Supplementary Information

Decreased sphingolipid synthesis in children with 17q21 asthma-risk genotypes

Jennie G. Ono¹, Benjamin I. Kim², Yize Zhao³, Paul J. Christos⁴, Yohannes Tesfaigzi⁵, Tilla S. Worgall², Stefan Worgall^{1,6}

¹Department of Pediatrics, Weill Cornell Medicine, New York, NY
²Department of Pathology and Cell Biology, Columbia University, New York, NY
³Department of Biostatistics, Yale School of Public Health, New Haven, CT
⁴Department of Healthcare Policy & Research, Weill Cornell Medicine, New York, NY
⁵Department of Pulmonary and Critical Care Medicine, Harvard Medical School, Boston, MA
⁶Department of Genetic Medicine, Weill Cornell Medicine, New York, NY

Supplementary Methods

Study Design/Subject enrollment

Parents of children between the ages of 5 and 17 years were recruited for enrollment in this case-control study with prevalent cases, from two ambulatory pediatric practices in New York City, NY which provide both pediatric primary care and pediatric pulmonology subspecialty care between 2/5/2013 and 5/25/2017. The pediatric practices are located in the boroughs of Manhattan and Queens and provide outpatient care for primarily lowincome families. Case and Control subjects were recruited at the time of arrival at their pediatric appointment (routine pediatric primary care visit for controls, or asthma-specific pulmonology visits for cases) and were enrolled in the study if they agreed to participate and were able to undergo data collection either that day or scheduled within 2 weeks. Case and Control subjects were enrolled concomitantly and sequentially over time if they met inclusion/exclusion criteria (described below) without consideration of gender or age, with a goal to enroll a minimum of 50 subjects in each group based on a pre-enrollment power analysis. A schematic of the subject recruitment and enrollment process is shown in **Supplementary Figure 6**.

Children were classified as having asthma if they were given a diagnosis of asthma by the pediatric pulmonologist with whom they were an established patient and have been symptomatic within the last 2 years. Children with asthma were enrolled in the study at the time of their visit with the pulmonologist. Healthy control subjects were recruited out of the general pediatric practices at routine annual visits, and were provided a screening questionnaire to evaluate for any prior history of wheezing, bronchodilator administration by a provider or parent, or any history of breathing concerns. An affirmative history of difficult breathing in any context or ever bronchodilator use lead to the exclusion of the subject. Subjects for both case or control groups were additionally excluded if they reported via parental questionnaire, any acute illness or fever at the time of enrollment, a history of autoimmune or chronic inflammatory disease, sicklecell disease, history of past or active malignancy, immunodeficiency, congenital lung malformations, chronic lung disease of prematurity or any history of prematurity of a gestational age of less than 35 weeks. For subjects with asthma, any parent who identified their child as being on oral steroids at the time of enrollment or were having acute asthma symptoms were excluded. Additional information was collected regarding any other co-exiting medical conditions which did not fall into exclusion criteria. One control subject and one asthma subject were excluded from final analysis after enrollment following review of medical record. The control subject was excluded for a history of prematurity (gestational age 29 weeks) and the asthma subject due to a history of systemic lupus erythematosus. Weight and BMI was obtained at time of enrollment; obesity was defined as a BMI > the 95th percentile for age and was compared between both groups.

The study was approved by the Weill Cornell Institutional Review Board (protocol #1206012409) and the Western Institutional Review Board (protocol #20150736) for human subjects. Following informed consent, all subjects underwent collection of peripheral blood for

whole blood and plasma sphingolipid quantification, measurement of total IgE (IU/ml) and absolute eosinophil counts for characterization of allergic status, DNA isolation and genotyping at five 17q21 associated SNPs, and isolation of PBMCs for measurement of newly synthesized products of the *de novo* sphingolipid synthesis pathway. All subjects with absolute eosinophil counts of \geq 300 cells/ml or a total IgE of \geq 200 (IU/ml) at the time of data collection were classified as "allergic" for purposes of analysis.

Quantitative Sphingolipid Determination

Sphingolipids were quantified in plasma, whole blood, PBMCs and airway epithelial cells by high pressure liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-MS/MS) using minor modification of a described method (1). The method is validated for 5 dihydroceramides: (d18:0/16:0 d18:0/18:0, d18:0/18:1, d18:0/24:0, d18:0/24:1), 6 ceramides (d18:1/C16:0, d18:1/C18:0, d18:1/C20:0, d18:1/C22:0, d18:1/C24:0, d18:1/C24:1), 4 sphingomyelins (SM d18:1/C16:0, SM d18:1/C18:0, SM d18:1/C18:1, SM d18:1/C24:1), and 4 long-chain bases: sphingosine (SO d18:1), sphinganine (SA d18:0), sphingosine-1-phosphate (S1P d18:1), sphinganine-1-phosphate (Sa-1-P d18:0). 25 ul serum or whole blood were extracted by vortexing overnight in 900 ul dichloromethane / methanol (1:1) with addition of internal standard (N-lauroyl-D-erythro-sphingosylphosphorylcholine). After centrifugation to precipitate cell debris, an aliquot was transferred into an Agilent 1200 HPLC (Agilent Poroshell 120 column) linked to an Agilent 6430 triple quadrupole mass spectrometer. Mobile phase A consisted of methanol/water/chloroform/formic acid (55:40:5:0.4 v/v); Mobile phase B consisted of methanol/acetonitrile/chloroform/formic acid (48:48:4:0.4 v/v). After pre-equilibration for 6 sec, the gradient was increased gradually to 60% mobile phase B and 100% mobile phase B that was held for 1.9 min. With a flow rate is 0.6 mL/min, the duration of the entire run was 9.65 min. We used the Mass Hunter optimizer and pure synthetic standards (Avanti Polar Lipids) to

determine optimum fragmentation voltage, precursor/ product ions and m/z values. Peak calls and abundance calculations were obtained with MassHunter Workstation Software Version B.06.00 SP01/Build 6.0.388.1 (Agilent). Final concentrations were calculated from a standard curve for each sphingolipid run in parallel. For plasma, equal volumes of sample were used for quantification. For whole blood, each sample was normalized to the subjects' hematocrit measured at the time of sample collection. All whole blood and plasma samples were analyzed in one HPLC-MS/MS run per specimen type; the investigator performing the quantification was blinded to case or control status and SNP genotypes. The quantification of newly produced products of de novo synthesis in PBMCs was performed in two HPLC-MS/MS groups of individual subjects based on time of enrollment, and the investigator performing the quantification was blinded as to group or genotype of the individual samples.

SNP genotyping

SNP genotyping was performed in the core laboratory of the Clinical and Translational Science Center of Weill Cornell Medicine. DNA was isolated and genotyping for 5 SNPs was performed on whole blood from both asthma and control subjects. Briefly, genomic DNA was extracted from 200µl whole blood using QIAamp DNA blood mini kit (QIAGEN Inc., cat# 51106) according to manufacturer's instructions, and the concentration quantitated by UV absorbance. The SNP genotyping was performed using the TaqMan® SNP Genotyping Assays (SNP ID: rs8067378, rs4065275, rs8076131, rs12603332, rs7216389) following the manufacturer's instructions. Each SNP genotyping reaction was carried out in duplicate and three positive controls were included for each SNP genotype. The thermal cycling conditions included an initial incubation at 50°C for 2 min, then 95°C for 10 min, and 40 cycles of 95°C for 15 second and 60°C for one min. The SNP genotyping reaction was run in an Illumina Eco Real-Time PCR system and the data was analyzed using EcoStudy (version 5.0.4890) software.

Metabolic labelling and measurement of *de novo* synthesized sphinganine and sphinganine-1-phosphate

Sphingolipid *de novo* synthesis was measured in PBMCs isolated from whole blood of control and asthma subjects by metabolic labelling with the SPT substrate serine. This method can reliably assess SPT activity (2, 3). Following Ficoll gradient separation (CPT Mononuclear Cell Separation Tubes, BD Biosciences #362761), PBMC were incubated at 37°C for 30 min with 2.2 mM stable isotope labeled L-[U-¹³C, ¹⁵N) serine (Cambridge Isotope Laboratories #CNLM-474). Sphinganine and sphinganine-1-phosphate were extracted and quantitated by monitoring [M+3] isotope in precursor and product ions used in corresponding non-labeled sphinganine and Sa-1-P. Concentrations were calculated through extrapolation from a standard curve with internal standards and then normalized to the number of PBMC.

Primary Airway Epithelial cells

To assess sphingolipid synthesis of human primary airway epithelial cells based on the 17q21 rs7216389 genotype, we used banked primary airway epithelial cells that were screened for the 17q21 rs7216389 SNP. These cell lines were from two studies: (1) Part of ES015482 from lung transplants at University of North Carolina; and (2) Lung resections to remove cancerous lung areas at the University of New Mexico Lung Cancer Center as part of funding from Lovelace Respiratory Research Institute. Four cell lines with the rs7216389-TT genotype (minor allele) and four cell lines with the rs7216389-CC genotype (major allele) were selected and the cells were expanded using Bronchial Epithelial Growth Media (BEGM) and S-ALI growth media (Lonza, Walkersville, MD), respectively, and then cultured in air-liquid interface to generate differentiated airway epithelium following established protocols (4). Cells were then washed with PBS and sphingolipids in the cells were quantified by high pressure liquid

chromatography electrospray ionization tandem mass spectrometry (HPLC-MS/MS) as described in the methods section.

Statistics

The normality of the data was checked by histogram and D'agostino-Pearson tests for normality. Log-transformation was performed on the original scale as necessary. Two-sample ttest or chi-square test/Fisher's exact test were used to compare two groups depending on the data types (continuous or categorical); and ANOVA and logistic regressions were used to perform univariable or multivariable association analyses. Non-parametric tests between 2 comparisons (Mann-Whitney) or more than 2 (Kruskal-Wallis) were performed to compare groups where data was not normally distributed. To address the potential for overinflating statistical significance due to multiple comparisons and control for false discovery rate, we applied the Benjamini and Hochberg (BH) procedure (5) to sphingolipid analyses where 3 or more comparisons were made, adjusting for a maximum false discovery rate of 0.05; critical p-values for each analysis indicating the maximum unadjusted p-value which was statistically significant after adjusting for an FDR of 0.05 are reported. Sphingosine was not measurable in the majority of subjects in whole blood and was excluded from the analyses. For the genetic biomarkers, analyses were conducted initially on individual SNP levels. To avoid misspecification due to strong correlation among predictors, we further assessed the correlation among SNPs by Pearson Correlation Coefficient and then performed Principal Component Analysis (PCA) to assess for combined genetic features. Both parameter estimation and p-values are reported. The analyses and visualization of the data were conducted in R Version 3.5.2 (R Core Team, Vienna, Austria), SPSS version 23 (SPSS, Chicago, IL) and Graphpad Prism version 8.0.2 (GraphPad Software).

Supplementary Results

Study Group Characteristics

In total, 120 subjects with (n=59) and without asthma (n=61) between 5-17 years were enrolled. We successfully obtained blood from 116 subjects from which all were genotyped at the 5 asthma-associated 17q21 SNPs. 113 were available for plasma and whole blood sphingolipid analysis of which 13 plasma and 8 whole blood samples were excluded from the final sphingolipid analysis due to technical difficulties with the sample and missing data. PBMCs were successfully isolated for 85 subjects with 9 participants excluded due to technical difficulties with sample analysis and missing data. Allergic characterization by absolute eosinophil count and Total IgE was available for 107 and 113 respectively.

Age and sex distributions were similar between groups (**Supplemental Tables 1 and 2** for full cohort details). Compared with control subjects, subjects with asthma were more likely to have a reported history of atopy (eczema, allergies, allergic rhinitis) and had higher mean total IgE and eosinophils in peripheral blood. 70.5% of subjects with asthma reported being prescribed daily inhaled corticosteroid therapy, and 74% of the asthma subjects received oral steroids at least once within the year of enrollment (**Supplemental Table 2**). The number of subjects with comorbid chronic medical conditions as well as obesity and overall BMI percentiles for age was similar in each group. The following comorbid medical conditions were reported in controls subjects: autism, attention-deficit hyperactivity disorder (ADHD), and depression. Five subjects with asthma reported obstructive sleep apnea, low vitamin D, autism, ADHD, irritable bowel syndrome and neurofibromatosis type 1.

Genotype Frequencies in Study Cohort

All five SNP genotypes were available for 116 subjects (96.7%). For rs7216389, rs4065275 and rs8076131, the proportions of subjects having one of three genotypes did not

significantly differ between control and asthma groups (**Supplemental Table 3**). For rs8067378 where the G allele is asthma-protective (6), rs8067378-AA was associated with a higher proportion of asthma subjects (62.5%) compared to controls (37.5%, not significant), and rs8067378-AG was associated with higher proportions of control subjects (61.4% controls, 38.6% asthma, p=0.026). There were no differences in proportions of rs8067378-GG between groups. For rs1260332 where C is the asthma-risk allele (7), asthma was associated with higher proportion of rs1260332-CC (37.8% controls, 62.2% asthma, not significant) and control subjects associated with higher proportions of rs1260332-CT (63.0% controls, 37.0% asthma, p=0.014). There were no differences in proportions of rs1260332-TT between groups

(Supplemental Table 3).

There was strong collinearity among the five SNPs analyzed, and to avoid misspecification under regression modeling framework on the asthma clinical phenotype, we performed principal component analysis to combine the SNPs and adjust for collinearity. The first component explained 80% of the overall variance and was used to determine the relationship between genetic variation at the 17q21 SNPs and asthma. Overall there were no significant associations in this cohort between the principal component and having asthma, allergic asthma (defined by absolute eosinophil count or total IgE level), absolute eosinophil count or total IgE levels in plasma/serum.

Supplementary Tables

	Control	Asthma	
	n=59	n=61	
Sex (male)	36/59 (61%)	34/61 (55.7%)	p=0.424
Age in years at enrollment	10.6 (3.9)	10.0 (3.7)	p=0.125
mean (+/- sd)	range: 5-17	range 5-17	
History of Eczema	11/58 (19.0%)	23/61 (37.7%)	p=0.024
History of Allergies	15/58 (25.9%)	47/61 (77.0%)	p=0.0001
History of Allergic Rhinitis	2/58 (3.4%)	23/61 (37.7%)	p=0.0001
Total IgE	207 (538)	609 (588)	p=0.005
mean (+/- sd)			
Absolute Eosinophils	262 (482)	440 (289)	p=0.033
mean (+/- sd)			
Insurance (Medicaid)	51/59 (86.4%)	59/61 (96.7%)	p=0.095
BMI Percentile for age	73.85 % (28.1)	73.97 % (24.1)	p=0.980
mean (+/- sd)			
Number of obese subjects	30/59 (50.1%)	27/61 (44.3%)	p=0.357
Number of subjects with	5/59 (8.5%)	5/61 (8.2%)	p=0.549
co-existing chronic			
medical conditions ^b			
Enrollment Site 1	21/59 (35.6%)	32/61 (52.5%)	
(total N=53)			
Enrollment Site 2	38/59 (64.4%)	29/61 (47.5%)	
(total N=67)			

Supplemental Table 1. Subject characteristics enrolled at two sites^a.

^a Enrollment Site 1 = New York Presbyterian Hospital Weill Cornell Medicine, New York NY; Enrollment Site 2 = New York Presbyterian Hospital Queens, Queens, NY.

^b Reported chronic medical conditions in control group: Autism, ADHD, and depression; in asthma group: Obstructive sleep apnea, low Vitamin D, autism, ADHD, irritable bowel syndrome/constipation, Ehlers-Danlos syndrome, and neurofibromatosis type1.

Supplemental Table 2. Characteristics of pediatric asthma subjects. Data was obtained through parent and patient in-person survey at time of enrollment.

Characteristic	Number of subjects (percent of total)
Sex (M)	34/61 (54.8%)
Median age of asthma diagnosis (range)	2.5 years (4 months -10 years)
Currently on an inhaled corticosteroid	43/61 (70.5%)
Use of oral steroids in last 12 months	45/61 (74%)
Visited ED in lifetime	51/61 (84%)
Visited ED at least once in the last month	32/51 (63%)
Admitted to hospital in lifetime	40/61 (65.6%)
Admitted to hospital at least once in last 12 months	15/40 (37.5%)
Required O2 during admission	32/40 (80%)
Admitted to ICU in lifetime	25/61 (41%)
Admitted to ICU at least once in last 12months	14/25 (56%)

	Total ¹	Control	Asthma	Chi Square
	N=116	N=59	N=57	p-value
rs7216389				p=0.169
CC	8 (6.9%)	4 (50.0%)	4 (50.0%)	_
СТ	56 (47.4%)	30 (55.4%)	25 (44.6%)	
TT	52 (44.8%)	24 (46.2%)	28 (53.8%)	
rs8067378				p=0.026
AA	32 (27.6%)	12 (37.5%)	20 (62.5%)	
AG	57 (49.6%)	35 (61.4%)	22 (38.6%) ^b	
GG	27 (22.4%)	12 (40.7%)	15 (55.6%)	
rs4065275				p=0.144
AA	15 (12.9%)	8 (53.3%)	7 (46.7%)	
AG	54 (45.7%)	29 (53.7%)	24 (44.4%)	
GG	47 (40.5%)	21 (44.7)	26 (55.3%)	
rs8076131				p=0.197
AA	57 (49.1%)	27 (47.4%)	30 (52.6%)	_
AG	53 (44.8%)	28 (52.8%)	24 (45.3%)	
GG	6 (5.2%)	3 (50.0%)	3 (50.0%)	
rs1260332				p=0.014
CC	37 (31.9%)	14 (37.8%)	23 (62.2%)	
СТ	54 (45.7%)	34 (63.0%)	20 (37.0%) ^b	
TT	25 (21.7%)	11 (44.0%)	14 (56.0%)	

Supplemental Table 3. Proportion of genotypes at each of 5 SNPs in control and asthma subjects^a.

^a Cohort population composition is self-described as 16.7% African American, 0.8% Asian, 5% White, 42.5% Hispanic/Latino, 9.2% South Asian, 11.7% Other/Unknown, 14.2% Mixed.

^b Differs from expected frequencies between groups.

Supplemental Table 4. Associations between genotype at five 17q21 SNPs and sphingolipid levels in whole blood. Adjusted for race/ethnicity and sex. Pearson's correlations determined using additive coding of genotypes in order of lowest to highest associated asthma risk. Asthma-risk associated alleles are underlined.

Dihydroceramides	rs7216389	rs12603332	rs8076131	rs8067378	rs4065275
	(C/ <u>T</u>)	(T/ <u>C</u>)	(G/ <u>A</u>)	(G/ <u>A</u>)	(A/ <u>G</u>)
	Pearson R				
	(p-value)	(p-value)	(p-value)	(p-value)	(p-value)
DH C16	-0.25	-0.11	-0.26	-0.06	-0.14
(n=111)	(p=0.01)	(p=0.25)	(p=0.01)	(p=0.56)	(p=0.14)
DH C18	-0.23	-0.07	-0.22	-0.03	-0.11
(n=111)	(p=0.02)	(p=0.45)	(p=0.02)	(p=0.77)	(p=0.25)
DH C18:1	-0.20	-0.07	-0.2	-0.04	-0.13
(n=111)	(p=0.04)	(p=0.46)	(p=0.07)	(p=0.66)	(p=0.16)
DH C24	-0.20	-0.06	-0.22	-0.01	-0.09
(n=109)	(p=0.04)	(p=0.56)	(p=0.02)	(p=0.92)	(p=0.35)
DH C24:1	-0.22	0	-0.23	0.03	-0.08
(n=111)	(p=0.02)	(p=0.98)	(p=0.02)	(p=0.79)	(p=0.40)

Ceramides	rs7216389	rs12603332	rs8076131	rs8067378	rs4065275
	(C/ <u>T</u>)	(T/ <u>C</u>)	(G/ <u>A</u>)	(G/ <u>A</u>)	(A/ <u>G</u>)
	Pearson R				
	(p-value)	(p-value)	(p-value)	(p-value)	(p-value)
Cer C16	-0.20	-0.08	-0.21	-0.06	-0.14
(n=111)	(p=0.04)	(p=0.38)	(p=0.03)	(p=0.5)	(p=0.16)
Cer C18	-0.22	-0.10	-0.22	-0.05	-0.17
(n=111)	(p=0.02)	(p=0.28)	(p=0.02)	(p=0.61)	(p=0.07)
Cer C20	-0.24	-0.11	-0.24	-0.10	-0.15
(n=111)	(p=0.01)	(p=0.25)	(p=0.01)	(p=0.30)	(p=0.11)
Cer C22	-0.18	-0.07	-0.19	-0.06	-0.12
(n=111)	(p=0.06)	(p=0.47)	(p=0.05)	(p=0.17)	(p=0.23)
Cer C24	-0.16	-0.03	-0.16	0.00	-0.08
(n=111)	(p=0.10)	(p=0.75)	(p=0.10)	(p=0.96)	(p=0.40)
Cer C24:1	-0.14	0	-0.16	0.03	-0.08
(n=111)	(p=0.14)	(p=1)	(p=0.09)	(p=0.72)	(p=0.39)

Long-chain Bases	rs7216389	rs12603332	rs8076131	rs8067378	rs4065275
	(C/ <u>T</u>)	(T/ <u>C</u>)	(G/ <u>A</u>)	(G/ <u>A</u>)	(A/ <u>G</u>)
	Pearson R				
	(p-value)	(p-value)	(p-value)	(p-value)	(p-value)
Sphinganine	-0.14	-0.06	-0.031	-0.09	-0.11
(n=111)	(p=0.16)	(p=0.53)	(p=0.95)	(p=0.37)	(p=0.24)
Sphinganine-1-P	-0.07	-0.06	-0.01	-0.01	-0.14
(n=111)	(p=0.47)	(p=0.52)	(p=0.9)	(p=0.37)	(p=0.14)

Sphingosine	0.08	0.06	0.1	0.11	0.05
(n=75)	(p=0.53)	(p=0.59)	(p=0.41)	(p=0.34)	(p=0.7)
Sphingosine-1-P	-0.06	0.00	0.00	0.05	-0.12
(n=111)	(p=0.57)	(p=0.99)	(p=0.98)	(p=0.58)	(p=0.22)

Sphingomyelins	rs7216389 (C/ <u>T</u>) Pearson R	rs12603332 (T/ <u>C</u>) Pearson R	rs8076131 (G/ <u>A</u>) Pearson R	rs8067378 (G/ <u>A</u>) Pearson R	rs4065275 (A/ <u>G</u>) Pearson R
	(p-value)	(p-value)	(p-value)	(p-value)	(p-value)
SM C16	-0.14	-0.12	-0.11	-0.06	-0.15
(n=111)	(p=0.13)	(p=0.21)	(p=0.28)	(p=0.52)	(p=0.11)
SM C18	-0.16	-0.05	-0.14	0.01	-0.13
(n=111)	(p=0.09)	(p=0.63)	(p=0.15)	(p=0.94)	(p=0.17)
SM C18:1	-0.13	-0.04	-0.10	0.00	-0.13
(n=111)	(p=0.18)	(p=0.64)	(p=0.31)	(p=0.97)	(p=0.19)
SM C24:1	-0.17	-0.04	-0.13	0.00	-0.14
(n=111)	(p=0.08)	(p=0.72)	(p=0.16)	(p=0.94)	(p=0.14)

Supplemental Table 5. Pearson correlations of genotypes at rs7216389 and rs8076131 with whole blood dihydroceramides and ceramides in subjects with asthma. Pearson's correlations were determined using additive coding of genotypes in order of lowest to highest associated asthma risk. Asthma-risk associated alleles are underlined.

Dibydroceramides (n-54)	rs7216389	rs8076131
Dinyurocerannues (ii=54)	(C/ <u>T</u>)	(G/ <u>A</u>)
	Pearson R	Pearson R
	(p-value)	(p-value)
DH C16	-0.40	-0.51
	(p<0.0001)	(p<0.0001)
DH C18	-0.28	-0.32
	(p=0.04)	(p=0.02)
DH C18:1	-0.18	-0.23
	(p=0.21)	(p=0.10)
DH C24	-0.24	-0.32
	(p=0.10)	(p=0.02)
DH C24:1	-0.25	-0.32
	(p=0.07)	(p=0.02)
Ceramides (n=54)		
Cer C16	-0.26	-0.34
	(p=0.06)	(p=0.01)
Cer C18	-0.21	-0.28
	(p=0.14)	(p=0.04)
Cer C20	-0.26	-0.34
	(p=0.06)	(p=0.01)
Cer C22	-0.09	-0.17
	(p=0.51)	(p=0.24)
Cer C24	-0.04	-0.10
	(p=0.80)	(p=0.48)
Cer C24:1	-0.07	-0.18
	(p=0.64)	(p=0.20)

Supplemental Table 6. Comparison of sphingolipid masses in whole blood by genotype at rs7216389. Analysis of masses of dihydroceramides, long-chain bases, ceramides and sphingomyelins in whole blood of combined control and asthma subjects by genotype.

Dihydroceramides &		Mean	SD	F(2, 109) ^a	p-value
Long-chain Bases		(picomoles)			
DH C16				4.510	0.013
	CC (n= 8)	0.330	0.199		
	CT (n= 53)	0.254	0.100		
	TT (n= 51)	0.214	0.104		
DH C18				9.228 ^b	0.001 ^b (*)
	CC (n= 8)	0.538	0.352		
	CT (n= 53)	0.411	0.198		
	TT (n= 51)	0.326	0.233		
DH C18:1				4.276 ^b	0.118 ^b
	CC (n= 8)	2.330	0.907		
	CT (n= 53)	2.014	0.717		
	TT (n= 51)	1.758	0.666		
DH C24				7.388 ^b	0.025 ^b
	CC (n= 8)	0.752	0.281		
	CT (n= 53)	0.600	0.353		
	TT (n= 51)	0.487	0.352		
DH C24:1				3.690	0.028
	CC (n= 8)	1.493	0.323		
	CT (n= 53)	1.375	0.445		
	TT (n= 51)	1.177	0.429		
Sphinganine					
	CC (n= 8)	0.130	0.055	1.620 ^b	0.445 ^b
	CT (n= 53)	0.124	0.039		
	TT (n= 51)	0.114	0.030		
Sphinganine-1-P				5.154 ^c	0.013
	CC (n= 8)	0.832	0.230		
	CT (n= 53)	1.208	0.622		
	TT (n= 51)	0.963	0.360		
Sphingosine				0.182 ^d	0.876
	CC (n=4)	33.790	26.960		
	CT (n= 40)	29.430	25.960		
	TT (n= 31)	33.650	35.480		
Sphingosine-1-P				2.847	0.062
	CC (n= 8)	2.225	0.789		
	CT (n= 53)	2.976	1.399		
	TT (n= 51)	2.501	0.942		

Ceramides &		Mean (nicomolog)	SD	F(2, 109) ^a	p-value
Cer C16		(picoliloles)		3.349	0.039
	CC (n= 8)	6.495	4.324		

	CT (n= 53)	5.231	1.82		
	TT (n= 51)	4.634	1.677		
Cer C18				3.875	0.024
	CC (n= 8)	2.366	1.102		
	CT (n= 53)	2.001	0.6809		
	TT (n= 51)	1.726	0.6517		
Cer C20				4.356	0.015
	CC (n= 8)	1.628	0.5914		
	CT (n= 53)	1.382	0.501		
	TT (n= 51)	1.168	0.4664		
Cer C22				2.548	0.080
	CC (n= 8)	23.81	8.277		
	CT (n= 53)	22.08	6.576		
	TT (n= 51)	19.67	6.053		
Cer C24				2.076	0.130
	CC (n= 8)	30.43	9.637		
	CT (n= 53)	28.54	8.625		
	TT (n= 51)	25.8	7.235		
Cer C24:1				1.719	0.184
	CC (n= 8)	24.44	8.064		
	CT (n= 53)	22.16	8.592		
	TT (n= 51)	19.88	7.322		
SM C16				1.928	0.1504
	CC (n= 8)	472.0	114.0		
	CT (n= 53)	429.0	97.2		
	TT (n= 51)	405.6	94.3		
SM C18				2.949	0.0566
	CC (n= 8)	127.5	37.81		
	CT (n= 53)	107.4	26.38		
	TT (n= 51)	103.1	24.67		
SM C18:1				2.303	0.1048
	CC (n= 8)	33.94	8.475		
	CT (n= 53)	29.31	6.798		
	TT (n= 51)	28.29	6.875		
SM C24:1				2.845	0.0625
	CC (n= 8)	430.4	83.11		
	CT (n= 53)	370.5	95.69		
	TT (n= 51)	345.9	101.3		

^a One-way ANOVA F-statistic (degrees of freedom, between and within groups) ^b Kruskal-Wallis Statistic H(3,109) and associated p-value ^c Refers to Welsch F statistic due to imbalanced SD

^dOne-way ANOVA F-statistic: F(2,72)

*indicates significance following adjustment for FDR; critical p-value =0.009.

Supplemental Table 7. Comparison of sphingolipid masses in whole blood by genotype at rs8076131. Analysis of masses of dihydroceramides, long-chain bases, ceramides and sphingomyelins in whole blood of combined control and asthma subjects by genotype.

Dihydroceramides &		Mean	SD	F(2, 109) ^a	p-value
Long-chain Bases		(picomoles)			
DH C16				4.484	0.013
	GG (n= 6)	0.316	0.194		
	AG (n= 51)	0.264	0.109		
	AA (n= 55)	0.211	0.101		
DH C18				9.498 ^b	0.009^{b}
	GG (n= 6)	0.502	0.377		
	AG (n= 51)	0.455	0.288		
	AA (n= 55)	0.326	0.225		
DH C18:1				2.816 ^b	0.245 ^b
	GG (n= 6)	2.240	0.864		
	AG (n= 51)	2.040	0.761		
	AA (n= 55)	1.780	0.647		
DH C24				8.851 ^b	0.012 ^b
	GG (n= 6)	0.720	0.274		
	AG (n= 51)	0.631	0.353		
	AA (n= 55)	0.474	0.346		
DH C24:1				4.151	0.018
	GG (n= 6)	1.450	0.294		
	AG (n= 51)	1.400	0.449		
	AA (n= 55)	1.180	0.421		
Sphinganine				1.427 ^b	0.490^{b}
	GG (n= 6)	0.110	0.033		
	AG (n= 51)	0.124	0.040		
	AA (n= 55)	0.118	0.034		
Sphinganine-1-P				4.432 ^b	0.109 ^b
	GG (n= 6)	0.763	0.224		
	AG (n= 51)	1.170	0.589		
	AA (n= 55)	1.070	0.431		
Sphingosine					
	GG (n= 2)	18.050	17.030	0.248 ^c	0.781
	AG (n=40)	30.770	26.320		
	AA (n= 33)	32.990	34.820		
Sphingosine-1-P					
	GG (n=6)	1.920	0.581	2.505	0.086
	AG (n= 51)	2.930	1.350		
	AA (n= 55)	2.590	1.040		

Ceramides & Sphingomyelins	Mean (picomoles)	SD	F(2, 109) ^a	p-value
Cer C16			4.183	0.018

	GG (n= 6)	7.02	4.870		
	AG (n= 51)	5.24	1.880		
	AA (n= 55)	4.66	1.620		
Cer C18				3.589	0.031
	GG (n= 6)	2.37	1.170		
	AG (n= 51)	2.02	0.719		
	AA (n= 55)	1.74	0.630		
Cer C20				4.001	0.021
	GG (n= 6)	1.61	0.577		
	AG (n= 51)	1.4	0.527		
	AA (n= 55)	1.18	0.451		
Cer C22				2.462	0.090
	GG (n= 6)	24.88	8.780		
	AG (n= 51)	21.98	6.780		
	AA (n= 55)	19.88	5.950		
Cer C24				1.970	0.144
	GG(n=6)	31.08	9.710		
	AG $(n=51)$	28.55	8.890		
	AA (n=55)	25.99	7.110		
Cer C24:1				2.087	0.129
	GG(n=6)	25.27	7.930		
	AG(n=51)	22.36	8.680		
	AA (n=55)	19.86	7.260		
SM C16				1.090	0.340
	GG(n=6)	464.19	114.35	11070	
	AG (n=51)	428.68	97.95		
	AA (n=55)	410.01	95.89		
SM C18				2.271	0.108
	GG(n=6)	127.96	39.40		01100
	AG (n=51)	107.74	27.57		
	AA (n=55)	103.78	24.25		
SM C18:1				2.128	0.124
	GG(n=6)	34.76	8.50		
	AG (n=51)	29.16	6.84		
	AA (n=55)	28.58	6.92		
SM C24·1		20.00	0.72	1,753	0.178
51/1 C.24.1	GG(n=6)	416 57	78 74	1,100	0.170
	AG(n=5)	373.44	96 77		
	AA (n=55)	348 68	101.65		
	1111(n-33)	5 10.00	101.05		

^a One-way ANOVA F-statistic (degrees of freedom, between and within groups) ^b Kruskal-Wallis Statistic H(3,109) and associated p-value c One-way ANOVA F-statistic: F(2,72)

Supplementary Figures

Supplemental Figure 1. The sphingolipid synthesis pathways highlighting products of the *de novo* and recycling pathways. Serine and palmitoyl-CoA are substrates for SPT which is inhibited by ORMDL3. The blue box represents the *de novo* pathway of sphingolipid synthesis and shows sphingolipid products which are directly reliant on SPT activity and the *de novo* pathway for synthesis.

Supplemental Figure 2. Sphingolipid composition in plasma. Sphingolipids in control and asthma subjects, stratified by allergic group. Boxes represent interquartile ranges with median; whiskers indicate range of observations. Means indicated (+) and compared by two-sample t-test for normally distributed data; for non-normal data, comparison of median values indicated (¹) with corresponding p-value. P-values reported if <0.05. Significant p-values following the BH procedure for an FDR of 0.05 are indicated (*) and fall below the BH-critical value of 0.001. Low-eosinophils: <300/ml, High-eosinophils: \geq 300/ml in peripheral blood. Low-eosinophil control (n=39), asthma (n=14); High-eosinophil control (n=15); asthma (n=32).

Supplemental Figure 3. Sphingolipid composition in whole blood stratified for total IgE level.

Sphingolipids measured in control and asthma subjects, stratified by total IgE group. Boxes represent interquartile ranges with median; whiskers indicate range of observations. Means are indicated by +; compared by two-sample t-test for normally distributed data; for non-normal data, comparison of median values indicated (¹) with corresponding p-value. p-values reported if <0.05. Significant p-values following the BH procedure for an FDR of 0.05 are indicated (*) and fall below the BH-critical value of 0.007. Low-IgE: <200 IU/ml, High-IgE: \geq 200 IU/ml in peripheral blood. Low-IgE control (n=45), asthma (n=12), high-IgE control (n=15), asthma (n=41).

Supplemental Figure 4. De novo sphingolipid synthesis is decreased in children with asthma. Newly

synthesized sphinganine (Sa) and sphinganine-1-phosphate (Sa-1-P) in control and asthma following metabolic labelling of substrate ($C^{13}N^{15}$ -serine) in PBMCs. Samples were analyzed in two groups over subject enrollment period, and displayed from each HPLC/mass spectrometry analysis (Group 1 n= 22, Group 2 n=54). Individual data points shown, compared by Mann-Whitney test.

Supplemental Figure 5. Newly synthesized sphinganine and dihydroceramide C24 measured following metabolic labelling with $C^{13}N^{15}$ -serine, and naturally occurring sphingosine-1-phosphate, ceramide C18 and sphingomyelin C18 were measured in primary airway epithelial cells cultured at air-liquid interface with either rs7213389-CC or rs7216389-TT genotypes. Masses expressed in picomoles per mg protein.

Supplemental Figure 6. Diagram of the subject recruitment and enrollment process.

Supplemental References

- 1. Bui HH, Leohr JK, and Kuo MS. Analysis of sphingolipids in extracted human plasma using liquid chromatography electrospray ionization tandem mass spectrometry. *Anal Biochem.* 2012;423(2):187-94.
- Berdyshev EV, Gorshkova IA, Usatyuk P, Zhao Y, Saatian B, Hubbard W, et al. De novo biosynthesis of dihydrosphingosine-1-phosphate by sphingosine kinase 1 in mammalian cells. *Cell Signal*. 2006;18(10):1779-92.
- Ren J, Snider J, Airola MV, Zhong A, Rana NA, Obeid LM, et al. Quantification of 3ketodihydrosphingosine using HPLC-ESI-MS/MS to study SPT activity in yeast. *J Lipid Res*. 2018;59(1):162-70.
- Shi ZO, Fischer MJ, De Sanctis GT, Schuyler MR, and Tesfaigzi Y. IFN-gamma, but not Fas, mediates reduction of allergen-induced mucous cell metaplasia by inducing apoptosis. *J Immunol.* 2002;168(9):4764-71.
- 5. Glickman ME, Rao SR, and Schultz MR. False discovery rate control is a recommended alternative to Bonferroni-type adjustments in health studies. *J Clin Epidemiol*. 2014;67(8):850-7.
- Li X, Hastie AT, Hawkins GA, Moore WC, Ampleford EJ, Milosevic J, et al. eQTL of bronchial epithelial cells and bronchial alveolar lavage deciphers GWAS-identified asthma genes. *Allergy*. 2015;70(10):1309-18.
- Stein MM, Thompson EE, Schoettler N, Helling BA, Magnaye KM, Stanhope C, et al. A decade of research on the 17q12-21 asthma locus: Piecing together the puzzle. *J Allergy Clin Immunol*. 2018;142(3):749-64.e3.