, underscoring the importance
of TNF-o in ICI-induced colitis. Intriguingly, TNF-o. may play a role
in some cases of ICI-induced diabetes (86). A recent case report
described a patient who simultaneously developed ICI-induced
colitis and diabetes, and whose diabetes improved after treatment
of the colitis with infliximab (86).

The antibody vedolizumab, which blocks the gut-homing
integrin a, B, has also shown efficacy as an alternative to inflix-
imab, or for patients who fail to respond to TNF-a blockade (87,
88). This finding suggests that trafficking of new immune cells
from the circulation into the gut is required to perpetuate the
inflammatory response in ICI-induced colitis, a finding that is
consistent with our understanding of colitis more generally.
Additional therapies for refractory ICI-induced colitis have been
reported, including immune suppression directed at T cells and
borrowed from the transplant experience, such as mycopheno-
late mofetil and tacrolimus (5).

Recurrence is rare for most irAEs, including colitis, after
resolution of the initial inflammation, and chronic inflam-
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Table 2. Major ICI-induced irAEs
irAE Potentially Autoimmunity or Mechanistic HLA irAE treatment Response to
life-threatening? inflammation? evidence association? therapy?
Predominantly CTLA-4 blockade
Colitis (5) Yes Unclear Unknown Yes High-dose steroids; infliximab Yes
for steroid-refractory patients
IBD (89, 90) Rare Unclear Genetic evidence implicates No Steroids, immune modulators, Yes
barrier integrity, pathogen anti-TNF-o antibodies, integrin
detection, and autophagy inhibitors, anti-IL-23 antibodies
Hypophysitis (23, 109) Yes, if misdiagnosed Autoimmune Normal pituitary cells Yes High-dose steroids; i.v. Yes
express ectopic CTLA-4; replacement therapy; if severe,
activation of the classic ICl discontinuation
complement pathway
Fulminant T1D (73) Yes, if misdiagnosed Autoimmune Unknown Yes Insulin therapy Yes
Predominantly PD-1/PD-L1 blockade
T1D (56, 67, 74, 75) Yes, if in DKA Autoimmune PD-L1 upregulation on islet Strong Insulin therapy Yes
cells that may resist association
T cell-mediated apoptosis
12D (69) No Unknown Unknown No Dietary control; Yes
oral hypoglycemic agents
Pancreatitis (80) Yes, if severe Immune-mediated Unknown Unknown Usually medical management Yes
Thyroiditis (47, 48) Yes, if untreated Autoimmune Strong association No Symptomatic, frequently Yes
with thyroid Ab lifelong thyroid hormone
replacement
Graves' disease (59-61) Yes, if untreated Autoimmune TSH receptor Ab No Antithyroid therapy, Yes
beta blockers, RAI, or
surgery if necessary
Autoimmune polyendocrine Yes, if untreated Autoimmune Unknown Insufficient Hormane replacement Yes
syndrome type 2 (77) evidence based on endocrine disorder
Primary adrenal insufficiency Yes Autoimmune Unknown No Hydrocortisone replacement Excellent
(adrenalitis) (63) therapy; fludrocortisone response
if necessary
ICl-induced immune arthritis (48) No Autoimmune Unknown Unknown NSAIDs, DMARDs, biologic Yes
agents, steroids
Myocarditis (118) Yes Autoimmune Unknown No High-dose steroids, IVIg, High mortality

plasmapheresis

DMARD, disease-modifying antirheumatic drug; IVIg, intravenous immunoglobulin; RAI, radioactive iodine therapy; TSH, thyroid-stimulating hormone.

matory syndromes do not typically develop, demonstrating
that immune homeostasis can be restored in most patients
after transient immune receptor disruption (5). Whether long-
term changes in immune regulation occur after ICI therapy is
not clear, as subtle changes in the risk for spontaneous auto-
immune disease would be too difficult to detect with the small
populations of treated patients and the relatively short periods
of follow-up to date. We also do not know the extent to which
immune-suppressive medications such as corticosteroids are
necessary in order to achieve restoration of immune tolerance.
Patients with severe inflammation are always treated, and many
with less severe inflammation, who may present with grade 1
symptoms, are never definitively diagnosed.

Relationship to primary immunodeficiency and
inflammatory bowel disease

Inflammatory bowel disease (IBD) is a relatively common spon-
taneous autoinflammatory disease of the gastrointestinal mucosa
that resembles ICI-induced colitis in many aspects (5, 89, 90).

Phenotypically, IBD is divided into two diseases: ulcerative coli-
tis (UC) and Crohn’s disease (CD) (5, 89, 90). UC is a mucosal
inflammatory disease that affects the colon in a continuous region
spreading proximally from the anus. UC does not involve the
small intestines (5, 89, 90). CD, in contrast, can involve any part
of the gastrointestinal mucosa from the mouth to the anus, and
often occurs as discrete segments of inflammation surrounded
by tissue that is spared. Inflammation extends from the mucosa
to the serosa, leading to complications that are unique to CD,
such as deep ulcerations, luminal strictures, and fistulas, which
can involve other organs such as the bladder, vagina, or perianal
region, and skin (5, 89, 90).

Much like UG, ICI-induced colitis typically involves the gas-
trointestinal mucosa, and complications such as fistulas are not
seen. In addition, inflammation is typically observed in a contin-
uous pattern, with pancolitis as the most common presentation
(5, 89, 90). In contrast to sporadic UC, however, involvement of
the small intestines is common in ICI-induced colitis (5, 35, 89,
90). The rapid onset of ICI-induced colitis from CTLA-4 block-
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Table 3. Tumor neoantigens and mechanisms/biomarkers of
immune responses in general, and response to immunotherapy

Setting Mechanisms/biomarkers of References
response to immunotherapy
Tumor neoantigens Gene fusions 102
High mutational load 120,121
Tumors with DNA mismatch repair 103
deficiency
POLE-deficient tumors 104
Tumor microenvironment High PD-L1 expression 36
High tumor infiltrate 122
High signature of cytolytic activity 105, 106, 123
Reduced TGF-31, VEGFA signaling 105, 106
MHC class | genotype Heterozygosity at HLA class | loci 107

ade is also more reminiscent of an infectious colitis than of either
form of IBD. IBD is more often an indolent disease with periods
of symptom flares, but it is unusual for a patient to present within
the first few days of symptom onset with life-threatening inflam-
mation (5, 89, 90). PD-1/PD-L1 blockade-induced colitis is much
more like IBD in this respect. ICI-induced colitis is almost always
a monophasic disease, in sharp distinction to IBD, which is nearly
uniformly a chronic disease with relapses and remissions (5, 89,
90). Histopathologically, the chronic nature of IBD is associated
with architectural distortion in the colonic epithelium, a feature
rarely seen in ICI-induced colitis (5, 32, 33, 35, 89, 90).

The importance of CTLA-4, PD-1, and PD-L1 in the immune
pathophysiology of IBD itself is presently unclear. A multicenter
retrospective cohort of patients including more than 100 patients
with underlying IBD who were treated with CTLA-4 or PD-(L)1
blockade was recently reported, adding to several smaller case
series (91-94). In a cohort that included both patients with
UC and with CD, the gastrointestinal adverse event rate was
41% compared with 11% in a control cohort, implicating these
immune checkpoints in maintenance of IBD remission (94). The
risk of a flare was unrelated to the type of underlying IBD (CD ver-
sus UC), but showed a trend toward an increased risk associated
with blockade of CTLA-4. All of the currently reported studies
are retrospective, however, and based on the data available, the
patients were disproportionately likely to have quiescent disease,
with many off of all therapy and without symptoms (94). Indeed,
several of the patients with UC had had prior colectomies, a func-
tional cure (91-94).

Although neither PD-1 nor PD-L1 genetic deficiency has
been reported in patients, CTLA-4 haploinsufficiency is now well
described. Patients with monoallelic loss of function of CTLA-4
develop a multiorgan inflammatory syndrome called CTLA-4
haploinsufficiency with autoimmune infiltration (CHAI) (95-97).
This rare disease impairs normal regulation of the immune system
and results in excessive numbers of lymphocytes and autoimmu-
nity (95-97). Mucosal inflammation is common in CHAI patients,
with variable severity (95-97). CHAI can be treated with immune
suppression, but it responds extremely well to CTLA-4 Ig or abata-
cept (95-97). Abatacept is likely to reverse many, if not all, of the
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ongoing inflammation observed in patients treated with CTLA-
4 blockade (95-97). While potentially useful in cases of life-
threatening and refractory inflammation induced by CTLA-4
blockade, abatacept is also likely to reverse the therapeutic anti-
tumor effect, presenting a powerful downside to its use.

Effects of immune checkpoint blockade on
tumor cell microenvironment

ICIs have dramatically improved treatment outcomes of a vari-
ety of aggressive tumors. Although approximately 50% of cancer
patients benefit from immune checkpoint blockade, a subset
develop autoimmune disorders that can be life-threatening.

Mounting evidence indicates that elevated PD-L1 expression
may be associated with response to immunotherapy for many
malignancies. In particular, in patients with advanced non-small
cell lung cancer, PD-L1 expression in at least 50% of tumor cells
correlated with improved efficacy of pembrolizumab (36). High
levels of PD-L1 expression by tumor cells suggests immune eva-
sion by the tumor, and, in essence, this leaves tumor cells vul-
nerable to PD-1/PD-L1 blockade (Figure 3). Interestingly, PD-L1
appears to be specifically upregulated on pancreatic p cells from
patients with T1D, and it is induced by both type I and II inter-
ferons via interferon regulatory factor 1 (IRF1) (Figure 3) (74, 98,
99). Thus, the enhancement of effector T cell function with PD-1/
PD-L1blockade results in tumor cell killing and response to immu-
notherapy, as well as hypothetically causing irreversible bystander
B cell damage in pancreatic p cells overexpressing PD-L1, and pos-
sibly neoantigens (100), microbial antigens, or antigens shared by
tumor cells and normal cells (101). These mechanisms may apply
to all inflammatory disorders precipitated by immunotherapy.

Many immunotherapeutic approaches to cancer take advan-
tage of the effects of tumor neoantigens. Nonetheless, their role in
the generation of organ-specific autoimmune responses triggered
by ICI remains to be elucidated. Tumor neoantigens derived
from gene fusions are considered highly immunogenic and can
mediate robust responses to immunotherapy (102). These find-
ings highlight an essential class of tumor-specific antigens and
have implications for targeting gene fusion events in cancers that
would otherwise be less poised for response to immunotherapy
(Table 2). Furthermore, the higher likelihood of tumors with
DNA mismatch repair deficiency to respond to immunotherapy is
thought to be due to their higher tumor mutation burden (neoan-
tigens) (Table 3) (103).

Mutations in POLE, a polymerase involved in DNA replication,
lead to even higher mutational burden in tumors and have been
associated with excellent response to immunotherapy (104). Other
described mechanisms/markers associated with response to immu-
notherapy include downregulation of TGF-B1 signaling (105), VEG-
FA secretion (106), and a specific HLA class I genotype (102, 107).

Concluding remarks

IrAEs represent a clinical challenge that can reduce the bene-
fits of antitumor immunotherapy by limiting the treatment dose
and duration, and in some cases by preventing safe treatment
as a result of underlying autoimmunity or transplant status. But
these irAEs also provide, on a more fundamental level, important
insights into basic immunobiology. The irAEs represent the phe-
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notype of loss of function of checkpoint receptors in humans and
thus reveal the regulatory role of the targeted receptors in main-
taining immune homeostasis, an important complement to true
loss-of-function mutations in patients. In genetic loss of function,
effects on immune system development are difficult to disentan-
gle from effects on mature immune cells, while irAEs specifically
teach us about the roles of these receptors in immune homeostasis
after otherwise normal development.

The lessons learned from a detailed understanding of irAEs
will likely provide important clues into autoimmune diseases
and potentially critical insights toward the development of new
treatments. Spontaneous autoimmune diseases progress over an
unclear period of time, with rarely identified initial events. This
means that we often study the manifestations of autoimmune
disease without knowing which of the observed changes are the
key drivers of the response, and which are the consequences of
the true immune pathology. The irAEs induced by ICIs clarify the
relationship between the manifestations of the disease and the
immune perturbation. We know precisely what the initial disrup-
tion in immune homeostasis was, and when that disruption began.

This may well lead to the identification of new treatment tar-
gets, in addition to deepening our understanding of autoimmu-
nity. Potential treatment targets include immune populations;
signaling pathways of various ICIs targeting negative immune
receptors (108); and secreted factors that are expanded /amplified
at the initiation of the inflammatory toxicity and diminish during
disease resolution, but that may not be apparent in the tumor
microenvironment.

The treatment of most autoimmune diseases must balance
immune suppression with the need to provide protective immunity
from pathogenic microorganisms. Similarly, immune-suppressive
treatment for irAEs must balance the effects of these suppressive
treatments on antitumor immunity. Yet currently, our understand-
ing of the relationship between effective antitumor immunity and
the mechanisms driving irAEs is rudimentary. We have evidence
that productive antitumor responses can occur in patients treated
with corticosteroids, but we also have evidence that cortico-
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steroids may reduce the full effectiveness of checkpoint blockade
(109-111). Mounting evidence suggests that irAEs may correlate
with more effective antitumor responses, yet treatment of these
irAEs may limit the scope of that benefit (109, 112-114). Innate
inflammatory cytokines such as TNF-o are clear drivers of some
irAEs, and evidence has implicated these factors in tumor pro-
motion, making these cytokines potentially attractive treatment
targets, though definitive evidence that such an approach will be
beneficial in humans is lacking (115, 116).

Checkpoint blockade targeting CTLA-4 and PD-1/PD-L1 has
already taught us critical lessons about the regulation of immunity
and autoimmunity in humans. These immunotherapies are only
the first in a probable long line of conceptually similar medications
that will target the full array of regulatory pathways that modulate
immune responses, and we stand to learn equally important les-
sons from the irAEs induced by these next-generation therapeutics
(22). This will include agents targeting alternate immune check-
points such as TIM-3 or LAG3, but it will also include blockade of
innate immune-regulatory pathways such as CD47 and drugs tar-
geting specific regulatory cells such as Tregs or myeloid-derived
suppressor cells (22). The development of these next-generation
agents, including combination treatments, will undoubtedly pose
a considerable clinical challenge for irAE management, but at the
same time will further expand our understanding of immune regu-
lation and may deepen our understanding of autoimmunity.
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