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Introduction
Despite recent clinical breakthroughs in adoptive T cell trans-
fer approaches and checkpoint blockade in treating hemato-
poietic and solid tumors, suppression of the antitumor immune 
response in the tumor microenvironment (TME) is a major 
obstacle to tumor regression (1). Although antitumor immune 
cells, such as T and NK cells, normally infiltrate tumors, and 
their abundance correlates with better prognosis in certain can-
cers, the presence of inhibitory populations, such as regulatory 
CD4+ T cells (Tregs), counteract tumor rejection (2). The main 
role of Tregs is to maintain immune homeostasis in physiolo-
gy by inhibiting effector T cells via different modes of action, 
including expression of cell-surface inhibitors, such as cytotoxic 
T lymphocyte–associated protein 4 (CTLA-4) (3); production of 
inhibitory cytokines, such as IL-10 (4), TGF-β (5), or IL-35 (6); 
depletion of IL-2 by overexpression of the high-affinity IL-2 

receptor α chain (IL-2Rα, also known as CD25); purine-medi-
ated suppression by CD39-dependent conversion of ATP (7); 
or direct cytotoxicity (8), thus preventing autoimmunity and 
immunopathology (reviewed in Vignali et al., ref. 9). Converse-
ly, Tregs are aberrantly enriched in tumors and dampen antitu-
mor immune responses (10). This detrimental effect on antitu-
mor immunity is demonstrated by a plethora of preclinical data 
in which systemic Treg depletion or inhibition of their function 
promotes tumor regression (11–14). Unfortunately, depletion or 
inhibition of Tregs often results in severe autoimmunity, aller-
gy, and immunopathology (11–14); therefore, new strategies are 
required to safely deplete Tregs specifically in the TME. The 
prerequisite to do so is the identification of a specific molecu-
lar program or molecules that are exclusively present in tumor-
associated Tregs, which would therein allow us to spare circulat-
ing Tregs and maintain peripheral homeostasis.

Transcriptional profiling recently revealed that CD4+ Tregs 
isolated from colon, lung, and breast tumors are transcrip-
tionally different from those isolated from the adjacent tis-
sues and the blood (15, 16). In particular their transcriptional 
profile overlaps with that of effector Tregs described in mice, 
which show enhanced suppressive activity. This includes the 
increased expression of molecules, such as CTLA-4, 4-1BB, 
CCR8, ICOS, and others (17). Noteworthily, increased expres-
sion of CCR8 (15, 16), LAYN, or MAGEH1 (15) by the intratu-

The molecular mechanisms responsible for the high immunosuppressive capacity of CD4+ Tregs in tumors are not well 
known. High-dimensional single-cell profiling of T cells from chemotherapy-naive individuals with non–small-cell 
lung cancer identified the transcription factor IRF4 as specifically expressed by a subset of intratumoral CD4+ effector 
Tregs with superior suppressive activity. In contrast to the IRF4– counterparts, IRF4+ Tregs expressed a vast array of 
suppressive molecules, and their presence correlated with multiple exhausted subpopulations of T cells. Integration of 
transcriptomic and epigenomic data revealed that IRF4, either alone or in combination with its partner BATF, directly 
controlled a molecular program responsible for immunosuppression in tumors. Accordingly, deletion of Irf4 exclusively 
in Tregs resulted in delayed tumor growth in mice while the abundance of IRF4+ Tregs correlated with poor prognosis 
in patients with multiple human cancers. Thus, a common mechanism underlies immunosuppression in the tumor 
microenvironment irrespective of the tumor type.
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pressive functions, deletion of Irf4 in Tregs enhanced antitumor 
immunity in a mouse model of cancer in vivo. We further iden-
tified a core network of immunosuppressive genes directly reg-
ulated by IRF4 in interaction with its molecular partner, BATF, 
thereby demonstrating that IRF4 instructs the suppressive activ-
ity of Tregs in human cancer.

Results
Treg heterogeneity in the TME and its relation to IRF4. To gain 
insight into CD4+ T cell phenotypes at the tumor site, we initially 
investigated T cells in a cohort of 53 patients with NSCLC (Supple-
mental Table 1 and ref. 24; supplemental material available online 
with this article; https://doi.org/10.1172/JCI130426DS1) with a 
27-parameter polychromatic flow cytometry panel encompassing 
markers of memory and effector T cell differentiation, activation, 
metabolic activity, and exhaustion as well as Treg markers (Sup-
plemental Table 2). We profiled tumors (n = 53), paired adjacent 
cancer-free lung tissues (n = 45), and peripheral blood samples 
(PB; n = 22) of treatment-naive patients (Supplemental Table 1). 
We next used Uniform Manifold Approximation and Projection 
(UMAP), a dimensionality reduction visualization approach that 
preserves the local and the global structure of single-cell data, to 
simplify the visualization of marker coexpression in a 2D space 
(Figure 1, A and B). Overall, CD4+ T cells from the 3 body sites 
displayed a different single-cell profile (Figure 1A). Previous-
ly described dynamics aside (24), such as the loss of CD45RA+, 
CCR7+, and CD27+ (identifying naive and early memory cells) and 
the accumulation of HLA-DR+ activated and PD1+ T cells, we also 
noticed the accumulation of CD25+Foxp3+ Tregs expressing the 
TF IRF4 in tumor versus adjacent lung and blood samples (Fig-
ure 1, B–D). Manual gating of flow cytometry data indicated that 
approximately 40% of CD25+Foxp3+ Tregs in tumors expressed 
IRF4, while the rest were IRF4– (Figure 1, C and D), suggesting 
Treg heterogeneity at the tumor site. In addition, the majority of 
conventional CD4+ T (Tconv) cells lacked IRF4 expression (Fig-
ure 1, C and D). Flow cytometric analysis also revealed that IRF4+ 
Tregs retain increased expression of PD1, TIGIT, and TIM3 recep-
tors and CD71 and CD98 metabolic markers compared with both 
IRF4– Tregs and Tconv cells in tumors (Figure 1E). These markers 
are generally upregulated with activation. In line with our results, 
reanalysis of published single-cell RNA-sequencing (scRNA-seq) 
data (25) of CD4+ tumor-infiltrating lymphocytes from patients 
with NSCLC identified IRF4 expression as largely confined to 
a subpopulation of CTLAhi Tregs (subset 9-CTLA4; Figure 1F), 
while it was relatively lower in other cell subsets, including in non-
activated Tregs (8-FOXP3). CTLA4hi Tregs, which also express 
FOXP3, displayed an effector signature, including expression of 
CCR8, ICOS, TNFRSF4 (encoding OX-40), TNFRSF9 (encoding 
CD137/4-1BB), and the IRF4 transcriptional partner BATF (Fig-
ure 1G). We identified a similar subset of IRF4-expressing Tregs 
by scRNA-seq analysis of CD45+ cells infiltrating hepatocellular 
carcinoma (Supplemental Figure 1A and ref. 26). Notably, IRF4 
expression correlated with multiple Treg genes but not with TFs 
related to other Th cell subsets in single CD4+ T cells isolated from 
melanomas (Supplemental Figure 1B and ref. 27). Thus, a common 
phenotypic and gene expression architecture defines tumor-infil-
trating Tregs in multiple human cancers.

moral Tregs correlated with poor prognosis, suggesting a pivot-
al role of these cells in inhibiting antitumor immune responses 
and/or favoring tumor growth.

The molecular mechanisms leading to increased Treg activ-
ity in tumors remain ill-defined. Studies performed over the last 
decade have elucidated in part the transcriptional network at the 
basis of murine effector Treg differentiation in lymphoid and 
nonlymphoid tissues. Once activated, Tregs undergo a program 
of effector differentiation that mirrors Th cell differentiation by 
expressing transcription factors (TFs) that regulate Th polariza-
tion, such as T-bet, GATA-3, or Bcl-6 (17). Additional TFs might 
be involved in regulating effector Tregs at specific tissue sites, 
such as PPARγ, which controls the unique transcriptional and 
metabolic signature of those cells residing in the visceral adi-
pose tissue (18). Interferon regulatory factor 4 (IRF4), initially 
identified as the TF responsible for the generation of those Tregs 
specifically controlling Th2 responses (19), plays a central role 
in generating effector Tregs in peripheral organs (20). IRF4 is 
absent in quiescent T cells but is induced by T cell receptor (TCR) 
signaling. Mice with specific deletion of Irf4 in Tregs develop 
multiorgan autoimmunity due to exacerbated Th1, Th17, and Tfh 
responses and plasma cell infiltration (19). Notably, IRF4-defi-
cient Tregs largely maintain a CD62Lhi naive-like phenotype and 
express reduced amounts of effector and suppressive molecules, 
such as ICOS, CTLA-4, and IL-10 (20). IRF4 cooperates with 
other TFs in DNA binding and regulating transcription in CD4+ 
T cells, namely the AP-1 family members BATF and JUN (21, 22). 
Notably, IRF4 was reported to be overexpressed by non–small-
cell lung cancer–infiltrating (NSCLC-infiltrating) Tregs (23), but 
its role in determining the Treg transcriptional program, func-
tionality, and regulation of antitumor immunity remains com-
pletely unexplored.

Here, we reported the existence of 2 subsets of tumor-infil-
trating Tregs with differential expression of IRF4, as revealed by 
high-dimensional single-cell analysis of lung, liver, and mela-
noma-infiltrating T cells. IRF4 defined activated effector Tregs 
with enhanced suppressive activity, the abundance of which 
correlates with poor prognosis in multiple human cancers. Con-
sistent with a direct requirement for IRF4 for the enhanced sup-

Figure 1. IRF4 identifies effector Tregs enriched in human tumors. (A) 
UMAP analysis of concatenated CD4+ T cells (1,500 cells/sample) from 
tumor (n = 53), adjacent lung tissue (n = 45), and blood (n = 22) samples 
from patients with NSCLC. (B) UMAP of relative marker expression by 
concatenated CD4+ T cells from the same samples in A. (C) Manual gating 
analysis of CD4+CD25+FOXP3+ Tregs expressing IRF4+ by flow cytometry. 
Numbers indicate the percentage of positive cells. (D) Summary plot 
representing the IRF4 expression in CD4+ Tregs and conventional T (Tconv 
cells; defined as CD25loFoxP3–) cells from the same patients as in A (***P < 
0.0005, ****P < 0.0001, Kruskal-Wallis test). (E) Representative distribu-
tion by flow cytometry (top) and summary of the percentage of expression 
of selected markers (bottom) in tumor-infiltrating IRF4+ and IRF4– Tregs 
and Tconv cells (*P < 0.01, ***P < 0.0005, ****P < 0.0001, nonparametric 
Friedman test). (F) Box plot showing the log2(TPM + 1) expression of IRF4 
transcript across 9 CD4+ T cells clusters as identified by single-cell RNA-seq 
(25). Each dot represents a single cell (*P ≤ 0.01, ****P ≤ 0.0001, Wilcoxon 
test). (G) t-SNE plots illustrating the expression of selected genes in single 
CD4+ T cells from lung tumor lesions. Cell clusters, depicted on the left, 
were identified as in F.
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face staining strategy for FACS-based isolation of Treg subsets. 
Bulk Tregs from tumors, defined as CD25hiCD127lo, were further 
separated according to CCR8 and ICOS to identify IRF4+ and 
IRF4– Tregs (Figure 2A, Supplemental Figure 2A, and Methods). 
As expected, both of these subsets expressed high levels of FOXP3 

IRF4 expression defines effector Tregs with enhanced suppressive 
potential capable of promoting tumor growth in vivo. We further 
characterized IRF4+ and IRF4– Tregs by bulk RNA-seq. As the 
intranuclear localization of TFs precluded the isolation of viable 
cells based on IRF4 expression levels, we used a surrogate sur-

Figure 2. Transcriptional and functional profiling defines the effector and enhanced suppressive nature of IRF4+ Tregs. (A) Representative CCR8 and 
ICOS expression in tumor-infiltrating CD25hiCD127lo Treg subsets defined by IRF4 expression and t percentage of IRF4 expression in tumor-infiltrating Tregs 
gated as CCR8–ICOS– or CCR8+ICOS+. (B) Heatmap of differentially expressed genes (DEGs) in the FACS-sorted CCR8+ICOS+ versus ICOS–CCR8– tumor-in-
filtrating Tregs, as obtained by RNA-seq (FDR < 0.05). Selected DEGs are indicated. For some genes, protein names are indicated. (C) Hallmark gene sets 
(MsigDB; as obtained by GSEA) significantly enriched in cells sorted as in B. (D) Transcription factor binding motif (TFBM) enrichment analysis by pScan 
of RNA-seq data obtained as in B. Colored dots indicate significant hits. (E) CFSE-labeled CD4+ CD25– T (Tconv) cells dilution from a representative blood 
sample. Tconv cells were cocultured with Suppression Inspector MACSiBead beads and different ratios of intratumoral Treg subsets for 5 days. Data are 
representative of 5 independent experiments. (F) Tumor volumes in FoxP3EGFP-cre-ERT2(control) (n = 7) or Irf4fl/flFoxP3EGFP-cre-ERT2 (n = 5) mice following the 
administration of tamoxifen. Tumor curves in individual mice and mean ± SEM of the same cohort are shown. **P < 0.01, paired Student’s t test.
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unknown. To test the functional role of IRF4 in tumor-infiltrat-
ing Tregs, we used mice that allow tamoxifen-inducible deletion 
of IRF4 specifically in Tregs (Irf4fl/flFoxp3EGFP-cre-ERT2) and controls 
(Foxp3EGFP-cre-ERT2) (Figure 2F). Induced deletion of Irf4 in FoxP3+ 
cells in MC38 tumor-bearing mice resulted in a significant delay 
in tumor growth (Figure 2F), indicating that IRF4+ Tregs suppress 
antitumor immunity. To further test the Treg-intrinsic role of 
IRF4, we reconstituted lethally irradiated mice with a mix of con-
genically marked bone marrow from WT mice and mice with a T 
cell–specific deletion of IRF4 (Irf4fl/flCd4Cre). We also generated 
mixed control chimeras containing WT and Cd4Cre control bone 
marrow. Flow cytometric analysis of tumor-infiltrating Tregs in 
these chimeric mice showed severely impaired representation of 
IRF4-deficient Tregs at the tumor site but not in the spleen and 
lack of ICOS expression, a direct target of IRF4. In contrast, con-
trol chimeras showed similar contribution of Tregs at both sites 
and robust ICOS expression (Supplemental Figure 2, E and F).

IRF4 and its partner BATF control a molecular program of effec-
tor Treg differentiation and suppression in tumors. Next, we formal-
ly tested the role of IRF4 and its transcriptional partner BATF in 
determining the features of tumor-infiltrating Tregs by integrating 
our data from human Tregs with gene expression profiles and epig-
enomic data from mouse Tregs (Supplemental Table 5). As mouse 
versus human gene regulation is difficult to infer due to species 
differences in noncoding regions, we first defined a conserved 
tumor-infiltrating Treg signature by integrating DEGs of CCR8+ 

ICOS+ versus CCR8– ICOS– Tregs from Figure 2B and Supplemen-
tal Table 3 and DEGs of tumor-infiltrating Tregs versus spleen 
Tregs from a murine model (36), as outlined in Figure 3A. In total, 
we identified 382 transcripts that were specifically upregulated 
or downregulated in mouse and human tumor-infiltrating Tregs 
(Figure 3A and Supplemental Table 6). Next, we defined the tran-
scriptional program that is dependent on IRF4 or BATF expression 
by performing RNA-seq and analysis of gene expression profiles 
of splenic Tregs from WT versus Irf4–/– mice. We also reanalyzed a 
published data set comparing WT versus Batf–/– Tregs (37). Over-
all, this identified 1241 and 232 genes that were controlled by IRF4 
and BATF, respectively (Figure 3B and Supplemental Table 5). 
GSEA revealed that many genes involved in lymphocyte activa-
tion, proliferation, and differentiation were under the joint control 
of IRF4 and BATF; those involved in apoptosis were controlled by 
BATF alone; and those related to immunosuppression, i.e., IL-37– 
and IL-10–dependent signaling pathways, were under the control 
of IRF4 alone (Supplemental Figure 3B). A relevant proportion 
(94 genes; 24.6%) of the conserved tumor Treg signature between 
humans and mice was controlled by IRF4 and/or BATF (Figure 3B; 
IRF4 and BATF DEGs vs. tumor-infiltrating Treg signature: P = 1.1 
× 10–14 and P = 3.3 × 10–18, respectively; hypergeometric test; data 
not shown). We further made use of our ChIP deep-sequencing 
(ChIP-seq) data to assess IRF4 occupancy at the loci of interest 
(Supplemental Table 7) and thus define a direct role of this TF in 
controlling gene expression in tumor-infiltrating Tregs. Supple-
mental Figure 3B shows the distribution of regions in the genome 
that are bound directly by IRF4 according to their distance from 
transcriptional start sites (TSSs) (see also Supplemental Table 7). 
Despite a small fraction mapped in promoter regions (0–1 Kb), 
the majority of IRF4-bound sites mapped at 10 to 100 Kb dis-

compared with Tconv cells (Supplemental Figure 2B) and their 
gene expression significantly overlapped with a tumor-infiltrating 
Treg signature, as obtained from a NSCLC scRNA-seq data set 
(ref. 25 and Supplemental Figure 2C), confirming the Treg iden-
tity of these subsets.

A multidimensional scaling plot of gene expression pro-
files showed that sorted intratumoral CCR8+ICOS+ (IRF4+) and 
CCR8–ICOS– (IRF4–) clustered separately, indicating substantial 
differences at the transcriptional level (Supplemental Figure 2D). 
Overall, we identified 2674 differentially expressed genes (DEGs; 
FDR < 0.05; Supplemental Table 3). CCR8+ICOS+ Tregs expressed 
high amounts of transcripts encoding molecules involved in effec-
tor differentiation (e.g., TNFRSF9, TNFRSF4, TNFRSF18, IL2RA), 
transcriptional regulation of effector Tregs (BATF), proliferation 
(MKI67), Treg identity (IKZF2, encoding the TF Helios [ref. 28]), 
costimulation (ICOS) and suppressive function (CTLA4). Addi-
tional transcripts included IL32, CCL22, and CX3CR1. By contrast, 
CCR8– ICOS– Tregs expressed high amounts of transcripts encod-
ing molecules associated with early differentiation or quiescence, 
including CCR7, KLF2, LEF1, TCF7 (29), BACH2 (repressing effec-
tor programs to stabilize Treg-mediated immune homeostasis, ref. 
30), and TXNIP (a negative regulator of AKT signaling and glyco-
lytic metabolism) (Figure 2B and Supplemental Table 3). Gene set 
enrichment analysis (GSEA) further revealed that CCR8–ICOS– 
Tregs were largely quiescent and displayed transcriptional signa-
tures of Wnt/β-catenin and TGF-β signaling. In contrast, CCR8+I-
COS+ Tregs displayed enhanced signatures of metabolic activity, 
including oxidative phosphorylation and glycolysis; mTORC1-de-
pendent activity, previously shown to favor murine Treg activation 
and prevention of autoimmunity (31); and reactive oxygen species 
metabolism, consistent with enhanced activation and/or mito-
chondrial respiration (Figure 2C, Supplemental Table 4, and ref. 
32). To identify transcriptional regulators of CCR8+ICOS+ intratu-
moral Tregs, we performed computational analysis of TF-binding 
motif enrichment at the promoters (–950, +50 bp from the TSS) 
of DEGs obtained from bulk RNA-seq data. This analysis showed 
enrichment of binding motifs of TFs, including IRF4, predicted 
to be preferentially active in the CCR8+ICOS+ Treg subset (Fig-
ure 2D). We additionally identified NRF1, involved in antioxidant 
defense, lipid metabolism, and mitochondrial respiratory func-
tion (33); MYC, a master regulator of metabolic reprogramming in 
activated T cells (34); and the NF-κB family members REL, RELA, 
and RELB. In particular, RelA has been previously shown to reg-
ulate effector Treg activity in nonlymphoid tissues downstream 
of TNFRSFs (35). Thus, our transcriptional profiling revealed that 
intratumoral IRF4+ Tregs are highly activated compared with 
IRF4– Tregs and supported the notion that they have enhanced 
suppressive potential. To confirm this hypothesis, FACS-sorted 
CCR8+ICOS+ (IRF4+) and CCR8–ICOS– (IRF4–) intratumoral Tregs 
were further tested for their capacity to suppress proliferation of 
autologous CD4+CD25– Tconv cells in vitro (Figure 2E). Both Treg 
subsets were effective in this regard at a 1:1 Tconv cell/Treg ratio, 
while only CCR8+ICOS+ Tregs maintained substantial suppressive 
capacity at a 2:1 ratio (Figure 2E).

IRF4 has been shown to promote effector Treg differenti-
ation in peripheral tissues and to limit autoimmunity (20), but 
its importance in suppressing antitumor immune responses is 
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tance from the TSS, suggesting regulation of gene expression at 
enhancer regions. Tumor-infiltrating Treg genes dependent on 
IRF4 included several Tnfr family members involved in effec-
tor Treg differentiation, such as Tnfrsf1b, Tnfrsf8, Tnfrsf18, and 
Tnfrsf9 (the latter also dependent on Batf expression) (35); chemo-
kine receptors, such as Ccr8, Cxcr3, and Ccr5, likely involved in 
the localization of Tregs to tumors or to the lung and expressed 
by murine effector Tregs (38); and Zbtb32, Mki67, Map2k3, Kif23, 
Rrm2, and Aurkb, previously linked to cell cycle in other cell types 
and likely contributing to Treg proliferation (Figure 3C). Instead, 
Icos, Ikzf2 (encoding Helios), and Il1rl1 (also known as ST2 or IL-33 
receptor) were dependent on both Irf4 and Batf. Thus, Irf4 and 
Batf directly and indirectly control a program of effector Treg dif-
ferentiation and immunosuppression in cancer.

scRNA-seq–guided high-dimensional flow cytometry profiling 
reveals that CCR8+ICOS+ (IRF4+) effector Tregs associate with mul-
tiple exhaustion traits of T cells. To further characterize the T cell 
phenotypic landscape associated with Treg subsets in patients 
with NSCLC cancer in an unbiased manner, we designed a second 
high-dimensional flow cytometry panel guided by results obtained 
with scRNA-seq (25) and bulk RNA-seq (Figure 2 and Supplemental 
Table 2). We preferred markers identified by fluorochrome-conju-
gated antibodies providing a high signal-to-noise ratio (e.g., CCR8 
and ICOS instead of IRF4) so as to enhance the identification of 
subsets by the clustering algorithm, as recently suggested (39). We 
profiled millions of single cells from tumors (n = 45), paired adja-
cent cancer-free lung tissues (n = 23), and peripheral blood sam-
ples (n = 23) of treatment-naive patients (Supplemental Table 1). A 
schematic representation of the analysis pipeline is shown in Fig-
ure 4A. By applying PhenoGraph, a computational algorithm capa-
ble of clustering single cells without bias according to the relative 
expression of these molecules in the multidimensional space (40), 
we identified 14 different CD4+ and 15 different CD8+ T cell clus-
ters and defined their abundance as a percentage of total CD4+ or 
CD8+ T cells in each sample type (Figure 4B). In addition, for this 
panel of markers, UMAP of single-cell distributions and principal 
component analysis (PCA) of cluster abundance in the different 
samples clearly distinguished T cells from the peripheral blood, 
lung tissues, and tumors (Supplemental Figure 4, A and B), indicat-
ing that different sites have highly distinct T cell profiles. We next 
calculated the integrated median fluorescence intensity (iMFI) 
values of each marker in each PhenoGraph cluster so as to obtain 
information on cluster identity (Figure 4B, the Methods, and ref. 
39). Metaclustering of PhenoGraph clusters and markers grouped 

subpopulations with similar immunophenotypes. Similar to that in 
previous findings (24), we documented the loss of subsets of naive 
(CD4+, C2; CD8+, C12) and cytotoxic (CD4+, C7; CD8+, C1, C9, C2) 
T cells and the accumulation of exhausted T cells (CD8, C5) in 
tumors compared with the blood or the adjacent lung tissue (Figure 
4B). Moreover, in line with data shown in Figure 1, we revealed the 
increased presence of CCR8+ICOS+ (IRF4+) activated Tregs (CD4+, 
C6) in tumors. Next, we investigated the association of these cells 
with specific T cell subsets in the TME by performing a Pearson 
correlation analysis of the abundance of CD4+ and CD8+ T cell 
clusters as identified by PhenoGraph in 45 patients (Figure 4C). 
Notably, intratumoral CCR8+ICOS+ Tregs correlated with CD4+ 
(C13) and CD8+ (C5 and C15) T cells with features of exhaustion 
(i.e., expressing PD1, TIM3, and TIGIT in different combinations 
and intensities). At the same time, CCR8+ICOS+ Tregs negatively 
correlated with cytotoxic CD8+ T cells (C2, coexpressing GZMB 
and GNLY and thus armed for rapid effector functions) and with 
clusters of T cells bearing a central memory T phenotype (CD4+, 
C11 and CD8+, C14). In summary, high-dimensional single-cell 
profiling identifies a T cell signature with increased frequencies of 
CCR8+ICOS+ effector Tregs associated with T cell exhaustion.

CCR8+ICOS+ (IRF4+) effector Tregs define a signature of disease 
progression in NSCLC. We finally tested whether a phenotypic 
landscape of T cells involving IRF4+ effector Tregs could be found 
to be different in patients with cancer with different prognoses. 
First, a subset of our cohort of patients (n = 25) was subdivided in 2 
groups according to the median distribution of the maximum stan-
dardized value of fluorodeoxyglucose uptake (SUVmax), a PET 
indicator of tumor glycolysis and aggressiveness. PCA revealed 
a bimodal separation of the SUVmaxlo and SUVmaxhi groups of 
patients according to the relative frequencies of CD4+ and CD8+ 
PhenoGraph clusters (Figure 5A, left), indicating that they display 
a different T cell profile as a whole. Analysis of PCA loadings iden-
tified clusters contributing the most to such distribution (Figure 
5A, right). Specifically, SUVmaxhi patients harbored increased 
frequencies of CCR8+ICOS+ Tregs (C6), subsets of CD8+ (C5 and 
C15), and CD4+ T cells (C5) with traits of exhaustion or memory T 
cells expressing GZMK, EOMES (contributing to T cell dysfunc-
tion in humans [ref. 41]), and PD1 (CD8+, C3, C7), while SUVmaxlo 
patients harbored increased frequencies of CCR5+ clusters (CD8+, 
C4, C6 and CD4+, C3, C4) as well as terminal effector, cytotoxic 
T cells (CD8+, C1 and CD4+, C7) (Figure 5A). We observed similar 
trends when considering a parameter of disease progression, i.e., 
the international TNM classification, according to which CCR8+ 

ICOS+ Tregs (CD4+, C6) as well as T cells featuring exhaustion/
activation markers (CD8+, C5 and C15) were more abundant in 
patients with advanced pathological stage II and III (Figure 5B).

Infiltration of CD8+ T cells is a predictor of good prognosis in 
multiple types of cancer (42). We thus investigated disease-free 
survival (DFS) of our patients according to the Treg/CD8+ T 
cell ratio (as determined by their frequency among CD3+) at the 
tumors site and found that a higher ratio was significantly asso-
ciated with early tumor relapse (Figure 5C). As predicted by their 
superior suppressive activity, this was due to the contribution of 
CCR8+ICOS+, but not of CCR8– ICOS–, Tregs (Figure 5C). We 
next validated our findings in larger cohorts of individuals, such 
as those from The Cancer Genome Atlas (TCGA). In these, the 

Figure 3. Irf4 and its partner Baft directly and indirectly control a 
molecular program of effector Treg differentiation and suppression. (A) 
Identification of a shared gene expression signature between tumor-in-
filtrating human CCR8+ICOS+ Tregs versus CCR8–ICOS– Tregs and murine 
Tregs (36). (B) Venn diagram of the number of genes of the tumor-specific 
Treg signature obtained as in A that are differentially expressed in splenic 
Tregs from Batf–/– and Irf4–/– mice. Genes controlled only by Batf (n = 10) 
were of limited interest and thus not further investigated. (C) List of 
tumor-infiltrating Treg genes that are dependent on the expression of Irf4 
or Irf4 and Batf. All genes are induced, except for Plac8, which is repressed 
(indicated in light blue). Those genes directly controlled by IRF4 binding to 
the genome, as obtained from ChIP-seq analysis of murine Tregs, are high-
lighted. Genomic binding of Irf4 to the DNA for selected genes is depicted.
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differentiation and function, including Ccr8, Icos, Ctla4, Cxcr3, 
Il12rb1, Tnfrsf1b, and Tnfrsf8 (data not shown). In relation to this, 
JunB has recently been shown to control murine effector Treg dif-
ferentiation in the lung and colon (47), while additional TFs, such 
as STAT3, may physically interact with c-Jun (48). STAT3 mRNA 
is upregulated and the STAT3 binding motif is enriched in IRF4+ 
Tregs compared with IRF4– Tregs (data not shown), which overall 
suggests that a complex range of molecular interactions is cooper-
ating to shape the effector differentiation and enhanced suppres-
sive activity of intratumoral Tregs.

Our study reveals an additional important aspect, namely 
that effector differentiation is not a feature of all intratumoral 
Tregs. Rather, a subset of these cells with increased expression 
of IRF4 is preferentially expanded in lung, liver, and melano-
ma tumors compared with the adjacent tumor-free tissues and 
peripheral blood, as revealed by scRNA-seq. These IRF4+ Tregs 
express high amounts of molecules associated with enhanced 
immunosuppression, have increased metabolic demand, and are 
phenotypically and transcriptionally distinct from the more qui-
escent IRF4– Tregs. Whereas in humans approximately 40% of 
Tregs express IRF4, as detected by flow cytometry, deletion of 
Irf4 in mice results in the near-complete loss of Tregs in tumors, 
which possibly indicates that low levels of IRF4 are also present in 
CCR8–ICOS– Tregs. An alternative hypothesis is that slow tumor 
development, as seen in humans, results in a balanced infiltra-
tion of fewer and more activated Tregs. In line with this, approxi-
mately 40% of Tregs infiltrating lung adenocarcinoma forming in 
the K-rasG12D autochthonous model (which better recapitulates of 
the physiology of lung adenocarcinoma) express the IL-33 recep-
tor ST2 (encoded by Il1rl1) (49), a direct genomic target of IRF4 
(Figure 3C). Similarly, a recent human study found that approx-
imately 50% of breast cancer-infiltrating Tregs express CCR8 
(50), thereby corroborating our results of Treg heterogeneity in 
the TME. Despite not reaching the capability of scRNA-seq in 
terms of number of parameters being measured, the high-dimen-
sional flow cytometry used here investigates T cell phenotypes as 
a whole in a large cohort of patients compared with those recent-
ly investigated by scRNA-seq (25) and is thus capable of further 
defining the relationships between Treg subsets and other T cell 
populations within the TME. In this way, we revealed that IRF4+ 
Tregs positively correlate with multiple subsets of exhausted and 
activated CD4+ and CD8+ T cells and their abundance is associat-
ed both with relapse and poor overall survival in multiple human 
cancers. Therefore, deep immunophenotyping with improved 
and high-throughput single-cell technologies can pinpoint those 
subsets associated with slower tumor growth and favorable anti-
tumor responses with enhanced precision. We anticipate that the 
simple addition of an effector Treg marker (e.g., IRF4, ICOS, or 
CCR8 or a TNFR superfamily member) to FoxP3 staining, as done 
by immunohistochemistry in immunoscore approaches (51), will 
improve the definition of patients with improved prognosis.

The identification of CD4+ Treg heterogeneity in the TME and, 
as a consequence, of a molecular program mastering the differen-
tiation of those Tregs with enhanced suppressive capacity offers 
potentially novel opportunities to reverse immunosuppression 
while favoring antitumor immune responses. Depletion of Tregs 
has been tested in a number of preclinical approaches to promote 

degree of infiltration of specific subpopulations was determined 
by enrichment of transcriptional signatures (see Methods). Similar 
to results from our NSCLC cohort, we found that a higher CCR8+I-
COS+ Treg/CD8+ T cell signature in bulk RNA-seq data from pri-
mary biopsies was associated both with worse DFS and overall 
survival in lung adenocarcinoma (Figure 5D and ref. 43), hepato-
cellular carcinoma (Supplemental Figure 5A and ref. 44), and mel-
anoma (Supplemental Figure 5B), thereby underlying a common 
biology of Treg-mediated suppression of antitumor immunity in 
multiple human cancers.

Discussion
Human tumors are often infiltrated by large numbers of CD4+ 
Tregs that display a highly activated phenotype and enhanced sup-
pressive capacity compared with those present in the peripheral 
and the adjacent tumor-free tissues (15, 16). We have now shown 
that the transcriptional program associated with such activation 
and suppression in the TME is driven by the TF IRF4 in combi-
nation with its molecular partner BATF. Signals downstream of 
the TCR are likely involved in IRF4 induction (45), possibly sug-
gesting that human Tregs suppress antitumor immunity in an anti-
gen-specific way.

IRF4, previously linked to effector Treg differentiation in 
murine tissues in physiology (20), is now shown to control the 
formation of ICOS+ effector Tregs in the TME that, in turn, favor 
tumor growth in a mouse model of cancer. IRF4 controls gene 
expression of tumor-infiltrating Tregs both directly, by binding 
gene promoters or distal regulatory regions, and indirectly, by 
inducing the expression of additional transcriptional regulators, 
such as IKZF2 (Helios), which is required for Treg stability (28). 
IRF4 alone binds DNA poorly; however, binding is increased 
when IRF4 is part of a macromolecular complex involving AP-1 
family members BATF, JUN, JUNB, or JUND, which recognize 
DNA motifs known as AP-1/IRF composite elements (AICEs) (21, 
46). Although the regions bound by these TFs are largely overlap-
ping, IRF4 and BATF also bind unique regions (21), which possi-
bly explains why their deficiency has differential, specific effects 
on gene expression. We did not formally test whether BATF is 
responsible for the expression of specific genes by direct binding; 
however, additional computational investigations identified AICE 
motifs in the proximity of genes that are linked to effector Treg 

Figure 4. Abundance of CCR8+ICOS+ intratumoral Tregs is associated with 
multiple features of T cell exhaustion. (A) Experimental workflow. (B) 
Heatmaps of the relative expression, depicted as integrated MFI (iMFI: 
MFI × percentage of antigen expression) of markers (columns) in discrete 
CD4+ (left) and CD8+ (right) Phenograph clusters (rows). Tm, memory; Tcm, 
central memory; Tn, naive; Exh, exhausted; Act, activated; CTL, cytotoxic 
T lymphocyte. Tte, terminal effector. Data are further metaclustered to 
group subpopulations with similar immune-phenotypes. The median 
frequency of each PhenoGraph cluster in the different compartments is 
depicted by using Balloon plots. *P < 0.05; **P < 0.01; ***P < 0.001; ****P 
< 0.0001, tumor versus blood or versus normal tissue samples; 2-way 
ANOVA with Bonferroni’s post hoc test. (C) Correlogram showing Pearson 
correlation between frequencies of CD4+ (T4) and CD8+ (T8) PhenoGraph 
clusters in tumor samples from 45 patients with early-stage (I–III) non–
small-cell lung cancer (NSCLC). Nonsignificant correlations (P value > 0.05) 
were left blank.
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activation or downstream IRF4-dependent Treg activation would 
result in a similar scenario. This approach may be widely applica-
ble, as our data show that IRF4-driven effector Treg differentiation 
is common to at least 3 human tumor types, i.e., lung cancer, hepa-
tocellular carcinoma, and melanoma. Further definition of the 

antitumor responses (11–14); however, novel strategies interfering 
selectively with the activated effector Treg state are emerging as 
promising tools to boost effective antitumor immunity without 
resulting in overt autoimmunity due to the loss of peripheral toler-
ance (14, 52). We expect that targeting those signals leading to IRF4 

Figure 5. CCR8+ICOS+ Tregs define a signature of disease progression in NSCLC. (A) Left: Principal component analysis (PCA) plot showing the distribution 
of patients (n = 48) according to the frequency of CD4+ and CD8+ PhenoGraph clusters in each patient (Tm, memory; Tcm, central memory). Patients were 
classified according to pathological stage (pStage) I, II, or III of the International TNM classification. Right: PCA loading plot of PhenoGraph clusters most 
contributing to the PCA output on the left. (B) Left: PCA plot showing the distribution of patients (n = 26) according to the frequency of CD4+ and CD8+ 
PhenoGraph clusters in each patient. The cohort was subdivided in 2 groups according to the median distribution of maximum standardized uptake value 
(SUVmax). Right: PCA loading plot as in A. (C) Kaplan-Meier progression-free survival curves according to the intratumoral frequencies of Tregs subsets 
over CD8+ T cells in each patient (n = 38). The cohort was subdivided in 2 groups according to the percentile rank (set at 0.8). The P value was calculated 
by Gehan Breslow-Wilcoxon test. (D) Kaplan-Meier disease-free survival (DFS) and overall survival (OS) curves in the TCGA lung adenocarcinoma (LUAD) 
lung cancer cohort (n = 516). Patients were grouped by percentile rank (set at 0.8) according to the enrichment of the CCR8+ICOS+ bulk Treg signature (as 
obtained in Figure 2B) as relative to the CD8+ T cell signature. + indicates censored observations. P values were calculated by multivariate Cox regression. 
Dotted lines indicate the time at which 50% of the cohort was still free of the event.
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using the merge function of pandas package. The K value, indicating 
the number of nearest neighbors identified in the first iteration of the 
algorithm, was set at 40 and 60 for CD4+ and CD8+ T cells clustering, 
respectively. Clusters representing less than 1% of total CD4+ or CD8+ 
T cells were removed in subsequent analysis. The data were then reor-
ganized and saved as new CSV files, one for each cluster, that were 
further analyzed in FlowJo to determine the frequency of positive cells 
for each marker and the corresponding median fluorescent intensity 
(MFI). These values were multiplied to derive the iMFI (rescaled to 
values from 0 to 100; Figure 4B and refs. 24, 39) and then visualized in 
a heatmap. Subsequent metaclustering of iMFI values was performed 
using the gplots R package. Hierarchical metaclustering of all samples, 
based on the frequency of PhenoGraph clusters (Figure 4B), was per-
formed in R according to the Ward minimum variance method. UMAP 
was obtained by UMAP Python package and visualized in FlowJo 10.

Melanoma data set. Normalized scRNA-seq counts were retrieved 
from the Gene Expression Omnibus (GEO GSE72056). Analysis was 
restricted to the cells labeled as “T cells,” as previously defined by 
Tirosh et al. (27). T cells were divided into CD4+ and CD8+, based on 
the normalized expression levels (E) of CD4 (E > 4) and CD8 (average 
of CD8A and CD8B, E > 4). Among all samples composing the data set, 
466 were identified as CD4+. To asses which genes have the expres-
sion profile most correlated with that of IRF4, a Pearson correlation 
coefficient, indicated as score in Supplemental Figure 1B, and a cor-
responding P value were computed between each gene expression 
profile in the matrix (consisting of 23,686 genes) and IRF4. In order 
to obtain the CD8 signature used in Supplemental Figure 5B, DEGs in 
the pairwise comparison between CD8+ and CD4+ T cell subsets were 
determined by the “FindAllMarkers” function coded in the Seurat R 
package (version 2.3.4) with default parameters (54). In this way, we 
obtained 225 specific genes for the CD8+ subpopulation respect to the 
CD4+ T cells.

Lung and liver data sets. We took advantage of the web server 
for exploration of NSCLC (http://lung.cancer-pku.cn) and hepato-
cellular carcinoma (http://hcc.cancer-pku.cn) single T cell RNA-seq 
data to assess the expression levels of markers of interest within the 
CD4+ intratumoral subpopulations. Lung and liver tumor-infiltrat-
ing CD8+ signatures (Figure 5D and Supplemental Figure 5A) were 
obtained by combining all the DEGs from the CD8+ tissue-specific 
clusters and by further excluding the circulating clusters labeled as 
CD8-C1-LEF1 (26, 27).

Mice. Irf4–/– mice (55) were originally provided by Tak Mak (Prin-
cess Margaret Cancer Centre, University Health Network, Toronto, 
Canada). Irf4–/– mice were crossed to Foxp3RFP mice. Foxp3EGFP-Cre-ERT2 
mice (JAX 016961) (56) were crossed to Irf4-floxed mice (JAX 
009380) (57) to allow for specific deletion of Irf4 in Foxp3+ cells fol-
lowing tamoxifen treatment.

Mouse procedures. Mice were irradiated (2 × 5.5 Gy) and reconsti-
tuted by i.v. injection of 200 μL bone marrow isolated from femurs 
and tibias of donor mice. Following irradiation mice were treated with 
neomycin in drinking water for 4 weeks and allowed to recover for at 
least 8 weeks. MC38 tumor cells (provided by Stephen Nutt, Walter 
and Eliza Hall Institute of Medical Research, Melbourne, Victoria, 
Australia) were grown in DMEM with 10% FCS and 1% PenStrep 
(Gibco) in 37°C, 5% CO2 incubator and passaged every 2 to 3 days. For 
tumor inoculation, 1 × 106 cells were resuspended in 100 μl PBS and 
injected subcutaneously into the right flank of the mice. Tumor growth 

molecular network orchestrating the suppressive capacity of intra-
tumoral Tregs and, most importantly, the identification of specific 
players that are not active in antitumor-infiltrating lymphocytes is 
anticipated to benefit cancer immunotherapy strategies.

Methods
Study design. The characteristics of the patients and of the samples 
used in this study as well as the procedures of cell isolation have been 
described previously (24). Details on the patients’ characteristics 
included in this manuscript are further indicated in Supplemental Table 
1. Information on the pathological stage, determined by an institutional 
pathologist (some patients were restaged as III following examination 
of the tumor), was available for all patients, while results of the preop-
erative FDG PET-CT scan were available for 25 patients. Details on 
obtainment of PET scans have been described previously (24).

Polychromatic flow cytometry and cell sorting. Antibodies used in 
the study are listed in Supplemental Table 2. Flow cytometry proce-
dures for high-dimensional single-cell panel development have been 
described previously (24, 39). Additional panels used for further char-
acterizing the IRF4+ CD4+ cell subset are listed in Supplemental Table 
2. All data were acquired on a FACS Symphony A5 flow cytometer (BD 
Biosciences) equipped with 5 lasers (UV, 350 nm; violet, 405 nm; blue, 
488 nm; yellow/green, 561 nm; red, 640 nm; all tuned at 100 mW, 
except for UV, which tuned at 60 mW) and the capability of detecting 
30 parameters. Flow cytometry data were compensated in FlowJo by 
using single stained controls (BD Compbeads incubated with fluores-
cently conjugated antibodies), as described previously (53). CCR8+I-
COS+ and CCR8–ICOS– Tregs, pregated as CD4+ Aqua– CD25+CD127–, 
were isolated from tumor samples with a FACSAria cell sorter (BD 
Biosciences). CCR8 and ICOS proved to be the best combination over 
other markers to isolate Treg subsets with differential IRF4 expression 
(data not shown).

Suppression of T cell proliferation by Tregs. Live (Aqua–) CD4+ CD25– 
Tconv cells were isolated from patients’ blood samples with a FACSAr-
ia cell sorter and stained with a CellTrace CFSE kit (final concentra-
tion: 2 μM; Thermo Fisher Scientific) according to the manufacturer’s 
protocol. Subsequently, cells were plated in R10 U-bottom 96-well 
plates (10,000 cells/well) and stimulated with human Treg Suppres-
sion Inspector beads (Miltenyi Biotec) for 5 days at 37°C. Tconv cells 
cultured alone, in the absence of bead stimulation, were used as non-
proliferating, negative control. CCR8+ICOS+ and CCR8–ICOS– Tregs 
were FACS sorted from tumors and were added to autologous Tconv 
cell cultures at different ratios (Tconv cells/Treg ratio = 1:1, 2:1, and 
4:1). CFSE dilution was evaluated at day 5.

High-dimensional flow cytometry data analysis. Flow Cytometry 
Standard (FCS) 3.0 files were imported into FlowJo software (version 
9) and analyzed by standard gating to remove aggregates and dead 
cells and identify CD3+CD4+ or CD8+ T cells. Three thousand CD4+ 
and CD8+ T cells per sample were subsequently imported in FlowJo 
(version 10), biexponentially transformed, and exported for further 
analysis in Python (version 3.7.3) by a custom-made pipeline of Phe-
noGraph (available here http://github.com/luglilab/Cytophenograph, 
where we modified the linux-community and the core.py script of 
PhenoGraph package in order to fix the seed to “123456”). Blood, 
adjacent lung tissue, and tumor samples were labeled with a unique 
computational barcode for further identification and converted in 
comma separated (CSV) files and concatenated in a single matrix by 
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Motif enrichment analysis. The PScan software tool (version 1.5) 
was used to perform the in silico computational analysis of overrepre-
sented TF binding sites within the 5′-promoter regions of DEGs (63). 
PScan was run on [–950, +50] bp upstream regions onto the Homo 
Sapiens JASPAR 2018_NR database (64). Results were summarized 
with a scatter plot, where P values were plotted against Z score on ver-
tical axis by using the Python Matplotlib package (version 3.0.3).

Bioinformatic analysis of microarray data. Microarray probe flu-
orescence signals downloaded from the Gene Expression Omni-
bus (GEO GSE89656 and GSE61077, samples GSM1496276, 
GSM1496277, GSM1496274, GSM1496275) were converted to 
expression values using robust multiarray average procedure RMA 
(65) of the Bioconductor Affy package. Fluorescence intensities were 
background adjusted and normalized using quantile normalization, 
and expression values were calculated using median polish summa-
rization and custom chip definition files for a total of 18,075 custom 
probe sets for Mouse Genome 430 2.0 Array based on Entrez genes 
(Mouse4302_Mm_ENTREZG version 21.0.0) and 12,426 custom 
probe sets for Mouse Genome 430A 2.0 Array based on Entrez genes 
(Mouse430A2_Mm_ENTREZG version 21.0.0). To identify genes that 
are differentially expressed, we compared the expression profiles of 
Batf−/− Tregs and WT Tregs, using limma algorithm coded in the same 
R package (66). All data analyses were performed in R (version 3.4.4) 
using Bioconductor libraries and R statistical packages.

Bioinformatic analysis of ChIP-seq data. Raw data were download-
ed from the Gene Expression Omnibus (GEO GSE98264). Reads were 
aligned to mouse genome GRCm38.p6/mm10 using Bowtie2 (version 
2.1.0) (67) in local alignment mode. After alignment to the reference 
genome, mitochondrial and ambiguously mapped reads were dis-
carded with Samtools (68) and further used for sorting and indexing 
mapping files. Bigwig files for IGV (69) genome coverage visualization 
were generated with the multiBamSummary module from the deep-
Tools suite (version 3.2.0) (70). To call peaks, we used MACS2 (version 
2.1.2) (71) with these parameters: callpeak gsize mm nomodel extsize 
147 and Q value 1 × 10–3. Peaks within 30 kb upstream and 10 kb down-
stream of the TSS or within intragenic regions were annotated with 
the closest TSS using ChIPSeeker (version 1.18.0) (72) and GENCODE 
M20.gtf gene annotation.

Survival analysis. Transcriptomic and clinical data of human lung 
adenocarcinoma, hepatocellular carcinoma, and melanoma from TCGA 
database (provisional cohorts) were obtained from the cBioPortal plat-
form. Signatures of CCR8+ICOS+ Tregs (Figure 2B) and CD8+ T cells (see 
“Gene signature identification”) were used to calculate patient-specific 
enrichment scores from specimens of lung adenocarcinoma (LUAD), 
hepatocellular carcinoma (LIHC) and melanoma (SKCM) data sets 
(“GSVA” R package) (73). Survival curves were calculated between 
groups of patients subdivided according to the percentile rank (set at 
0.8) of the resulting scores. The R packages “survival” (http://cran.rproj-
ect.org/web/packages/survival/index.html) and “survminer” (http://
cran.r-project.org/web/packages/survminer/index.html) were used to 
assess statistics and obtain survival curves.

Data availability. The gene expression data generated in this study 
are available in the GEO database (GSE128822).

Statistics. Statistical analyses were performed using GraphPad 
Prism (version 7), unless specified otherwise. Data were first tested for 
normal distribution with D’Agostino-Pearson, Shapiro-Wilk, or Kolm-
ogorov-Smirnov normality tests and then analyzed with Student’s t 

was assessed with LCD Digital Vernier Calipers (Protech) every 2 to 3 
days. Tamoxifen (2 mg/mouse) was administered in 200 μL sunflower 
oil i.p. for 5 consecutive days. Upon the experimental endpoint, mice 
were euthanized with CO2 and cervical dislocation, and tumors were 
excised with forceps and scissors. Tumors were mechanically dissoci-
ated and digested in 1 mg/mL Collagenase IV (Gibco) in RPMI medi-
um for 45 minutes at 37°C, with constant agitation.

Treg isolation from mice. Single-cell suspensions from spleens were 
enriched for CD4+ T cells by depleting CD8+ T cells and B cells using 
anti-CD8 and B220 antibodies. The CD4+ T cell–enriched cell suspen-
sion was stained with CD4 (RM 4-5) and TCRβ (H57-597) antibodies. 
CD4+TCRβ+Foxp3RFP+ cells were sorted from Foxp3RFP (WT) and Irf4–/– 

Foxp3RFP mice.
Mouse RNA isolation and sequencing. RNA purification was per-

formed following the manufacturer’s protocol using the RNAeasy 
Plus Mini Kit (Qiagen). RNA from WT and Irf4–/– Tregs was sequenced 
using Illumina platform (75-bp paired-end reads).

RNA-seq and bioinformatic analysis. RNA isolation of the 
FACS-purified CCR8+ICOS+ and CCR8–ICOS– Tregs was performed 
following the manufacturer’s protocol using the Quick-RNA Micro-
prep kit (Zymo Research). RNA quality control was performed with 
the Agilent 2200 Tape Station system, and only RNAs having a RIN 
>8 were used for library preparation. Libraries for mRNA sequencing 
were prepared starting from 1.5 ng total RNA for each sample by using 
the SMART-Seq v4 Ultra Low Input RNA Kit (Clontech-Takara). All 
samples were sequenced on an Illumina NextSeq 500 at an average of 
32.9 million 75-bp single-end reads. After quality control, raw reads 
were aligned to the human genome (GRCh38.p12) using the STAR 
aligner with default parameters (version 2.7.0) (58). Gene-based read 
counts were then obtained using HTSeq count (59) module (version 
0.11) and GENCODE v29.gtf annotation (60). The read counts were 
imported into R statistical software, and differential gene expression 
analysis was performed using the edgeR package (version 3.22) (61). 
For pair-wise comparisons, raw read counts were normalized using 
the TMM method (trimmed mean of log-ratio values) (62), and genes 
that failed to achieve a counts per million (CPM) mapped reads value 
greater than 1 in at least 2 libraries were not considered. P values were 
adjusted using the Benjamini-Hochberg method. Genes were consid-
ered differentially expressed when FDR < 0.05 and when they had 
an expression change of more than 1 log2 fold change. The heatmap 
representing the log2 of CPM was obtained using pheatmap R package 
(version 1.0.12) with the distance method “correlation” for both rows 
and columns.

Gene signature identification (RNA-seq). GSEA was performed 
using GSEA (version 3.0) software (Broad Institute of MIT) and gene 
list ranked based on log2 fold changes. The gene set enrichment anal-
ysis was conducted in preranked mode with scoring scheme “classic” 
and 1,000 permutations. The maximum gene set size was fixed at 
5,000 genes, and the minimum size was fixed at 10 genes. The gene 
signature was retrieved from the H collection (h.all.v6.2.symbols.gmt) 
of the Molecular Signatures Database (MSigDB v6.2). The GSEA in 
Supplemental Figure 3B was performed with custom gene sets rele-
vant to immunological signatures (https://github.com/luglilab/Proj-
ectScripts_Treg_Irf4/blob/master/Figure3S/Mouse_ImmunePath_
February_01_2019_symbol.gmt). The dot plot was generated with a 
custom Rscript (https://github.com/luglilab/ProjectScripts_Treg_
Irf4/blob/master/Figure3S/ImmunoSignatureDotPlot.r).
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majority of the experiments, while SP conceived and performed 
all the bioinformatic analyses. Given the importance of bioin-
formatics in this manuscript, these authors deserve equal con-
tribution. The order of the first authors reflects the leadership 
exerted in the study.
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