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NK cells: sentinels against cancer
The existence of immune cells that mediate cellular cytotoxicity 
without prior activation was determined by multiple groups who 
reported the spontaneous killing of tumor cells by lymphocytes 
from unimmunized mice (1–3). We now know that these cells 
with natural cytotoxicity, or natural killer (NK) cells, are import-
ant mediators of cancer immunosurveillance. NK cells are a het-
erogeneous population, and in humans they have been histori-
cally divided into IFN-γ–producing CD56hiCD16+ and cytotoxic 
CD56loCD16hi (4), whereas in mice they are grouped according to 
their expression of CD27 and CD11b (5), although it is now clear 
that the complexity is much higher. Distinct NK cell subsets play 
different roles in tumor immunity and cancer immunotherapy, as 
reviewed in Stabile et al. (6).

NK cells are equipped with many receptors that tightly regu-
late their activation and allow them to discriminate between “nor-
mal” and “dangerous” cells (7). In addition to regulating NK cell 
activation, signals coming from activating and inhibitory recep-
tors also tune the steady-state responsiveness of NK cells to future 
stimuli, in a process called NK cell education (reviewed in refs. 
8, 9). Inhibitory receptors, such as killer-cell immunoglobulin- 
like receptors (KIRs), deliver negative signals that prevent NK 
cell autoreactivity. KIRs and other inhibitory receptors recognize 
MHC I molecules, whose absence may result in NK activation, the 
so-called “missing-self recognition” (10, 11). Later studies showed 
that lack of MHC expression was not sufficient or necessary to 

induce NK activation; rather, signaling from activating receptors 
was required. Broadly speaking, activating receptors, including 
NKG2D, provide activating signals upon binding to stress-induced 
ligands on target cells, which is referred to as “induced-self rec-
ognition” (12, 13). Ultimately, NK activation depends on the bal-
ance between activating and inhibitory signals triggered by these 
receptors binding their ligands. When activating signals prevail, 
NK cells respond, whereas when inhibitory signaling is stronger, 
NK cells do not respond. Healthy cells, with some exceptions (14–
16), express low levels of activating ligands and an abundance of 
inhibitory ligands and therefore are not attacked by NK cells. On 
the other hand, tumor cells often acquire expression of NK cell–
activating ligands and/or lose expression of MHC molecules. NK 
cells sense and respond to changes in the repertoire of molecules 
expressed on the surface of healthy cells during cellular transfor-
mation. This positions NK cells as important sentinels against can-
cer and as prime targets for cancer immunotherapy (17).

NK cells in cancer immunosurveillance
Despite their potent antitumor activity, NK cells face substantial 
challenges that hinder their efficacy. Several studies have shown 
that tumor-infiltrating human NK cells have altered expression 
of inhibitory and activating receptors and impaired functions 
(18–20). Many mechanisms mediate NK cell suppression in the 
tumor microenvironment, several of which also contribute to 
dampening of T cell responses. Reviewing these mechanisms is 
beyond the scope of this work, and has been done elsewhere (17). 
However, one NK cell–regulating process that has attracted much 
attention is the release of soluble NKG2D ligands. NKG2D ligand 
release occurs either by shedding, which is mediated by extracel-
lular proteases, or by exosomal secretion (21, 22). Soluble NKG2D 
ligands engage NKG2D on NK cells, preventing their interaction 
with membrane-bound ligands on tumor cells that would produce 
a cytotoxic response (22). Therapeutic targeting of NKG2D-ligand 
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Surgical resection is still the predominant curative treatment 
modality for many solid malignancies, but, surprisingly, the 
immune-modulatory effects of surgery have been understudied. 
Increased metastatic disease or recurrence following surgery has 
been widely observed in humans and recapitulated in animal 
models (49). In addition to unintentional mechanical dissemina-
tion and altered proliferation and signaling in tumor cells, it is now 
clear that surgery compromises NK cell functions, providing an 
opportunity for tumor spread and growth (49–54). Several mecha-
nisms contribute to NK cell dysfunction following surgery, includ-
ing soluble inflammatory mediators and immunomodulatory cells 
such as myeloid-derived suppressor cells (MDSCs), which arise by 
emergency myelopoiesis following surgery (49–51).

In conclusion, NK cells play a fundamental role in traditional 
cancer treatments, and further research is needed to ameliorate 
their efficacy following chemo/radiotherapy as well as surgery.

Adoptive NK cell therapy
Allogeneic NK cells. One of the most striking examples of the anti-
cancer functions of NK cells comes from missing self recognition. 
Hematopoietic stem cell transplantation (HSCT) is an effective 
and curative treatment option for acute leukemia patients. Alloge-
neic HSCT relies on HLA matching between donor and recipient 
to avoid graft-versus-host disease (GVHD). In the absence of an 
HLA-compatible donor for allogeneic HSCT, HLA-haploidentical 
HSCT, whereby the recipient shares only one HLA haplotype with 
the donor (often a parent), is performed. A series of pioneering 
studies showed that in haplo-HSCT, recipients whose HLA mol-
ecules were mismatched with donor KIRs had less relapse after 
transplant, indicating a potent NK-mediated graft-versus-leuke-
mia (GvL) effect, whereas KIR mismatch was not found to cause 
GVHD (55–57). The contribution of NK cells in HSCT has been 
comprehensively reviewed previously (58, 59), with discussions 
on how to select recipient-donor pairs in order to enhance NK cell 
alloreactivity and transplant outcomes that are currently ongoing 
(9, 60). While T cells play a critical role in the efficacy of HSCT, 
this example highlights the often-overlooked contribution of NK 
cells to antitumor immunity.

The impressive GvL effect generated by KIR-mismatched 
NK cells in haplo-HSCT spurred hematologists to explore infu-
sions of highly purified haplo-identical NK cells to increase GvL. 
Clinical trials reported complete remissions in elderly acute 
myeloid leukemia (AML) patients (61, 62), as well as 100% 
event-free survival in a pediatric AML cohort with 18 months 
follow-up (63). In multiple myeloma (MM), encouraging results 
from a phase I trial where patients received cord blood–derived 
KIR-mismatched NK cells prior to HSCT (64) led to an ongoing 
phase II study (NCT01729091).

Autologous NK cells. Autologous NK cells have also been 
explored for cancer immunotherapy, although this field is less 
advanced than for autologous T cell transfer. While NK cells can 
be isolated and ex vivo expanded from the peripheral blood of 
patients, NK expansion has proven more troublesome than T cell 
expansion. Clinical trials have not observed clinical responses 
with autologous NK cell infusion, despite successful NK engraft-
ment and persistence in peripheral blood (65, 66). However, the 
functional status and expansion of the autologous NK cells is 

shedding proved successful in preclinical studies (23). However, 
soluble NKG2D ligands have also been shown to promote NK cell 
antitumor activity, as in the case of soluble MULT1, which pre-
vented NK cell desensitization in mouse models of cancer (24). 
These results suggest a context-dependent function of these sol-
uble molecules and warrant more investigation.

The tumor microenvironment contains large amounts of 
immunosuppressive cytokines and other soluble factors that affect 
NK cell functionality, with one of the most prominent being TGF-β 
(25). In addition to inducing downregulation of surface NKG2D, 
resulting in decreased cytotoxicity (26), TGF-β has been shown 
to be able to alter cytotoxicity, cytokine production, metabolism, 
and mitochondrial function in NK cells (27–29). Recent studies 
proposed that TGF-β also converts NK cells into noncytotoxic 
group 1 innate lymphoid cells (ILCs), allowing for tumor growth 
and metastasis in mice (30, 31).

Despite the immunosuppressive environment of solid tumors, 
NK cell activity/infiltration has been correlated with improved 
prognoses in humans. Rate of local recurrence following surgical 
tumor resection of colorectal cancer correlated with lower NK cell 
levels (32). Correlations between reduced NK cytotoxicity and 
incidence of metastasis have been established in head and neck 
as well as pharyngeal cancer (33–35). In gastrointestinal sarcoma, 
NK cell infiltration negatively correlates with metastases (20). 
Additionally, improved survival has been correlated with NK infil-
tration in lung metastases of renal cell carcinoma patients (36). 
These examples highlight the potential for NK cell immunother-
apies to improve patient outcomes.

NK cells in conventional cancer treatments
The longstanding anticancer strategies chemotherapy and radio-
therapy are now known to mediate their effects, at least partially, 
via the immune system. Both chemo- and radiotherapy induce 
cellular stress in tumor cells, leading to upregulation of NK-acti-
vating ligands, release of damage-associated molecular patterns 
(DAMPs), and induction of immunogenic cell death (37–39).

Through different mechanisms, genotoxic agents, HSP90 
inhibitors, histone deacetylase (HDAC) inhibitors, glycogen syn-
thase kinase 3 (GSK-3) inhibitors, and proteasome inhibitors can 
all increase tumor surface expression of NK-activating ligands 
(40–43). Several chemotherapeutics downregulate the NK inhib-
itory ligands MHC I and Clr-b on tumors to promote missing self 
recognition (44, 45). Effects on NK recruitment and activation 
were also observed with several chemotherapeutics. For example, 
in mouse models, successful tumor clearance following treatment 
with DNA-alkylating agents required recruitment of neutrophils 
and NK cells (46). Recently, MAPK and CDK4/6 inhibitors were 
shown to promote NK-mediated tumor clearance (47). DNA 
damage induced by ionizing radiation has effects that are simi-
lar to those of chemotherapeutics. DNA damage from high-dose 
radiation and chemotherapy both led to increased expression of 
NKG2D ligands through an ATM- and ATR-dependent pathway 
(48). The exact mechanisms of action induced by each chemo- 
and radiotherapeutic agent discussed here are unique, and new-
er pathways are constantly being targeted to enhance responses, 
which led to a renewed interest in exploiting chemotherapy and 
radiotherapy as immune-modulating modalities.
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Preclinical studies continue to explore strategies to enhance 
CAR-NK efficacy, such as changing the CAR intracellular 
domains. Historically, the CD3ζ chain has been used alone or 
in combination with CD28, 4-1BB, or OX40 signaling domains 
(77). Although these costimulatory domains were designed to 
promote T cell responses, they also activate NK cells (81). More 
recently, the signaling domains of adaptor molecules associated 
with activating NK receptors were used to mimic physiological 
NK signaling and, remarkably, a CAR-NK with the DAP12 intra-
cellular domain exhibited enhanced cytotoxicity compared with a 
CAR-NK relying on a CD3ζ domain (82). However, a CAR based 
on DAP10 motifs performed poorly when used as the sole signal-
ing domain (83). More encouraging results were obtained using an 
NKG2D-DAP10-CD3ζ construct (84).

While most of these studies explored a few closely related 
CAR-NK constructs, Li et al. conducted a comprehensive screen 
and found that a 2B4 costimulatory plus CD3ζ intracellular sig-
naling domain mediated better specific cytotoxicity than other 
combinations of CD3ζ, DAP10, DAP12, CD28, 2B4, and CD137 
domains (85). As the field continues to expand, a better under-
standing of what dictates efficacy of different CAR constructs in 
various situations will likely follow.

Adoptive NK cell transfer, with or without a CAR, may provide 
a safer and more feasible alternative or, at the very least, an addi-
tion to T cell–based approaches. In fact, whereas allogeneic CAR-T 
cells are currently not an option due to the risk of GVHD, allogene-
ic NK cells are safe in this regard. This allows for the use of more 
readily accessible NK sources to engineer using CARs, such as cell 
lines (NK92, KyHG1) or allogeneic NKs derived from cord blood 
or iPSCs (81, 85–87). Use of allogeneic sources can pave the path 
for CAR-NKs to eventually become off-the-shelf therapies, whose 
safety can be substantially increased by the possibility of including 
suicide genes (88). Finally, whereas CAR-T cells become ineffec-
tive if tumor cells downregulate the CAR antigen (89), CAR-NKs 
would still recognize tumors through their germline-encoded 
receptors, reducing the chances of tumor escape through antigen 
modulation. Overall, CAR-NKs have the potential to become a 
safe and practical addition to the immunotherapy arsenal.

In conclusion, the numerous ongoing clinical trials employing 
autologous or allogeneic NK cells for a variety of indications hold 
great promise. NK cell transfer could complement, and in some 
scenarios substitute for, T cell–based adoptive transfer therapies 
to maximize antitumor effects and reduce treatment toxicity.

Cytokine therapy: mobilizing NK cells in cancer
One major disadvantage of an adoptive transfer approach is the 
high costs and expertise required to manufacture large amounts of 
clinical-grade immune cells (81, 90). For this reason, off-the-shelf 
therapies have attracted much research and investments.

Cytokines, as critical regulators of NK cells, are an appealing 
choice for cancer immunotherapies, particularly in light of results 
showing that NK cells strongly rely on type I IFN to initiate an anti-
cancer response (91). However, considerable toxicity and morbid-
ity are associated with direct injection of type I IFN into patients 
(92), and the focus has moved to strategies that elicit IFN produc-
tion in the tumor microenvironment using agonists of TLR or the 
cGAS/STING pathway.

often poor (67). This could be due to the treatments received by 
the patients before NK isolation, which may also explain their poor 
clinical efficacy. Multiple approaches are being investigated to 
overcome this issue, including different combinations of activat-
ing cytokines (IL-2, IL-12, IL-15, IL-18) and the use of feeder cells 
to supply important factors during ex vivo expansion (17). To this 
end, a phase I trial in MM using autologous NK cells activated by 
a feeder cell line expressing membrane-bound IL-15 and 4-1BBL 
resulted in modest clinical activity (68), which suggested it may be 
possible to optimize feeder cells to improve NK activation before 
adoptive transfer (69). Additionally, studies have shown that 
autologous NK cells are more effective when tumor cells lack at 
least one HLA ligand for the KIR expressed by the transferred NK 
cells (“missing ligand” hypothesis) (70, 71).

Off-the-shelf NK cells. Given the difficulties of sourcing abun-
dant numbers of cytotoxic NK cells from peripheral blood, addi-
tional strategies have been investigated to provide readily avail-
able banks of NK cells for patients. The human cell line NK92, 
widely used for preclinical applications, has been clinically investi-
gated as an allogeneic NK therapeutic. One clinical trial involving 
15 advanced lung cancer patients observed encouraging responses 
(72), but clearly much research is needed to carefully validate the 
safety profile of NK92 cells as a cancer therapeutic.

NK cells can be differentiated from stem cells, both induced plu-
ripotent stem cells (iPSCs) and those obtained from umbilical cord 
blood. iPSC-derived NK cells have been shown to have high cyto-
toxicity against tumors of various origin, both in vitro and in vivo 
(73–75) and clinical trials have commenced using expanded cord 
blood–derived NK cells. More recently, an effort to derive NK cells 
from iPSCs generated from peripheral blood cells has been made. 
NK cells derived from peripheral blood iPSCs show low KIR expres-
sion and a promising capacity to perform both cellular cytotoxicity 
and antibody-dependent cellular cytotoxicity (ADCC) against can-
cer cell lines in vitro (76). While these findings await in vivo corrob-
oration, peripheral blood represents an attractive alternative source 
of iPSCs, as cord blood is still rare and difficult to recover.

CAR-NK cells. A promising avenue in adoptive NK therapy 
is the use of chimeric antigen receptors (CARs). A CAR, usually 
encoded in a lentiviral construct, consists of three main domains: 
an extracellular antigen-targeting domain (ectodomain), a 
trans membrane region, and one or more intracellular signaling 
domains. Specificity for targets is conferred by the ectodomain, 
which is reactive against a tumor-specific or tumor-associated 
antigen (e.g., CD19, CD20, CD22, Her2, ROR1) (77). CAR-T cells 
have shown remarkable responses particularly in B cell malignan-
cies, which led to FDA approval in non-Hodgkin lymphoma and 
diffuse large B cell lymphoma (78, 79).

Given the success of CAR-T cells, CARs are now being used to 
potentiate NK antitumor activity. Currently, there are 14 listed tri-
als for CAR-NKs on ClinicalTrials.gov (as of July 10, 2019) (Table 
1), with the majority of the trials focused on leukemia. One of these 
trials showed that CD33-targeting CAR-NKs were safely admin-
istered to patients with relapsed or refractory AML, albeit with 
limited clinical efficacy (80). The authors speculated that reduced 
longevity and cytotoxicity of irradiated (for safety) CAR-NKs were 
potential pitfalls and noted that efficacy might only be achievable 
when used to treat malignancies with a slower disease progression.
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cally, immune checkpoint receptors are essential to prevent auto-
immunity and immunopathology, but cancer often exploits them 
to subvert antitumor immunity (106). Notably, NK cells express 
many checkpoint receptors, some of which have been targeted by 
cancer immunotherapy (107).

KIRs and CD94/NKG2A. The majority of KIRs are inhibi-
tory and recognize HLA molecules (108). To replicate missing 
self recognition, the humanized antagonistic antibody lirilumab 
(IPH2102) targeting inhibitory KIRs (KIR2DL1-3 and KIR2DS1-2) 
is in clinical development. In preclinical studies, lirilumab enhanc-
es NK-mediated cytotoxicity towards lymphoma, leukemia, and 
MM (109–111). A phase I trial of lirilumab in MM showed accept-
able safety (112), but a phase II trial was halted due to lack of effi-
cacy (113). Interestingly, lack of efficacy was associated with loss 
of NK cell responsiveness and loss of surface KIR2D expression 
via trogocytosis (114). Furthermore, while lirilumab treatment was 
well tolerated, it did not show efficacy in AML in a phase I trial 
(115), although careful analysis of trends in this trial hinted that 
optimized dosing may be required (116).

CD94/NKG2A is a heterodimeric inhibitory receptor expressed 
on NK and T cells that recognizes peptide-bound HLA-E. In both 
solid tumors and hematological malignancies, HLA-E is upreg-
ulated to evade recognition by NK and T cells (117–122), and its 
expression is associated with poor prognosis (123–125). Two recent 
preclinical studies blocking NKG2A showed enhanced antitumor 
immunity by both T and NK cells in various tumor models (121, 
122). A recent preclinical study used protein expression block-
ers (PEBLs), engineered protein constructs consisting of an scFv 
against a target protein that is linked to an ER/Golgi retention pep-
tide to prevent the transport of NKG2A to the cell surface. In this 
study, PEBLs enhanced NK cell cytotoxicity and antitumor func-
tions (126). Interestingly, preventing NKG2A expression via PEBLs 
enhanced NK cell in vitro cytotoxicity more than NKG2A anti-
body blockade. The antagonistic NKG2A antibody monalizumab 
(IPH2201) is currently under investigation both as a single agent 
and in combination with cetuximab (anti-EGFR) or durvalumab 
(anti–PD-L1). Interim results from both combination trials report 
encouraging safety profiles and signs of efficacy (121, 127).

CTLA-4 and PD-1. The first checkpoint receptor targeted for 
cancer therapy was CTLA-4 (128, 129), owing to its important 
role in suppressing T cell activation (130). Interestingly, very little 
research has focused on the role of CTLA-4 on NK cells. In murine 
models, CTLA-4 engagement suppressed effector functions of NK 
cells (131), but the importance of NK cells in mediating the effects 
of CTLA-4 blockade is still unclear.

PD-1 is the second checkpoint receptor successfully targeted 
for cancer treatment. PD-1 is an inhibitory receptor with two known 
ligands: PD-L1 and PD-L2 (132). Multiple approved antibodies tar-
get the PD-1/PD-L1 axis in cancer, and their efficacy is attributed 
to reinvigoration of tumor-targeting T cells. However, multiple 
lines of evidence indicate that NK cells play a role in the therapeu-
tic efficacy of PD-1/PD-L1 blockade. Probably the most striking 
example is Hodgkin lymphoma, which is highly responsive to PD-1 
blockade yet exhibits frequent defects in MHC class I presentation, 
suggesting a T cell–independent mechanism of action (133–135). 
Human NK cells from healthy donors and cancer patients express 
PD-1 (136–139). We and others have found that PD-1+ NK cells 

IL-2 treatment was FDA approved but has also displayed lim-
ited clinical efficacy with alarming toxicity, and more recent work 
focuses on using engineered cytokines and combination thera-
pies (92). For example, treating NK cells with IL-12, IL-18, or the 
engineered IL-2 cytokine “super-2” (93) increased NK antitumor 
activity in a mouse model of cancer (94). Additionally, the engi-
neered IL-15 cytokine ALT-803 has shown impressive preclinical 
results, in part due to its activation of NK cells (95–97). A more 
comprehensive discussion on cytokine therapy in cancer can be 
found in a recent review (92).

BiKEs/TriKEs: directing NK cells against cancer
Antibody therapy also has the appealing advantage of being an 
off-the-shelf approach to activating NK cells in vivo. In addition 
to traditional approaches that rely on tumor-binding monoclo-
nal antibodies to activate NK cells via ADCC (17), more recent-
ly, bispecific killer cell engagers (BiKEs) have generated great 
promise. BiKEs are small molecules consisting of two scFvs with 
different specificity complexed together through flexible linkers 
(98). One scFv targets a tumor antigen (e.g., CD19, CD20, CD33), 
while the other is specific for an NK cell receptor (CD16). This 
effectively brings the cancer and NK cells together, facilitating the 
formation of an immunological synapse and allowing NK cells to 
specifically and effectively execute their cytolytic functions (98).

BiKEs’ primary target has been CD16, as it potently induces 
NK activation without additional costimulation (99, 100). Preclin-
ically, CD16 BiKEs have been effectively used to target CD19-, 
CD20-, CD33-, CD133-, and EpCAM-expressing tumor cells (100–
103). NK cells from myelodysplastic syndrome (MDS) patients 
could be effectively activated with a CD16-CD33 BiKE targeting 
not only CD33+ MDS cells but also the immunosuppressive CD33+ 
MDSC population (103). In this and other studies, BiKEs were able 
to redirect autologous NK cells against tumor cells and overcome 
the immunosuppression prevalent in these conditions (98).

Additional scFvs, such as tri- and tetra-specific killer cell engag-
ers (TriKEs and TetraKEs), can further potentiate therapeutic 
benefits by targeting more tumor antigens or adding IL-15 into the 
engager construct. Using an IL-15 cross-linker, Vallera et al. showed 
that a TriKE targeting CD16 and CD33, namely 161533, induced 
tumor cell killing more effectively than a CD16-CD33 BiKE in a 
xenograft model (104). Although the BiKE mediated some early 
responses, low NK cell proliferation and persistence attributed to 
lack of the IL-15 linker resulted in relapse, which was not observed 
with the 161533 TriKE (104). A phase I/II clinical trial of 161533 
TriKE for hematologic malignancies will start recruiting in 2020 
(NCT03214666). In a recent study, a multifunctional engager tar-
geting CD16 and NKp46 on NK cells and antigens on the tumor 
cells has shown promising in vitro and in vivo activity (105).

In conclusion, BiKEs and TriKEs provide a non–cell-based 
immunotherapeutic approach that can harness the patients’ own 
NK cells against cancer. Clinical trials will determine their safety 
and effectiveness in patients.

Checkpoint receptors on NK cells:  
breaking barriers
Immune checkpoint receptors are a group of inhibitory receptors 
that dampen the effector functions of immune cells. Physiologi-
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have impaired responses when PD-1 ligands are present but can 
be re-activated by PD-1/PD-L1 blockade (140–145). To analyze the 
contribution of NK cells in PD-1/PD-L1 blockade immunotherapy, 
we employed several murine models of cancer. In leukemia models 
where cancer cells express low levels of MHC I, and are therefore 
poor targets for cytotoxic T cells, expression of PD-L1 accelerated 
tumor growth. PD-1/PD-L1 blockade provided a therapeutic effect 
that was completely abolished by NK cell depletion. We also deter-
mined the contribution of NK cells to PD-L1 blockade in a cancer 
model where T cells participated in tumor immune surveillance. 
Notably, even in this case, NK cells were essential for the full thera-
peutic effect of PD-L1 blockade (143).

TIGIT. Ligands for the inhibitory receptor TIGIT, CD155 (PVR) 
and CD112 (PVRL2/Nectin-2), are expressed on many cancer cells 
(146–148). TIGIT competes for binding to CD155 and CD112 with 
the receptors DNAM-1 (CD226) and CD96 (Tactile), forming a 
pathway whereby ligand binding to DNAM-1 delivers an activating 
signal, while binding to TIGIT or CD96 delivers an inhibitory sig-
nal (149). Interestingly, TIGIT blockade results in NK-dependent 
antitumor immunity in several murine models of cancer (150). 
TIGIT blockade also enhanced T cell immunity in an NK-depen-
dent manner. Moreover, TIGIT blockade showed synergy with 
PD-1/PD-L1 blockade, providing rationale for this combination 
therapy in the clinic. CD96 blockade is less explored, but a recent 
study targeting this pathway found that this strategy enhanced the 
antimetastatic properties of NK cells in murine tumor models (151). 
Further research into combined blockade of TIGIT and CD96 to 
enhance NK cell antitumor immunity is warranted.

LAG3. LAG3 is an MHC II–binding inhibitory receptor 
expressed on NK and T cells that has structural homology to CD4 
(152, 153). Other ligands of LAG3 are LSECtin (154) and FGL1 (155), 
both of which can be expressed by tumor cells. While LAG3’s func-
tions on T cells have been characterized, its role in NK cells is still 
unclear. NK cells from LAG3-deficient mice displayed impaired 
cytotoxicity towards some cancer cells, but retained cytotoxicity 
against MHC I–mismatched cells (156). However, antibody block-
ade or soluble LAG3 treatment of human NK cells did not impact 
their cytotoxicity (157). As antibodies targeting LAG3 are currently 
in clinical evaluation (158), further work on the consequences of 
LAG3 engagement on NK cells can be expected.

TIM-3. The inhibitory receptor TIM-3 binds to galectin-9, 
phosphatidylserine, HMGB1, and CEACAM1 (159–162). TIM-3  
is constitutively expressed on human NK cells and is upregu-
lated in response to cytokine stimulation (163, 164). Like PD-1, 
TIM-3 expression can mark NK cells that produce IFN-γ and 
release cytotoxic granules as well as NK cells with an exhausted 
phenotype (164). TIM-3 is upregulated on peripheral NK cells in 
patients with gastric cancer, lung adenocarcinoma, melanoma, 
and on tumor-infiltrating NK cells in gastrointestinal stromal 
tumors (165–168). Importantly, in melanoma and lung adenocar-
cinoma, TIM-3 blockade enhanced NK cell cytotoxicity and IFN-γ 
production (165, 167).

Other checkpoint receptors in NK cells and conclusions. In addi-
tion to the checkpoint receptors described above, preclinical 
research has identified additional negative regulators of NK cell 
functions, including the negative regulator of cytokine signaling, 
CIS (169, 170), and the high-affinity adenosine receptor A2A (171).

In summary, these preclinical and clinical studies challenge 
the dogma that T cells are the sole mediators of the anticancer 
effects of checkpoint blockade immunotherapy and highlight 
the importance of NK cells, which in some cases work in tandem 
with cytotoxic T cells and in others play the dominant role. As 
more targets are discovered, it becomes essential to identify the 
most effective combination to maximize the therapeutic efficacy 
of checkpoint blockade on a per-patient basis. Considering the 
effects of checkpoint blockade on NK cells, they will be of great 
importance in this process.

NK cells in oncolytic virotherapy
An alternative to taking off the brakes using checkpoint immuno-
therapies is to boost NK activation. One successful approach is the 
use of viruses that specifically infect and lyse cancer cells, broadly 
referred to as oncolytic viruses (OVs). OVs exploit tumor-specific 
receptors or observed impairments in infection control in neoplas-
tic cells to selectively infect and replicate in cancer cells, leaving 
healthy cells unharmed (172, 173). It is now clear that OVs’ abil-
ity to induce a systemic antitumor immune response is perhaps 
even more critical than their ability to induce direct oncolysis (172, 
174). One appealing aspect of OV-based therapy is the ability to 
engineer delivery of immune-modulating cargos to the tumor 
microenvironment (172, 174). Championing the OV cause, tali-
mogene laherparepvec, an attenuated herpes simplex virus (HSV) 
expressing GM-CSF, was FDA approved for metastatic melanoma 
and subsequent studies in combination with checkpoint inhibitors 
have also indicated remarkable results (174–176). A large number 
of OVs have now entered clinical trials, and even more are at vari-
ous stages of preclinical development (Supplemental Table 1; sup-
plemental material available online with this article; https://doi.
org/10.1172/JCI129338DS1).

NK cells are evolutionarily designed to detect and eliminate 
virally infected cells, which can be a detriment for the early OV 
spread that is necessary for therapeutic purposes (177). In some in 
vivo models, NK depletion enhanced OV efficacy (178, 179), but 
the majority of studies have illustrated a beneficial or even essen-
tial role for NK cells in mediating OV effects (180–184). To explain 
this dichotomy, an interesting study mathematically modeled the 
role of NK cells in a treatment regimen of HSV and bortezomib for 
glioblastoma multiforme. Interestingly, both high and low ratios 
of NK to cancer cells contributed to enhanced efficacy, while 
intermediate levels were detrimental. Experimental validation in 
a glioma PDX model led the authors to speculate that early tran-
sient removal of NK cells during viral therapy allows necessary 
unhindered viral propagation, and subsequent NK adjuvant ther-
apy enhances tumor killing, synergizing with OV therapy (185). 
This further highlights the importance of considering kinetics in 
developing combinatorial therapies.

Overall, OV therapy benefits from the innate immune 
response. In addition to induction of immunogenic cell death, 
TLR engagement, and release of DAMPs and pathogen-associated 
molecule patterns (PAMPs) from infected cells (172, 174), studies 
have shown that modulating NK ligand expression on cancer cells 
following infection drives NK-mediated clearance (186–188). Oth-
er studies have uncovered the role of DC-NK cross talk following 
OV therapy. We have shown that the Maraba virus directly infects 
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conventional DCs (cDCs) and promotes their maturation. Mature 
cDCs then activate NK cells that better control cancer (189). The 
centrality of DC-mediated NK activation for OV therapy has also 
been observed using other oncolytic viruses (190, 191).

To further promote antitumor immunity, OVs have been 
engineered to express NK-stimulating cytokines such as IL-12, 
IL-15, IL-18, CCL5, and GM-CSF (192–194). Using a similar 
approach, we developed an NK-activating infected cell vaccine 
(ICV) based on injection of irradiated autologous tumor cells 
previously infected ex vivo with a cytokine-expressing OV (195, 
196). Using this platform, we showed that an ICV prepared with 
an IL-12–expressing Maraba virus led to complete regression of 
established peritoneal tumors in an NK-dependent manner and 
overcame some of the inherent issues related with in vivo OV 
infectivity, such as antibody- and complement-mediated neu-
tralization (particularly upon repeated dosing), sequestration by 
serum proteins, and immune-mediated clearance (196). Addi-
tionally, it allows controlled and safe release of potent cytokines 
at the site of tumor infection. Another cytokine-based approach 
that has exhibited promising results is the use of a “superago-

nist” IL-15, i.e., IL-15 complexed with the α subunit of its receptor 
(IL-15/IL-15Ra). This approach was shown to increase IL-15’s in 
vivo stability and bioavailability, and a Myxoma virus encoding 
IL-15/IL-15Ra induced robust NK responses leading to improved 
outcomes in murine melanoma (197).

As discussed above, surgery can have a major impact on 
antitumor immunity. As OVs have a strong immunomodulatory 
potential, we reasoned that virotherapy could recover NK cell dys-
function in tumor models. Indeed, we showed that virotherapy fol-
lowing surgery reduced tumor burden by reverting perioperative 
NK dysfunction (50, 189). We further showed that TLR3 engage-
ment by an inactivated influenza vaccine similarly enhanced NK 
activity, with additional benefits when MDSC activity was inhib-
ited using a phosphodiesterase 5 (PDE5) inhibitor (54, 198). We 
are currently enrolling patients following major surgical resec-
tion of primary abdominal tumors to test a combination of influ-
enza vaccine and PDE5 inhibitor (tadalafil) on NK cell function 
(NCT02998736). Clearly, OVs can help mitigate surgery-induced 
dysfunction, but more research is required to evaluate these thera-
pies and find ideal combinations.

Figure 1. The NK cell armament of cancer immunotherapy: how to harness NK cells against cancer. NK cells kill and eliminate cancer cells, but in the 
tumor microenvironment they are often insufficiently active or inhibited by immunosuppressive ligands and cytokines. To overcome this, a number of 
strategies have been developed to enhance NK cell activity against cancer in these settings: (A) Chemo- and radiotherapy induce immunogenic cell death 
of cancers, leading to expression of NKG2D ligands, HMGB1, and other DAMPs that drive NK cell activation. (B) Surgery leads to the development of an 
immunosuppressive microenvironment, in part through the expansion of MDSCs and the release of inhibitory cytokines such as TGF-β. PDE5 inhibitors 
alongside viral vaccines have proven to be highly effective in reversing this dysfunction. (C) Oncolytic viruses (OVs) infect and lyse cancer cells, but can also 
infect DCs, leading to their maturation and driving DC-NK cross talk and subsequent NK activation. OVs can also be engineered to deliver cytokines and 
other immune stimulants to the microenvironment to activate the immune system. (D) Engineered cytokines such as ALT-803, an alternate form of IL-15, 
have increased potency compared with conventional cytokines. (E) Checkpoint blockers such as anti–PD-1/PD-L1 and anti-TIGIT relinquish NK cells from 
the immunosuppressive effects exerted by tumors, allowing them to perform their cytolytic functions. (F) NK cells from autologous or allogeneic sources 
can be safely used as adoptive cell therapy. (G) The use of CARs enhances the efficacy of adoptive therapy. In particular, CARs expressing NKG2D with 
the CD3ζ and DAP10 intracellular signaling motifs drive potent antitumor immune responses. (H) BiKEs and TriKEs bring NK cells spatially closer to their 
targets and activate them. The TriKE 161533 contains a CD16-targeting motif for NK cells, a CD33-targeting motif for cancer cells and MDSCs, and an IL-15 
linker to activate NK cells.
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tems, and the dynamic interplay between the immune system and 
cancer is exquisitely complicated. So far, NK cells have been some-
how overlooked as the field has tried to empower T cell respons-
es against cancer. It is now evident that many immunotherapies 
thought to elicit T cell responses also activate NK cells, and that NK 
cells can be effective in scenarios where T cells fail. For this reason, 
more research is warranted to accurately and effectively harness the 
full power of the immune system, including NK cells, against cancer.

Acknowledgments
We thank Fraser Scott and Seung-Hwan Lee for critically reading 
this manuscript. JJH is the recipient of a Canadian Institutes of 
Health Research (CIHR) scholarship. MP is a recipient of a Natural 
Sciences and Engineering Research Council of Canada (NSERC) 
scholarship. This work was supported by grants from the CIHR 
and the Cancer Research Society (CRS) to MA, and grants from 
the Canadian Cancer Society Research Institute (CCSRI), the Ter-
ry Fox Research Institute (TFRI), and CRS to RCA.

Address correspondence to: Michele Ardolino, 501 Smyth Road, 
Cancer Center, 3-328, Ottawa, Ontario K1H8M2, Canada. Phone: 
613.737.8899 ext. 77257; Email: m.ardolino@uottawa.ca.

In conclusion, OV-based platforms and combination thera-
pies continue to identify new ways to harness NK cell antitumor 
activity. Recently, Chen et al. reported promising synergistic 
results using HSV with an EGFR-targeting CAR-NK to treat breast 
cancer brain metastasis (199). Following on the heels of bispecific 
T cell engagers (BiTEs), potential to engineer BiKEs into OVs is 
also conceivable (200).

Conclusions and future perspectives: understand 
to cure
NK cells are powerful tools in the armamentarium against cancer 
(Figure 1). They inherently differentiate self from non-self, gauge 
danger signals on stressed cells, and rapidly eliminate malignant 
cells, making them an ideal target for cancer immunotherapy. 
Increasing understanding of the basic mechanisms underlying NK 
recognition, activation, and suppression fosters incredible excite-
ment and paves the way to immunotherapeutic strategies that elicit 
NK cell responses against cancer. Valuable preclinical mechanistic 
research must continue to elucidate the key processes regulating NK 
cell biology, which will also facilitate clinical translation. One lesson 
learned from the cancer immunotherapy revolution is that only by 
understanding the basic biology can one manipulate complex sys-
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