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Multiple myeloma (MM), a bone marrow–resident hematological malignancy of plasma cells, has remained largely
incurable despite dramatic improvements in patient outcomes in the era of myeloma-targeted and immunomodulatory
agents. It has recently become clear that T cells from MM patients are able to recognize and eliminate myeloma, although
this is subverted in the majority of patients who eventually succumb to progressive disease. T cell exhaustion and a
suppressive bone marrow microenvironment have been implicated in disease progression, and once these are
established, immunotherapy appears largely ineffective. Autologous stem cell transplantation (ASCT) is a standard of
care in eligible patients and results in immune effects beyond cytoreduction, including lymphodepletion, T cell priming via
immunogenic cell death, and inflammation; all occur within the context of a disrupted bone marrow microenvironment.
Recent studies suggest that ASCT reestablishes immune equilibrium and thus represents a logical platform in which to
intervene to prevent immune escape. New immunotherapies based on checkpoint inhibition targeting the immune
receptor TIGIT and the deletion of suppressive myeloid populations appear attractive, particularly after ASCT. Finally, the
immunologically favorable environment created after ASCT may also represent an opportunity for approaches utilizing
bispecific antibodies or chimeric antigen receptor (CAR) T cells.
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Introduction
Multiple myeloma (MM) is a hematological malignancy character-
ized by expansion of clonal plasma cells in the bone marrow (BM) 
that produce monoclonal immunoglobulin (M band) (1). MM typi-
cally causes end-organ damage consisting of anemia, renal impair-
ment, lytic bony lesions, and hypercalcemia (1). Global incidence 
has increased by 126% since 1990 (2), and it typically occurs in 
the elderly, with 85% and 60% of diagnoses made in individuals 
over 55 and 65 years of age, respectively. With improved treat-
ment regimens and the use of myeloablative chemotherapy with 
autologous stem cell transplantation (ASCT), median survival 
now exceeds 6 years, although this is highly variable depending 
on disease risk factors. Despite dramatic therapeutic evolution, 
myeloma remains largely incurable.

Interestingly, MM often progresses from a premalignant state, 
monoclonal gammopathy of undetermined significance (MGUS), 
that displays a lifelong rate of progression of 1% per year (3, 4). Smol-
dering multiple myeloma (SMM) is a second precursor state of active 
MM wherein patients have higher frequencies of BM clonal plasma 
cells than do MGUS patients, but have yet to develop symptoms of 
myeloma-related end-organ damage (5). Malignant transforma-
tion is a consequence of a combination of factors including both 
primary and secondary genetic events, genetic heterogeneity with 
subsequent clonal evolution, and changes in the BM microenviron-
ment (6, 7). Additionally, immune dysfunction has been observed in 
myeloma patients (8–14), raising the question of whether immuno-
logical escape is an additional mechanism of disease progression.

In this Review we discuss potential immunological processes 
of myeloma control and immunological escape that manifests as 
disease progression. In this context, we will address the current 
status of immunotherapy in the clinical setting and in preclinical 
models that together provide a perspective on the future direc-
tions of immunotherapy for myeloma.

Evidence for immune-mediated myeloma control
The role of immunosurveillance and the concept that tumors 
progress from a state of immune equilibrium to an escape phase 
are well described for solid tumors (Figure 1). Incomplete elimi-
nation of tumor cells results in an equilibrium whereby adaptive 
and innate immunity keeps remaining tumor cells in a state of 
functional dormancy (15). Escape occurs in the context of genetic  
changes leading to loss of antigen expression or presentation, 
induction of immunosuppressive microenvironment, and/or 
development of resistance to immune effector responses (15). 
Increasing evidence suggests that MGUS/SMM may represent 
a state of immune equilibrium that is subsequently disrupted 
during progression to active myeloma. Whole-exome sequenc-
ing of paired patient samples collected at diagnosis of MGUS/
SMM and again at MM found that most somatic mutations pre-
ceded diagnosis of clinical MM (16, 17), suggesting that although 
genetic mutations are necessary for tumorigenesis, they are not 
sufficient for transformation of myeloma. Consistent with this, 
the mutational burden of MGUS/SMM patients who did not prog-
ress to MM was found to be equivalent to the mutational burden 
of progressors (18). Thus, extrinsic factors are likely an additional 
determinant of subclonal evolution and progression from prema-
lignant states to clinical myeloma (17).

Two randomized phase III trials recently provided direct 
evidence of immune-mediated myeloma control, as patients 
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both the blood and tumor bed of patients with progressive disease 
had markedly impaired IFN-γ production, although this pheno-
type was reversible (13). Together, these studies indicate that T 
cell–dependent myeloma immunity is present, albeit suppressed, 
in patients with myeloma.

NK cells play a key role in myeloma immunity, and NK dys-
function has been implicated in myeloma progression in non-
transplanted myeloma-bearing mice (42). MGUS patients were 
found to have similar or increased numbers of NK cells compared 
with healthy donors, while patients with late-stage myeloma have 
significantly reduced NK cell numbers (43, 44). NK cells are par-
ticularly important in the context of treatment with immunomod-
ulatory imide drugs (IMiDs), as IMiDs stimulate IL-2 production 
by T cells, resulting in NK cell activation and expansion (40, 45, 
46). Furthermore, a recent study found that IMiDs prime myelo-
ma for killing by daratumumab, a CD38-targeting mAb, by upreg-
ulating CD38 expression and sensitizing myeloma cells to NK 
cell–mediated antibody-dependent cell-mediated cytotoxicity 
(ADCC) (47). A second antibody, elotuzumab, binds SLAMF7 on 
MM cells and Fc receptors (CD16) on NK cells and macrophages 
to promote ADCC and antibody-dependent cellular phagocytosis 
(48). This mAb does not have single-agent activity but is active in 
combination with IMiDs. NK cell–mediated myeloma immunity 
was addressed in a murine model of ASCT, and surprisingly, NK 
cells were not required for myeloma control in this setting (26). 
These data suggest that alternative mechanisms may underpin 
responses after ASCT, although this has yet to be definitively 
investigated in a clinical setting.

Immunological escape facilitates myeloma 
progression
Immunological escape is attributed to a multitude of factors, 
including T cell exhaustion, tolerization by tumor-associated 
antigen-presenting cells, alterations in cytokine production, and 

with high-risk SMM (5) demonstrated longer time to progression 
with lenalidomide-based treatment compared with observation 
alone (SWOGS0120, NCT00480363, ref. 19; ECOG E3A06, 
NCT01169337, ref. 20). Further support for immune-mediated 
MM control lies in the ability to generate cytotoxic T cells against 
autologous tumors from myeloma patients ex vivo (21–24), even 
in the context of a low mutational burden (25). Indeed, freshly  
isolated T cells from MGUS patients’ BM produced IFN-γ in 
response to autologous preneoplastic cell–loaded DCs, while 
freshly isolated T cells from MM patients were unresponsive (21, 
22). In a preclinical model, adding autologous or syngeneic T 
cells to the BM graft dramatically improved survival and reduced 
myeloma progression (26). In this model, myeloma-specific T 
cells could also be recovered from recipient BM of long-term sur-
vivors of ASCT and could transfer myeloma-specific immunity 
to secondary recipients. It is important to note that the Vk*MYC 
model of myeloma used in these preclinical studies generates 
similar disease to that in patients, with lytic lesions, renal impair-
ment, clonal plasma cell expansion, and associated M bands (27). 
Moreover, this myeloma’s mutational burden is comparable to 
that reported in humans (26, 28–30). The importance of memory 
CD8+ T cells as mediators of MM progression was also demon-
strated in patients, as a recent clinical study highlighted attrition 
of stem-like memory CD8+ T cells in MGUS patients’ BM as a 
potential catalyst for progression to MM (31).

γδ T cells and natural killer T (NKT) cells also play an import-
ant role in immunosurveillance either by directly lysing tumor 
cells or via activating other immune subsets (32–39). In myeloma, 
γδ T cells from patients’ BM or peripheral blood exhibited strong 
antitumor responses to autologous myeloma cells, but not benign 
cells (40). As myeloma cells express CD1d, they are also sensitive 
to lysis by NKT cells (41). Interestingly, antitumor NKT cells could 
be detected in patients with MGUS, nonprogressive disease, or 
progressive myeloma; however, freshly isolated NKT cells from 

Figure 1. Potential immunoediting in multiple myeloma. Cancer immunoediting involves three sequential phases: elimination, equilibrium, and escape 
(15). Elimination is mediated by collaboration of the adaptive and the innate immunity to eradicate malignant T cells prior to the onset of clinical pre-
sentation. However, if elimination is incomplete and rare myeloma cell variants enter dormancy, equilibrium is established. After autologous stem cell 
transplantation (ASCT), equilibrium is mediated by effector T cells and is IFN-γ–dependent. Escape is associated with the accumulation of genetic muta-
tions, resistance to immune effectors, CD8+ T cell exhaustion, and changes in the microenvironment. Regulatory T cells (Tregs), suppressive dendritic cells 
(DCs), T helper 17 (Th17) cells, tumor-associated macrophages, and myeloid-derived suppressor cells (MDSCs) all encourage escape and inhibit CD8+ T cell 
function. ASCT appears to restore a period of immune equilibrium but is usually followed by further escape and disease progression.
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tion (11). Preclinical models also support an active role for CD8+ 
T cell exhaustion in myeloma progression, as immune checkpoint 
receptor expression correlates with disease progression in both 
transplant and nontransplant models (9, 14). Furthermore, both 
IFN-γ production and CD107a production are decreased in mice 
with high myeloma burdens, and loss of effector function cor-
related with disease progression (14, 26). While T cell exhaustion 
occurs in response to chronic antigen stimulation (53), myeloma 
cells can also express PD-L1 (56) and CD155 (57) (ligands for the 
T cell immune receptors PD-1 and TIGIT, respectively) and may 
thus contribute to exhaustion directly. Indeed, PD-L1 expression 
on myeloma is associated with drug resistance, and serum levels 
of PD-L1 predict progression-free survival in myeloma patients 
(56, 58–60). NK cells from patients with MM were also reported 
to have reduced expression of activating receptors and upregula-
tion of PD-1, which allows inhibition of NK cytotoxicity by PD-L1–
expressing MM cells (61, 62).

Several studies suggest that DCs from patients with myelo-
ma are not only dysfunctional, but also promote myeloma cell 
survival and may be key determinants of the progression from 
MGUS to active myeloma (63–66). In preclinical models of ASCT, 
DC-derived IL-10 is pathogenic, and there is accumulation of 
IL-10+MHC-IIlo DCs in the BM of myeloma-relapsed mice (14), a 
finding concurring with reports of DC accumulation in myeloma 
patients’ BM (67). In these preclinical systems, myeloma control 
is improved when donor DCs are specifically unable to produce 
IL-10 (14). Several studies have demonstrated that DCs from 
patients with myeloma can elicit strong myeloma-specific T cell 

accumulation of myeloid-derived suppressor cells (MDSCs) and 
suppressive tumor-associated macrophages (15, 49, 50).

T cell dysfunction can be due to senescence, characterized 
by maintained functionality but limited proliferative capacity, or 
exhaustion (51). The exhaustion phenotype is a continuum where-
by early exhaustion is associated with inflammatory cytokine pro-
duction and self-renewal capabilities, which are progressively lost 
in the context of repeated antigen exposure (52). The presence of 
exhausted T cells in myeloma patients is somewhat controversial, 
with some studies suggesting that CD8+ T cells are senescent (8, 
10, 11). Interestingly, senescence was telomere-independent (8), 
and PD-1 expression, which is more traditionally associated with 
exhaustion (53), was observed on CD57+ CD8+ T cells. These cells 
displayed markers for both exhaustion and senescence, possibly 
representing a composite state of dysfunction. Nonetheless, it is 
widely reported that CD8+ T cells from myeloma patients express 
multiple immune checkpoint receptors, including PD-1, CTLA-4, 
TIM-3, LAG-3, and, recently, TIGIT (9–12, 54). Chung et al. also 
found that these inhibitory receptors are expressed both before 
and after ASCT (10). Terminal T cell exhaustion is associated with 
loss of cytotoxicity by subsets of CD4+ and CD8+ T cells that pro-
duce IFN-γ, a cytokine critical to tumor immunity (49, 50). Early  
in vitro studies indicate that IFN-γ directly inhibits myeloma cell 
growth (55), and preclinical in vivo studies showed enhanced 
myeloma mortality when IFN-γ was absent in both transplant and 
nontransplant settings (26, 42). Importantly, studies of BM CD8+ T 
cells in patients with myeloma revealed decreased IFN-γ secretion 
and reduced degranulation, indicative of terminal T cell exhaus-

Figure 2. Immunotherapies for myeloma. Immunotherapies for myeloma target the tumor itself, suppressive myeloid populations, and/or immune cells. 
CD38-targeted mAbs target CD38-expressing myeloma cells and suppressive myeloid cells by antibody-dependent cell-mediated cytotoxicity (ADCC),  
complement-dependent cytotoxicity (CDC), and antibody-dependent cellular phagocytosis (ADCP), which also facilitates immune cell activation. Autol-
ogous stem cell transplantation (ASCT) disrupts the tumor microenvironment (TME), directly eliminates myeloma cells, and promotes T cell–mediated 
antimyeloma responses. Chimeric antigen receptor T cells (CAR T) and oncolytic viruses directly promote lysis of myeloma cells. Immune checkpoint inhibi-
tors and cancer vaccination approaches directly enhance T and NK cell–mediated antimyeloma responses. Immunomodulatory imide drugs (IMiDs) directly 
inhibit myeloma cell growth, reduce angiogenesis, and promote immune cell activation.
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Importantly, this finding was supported by clinical data: IL-18 
and polymorphonuclear MDSC signature genes correlated with 
myeloma outcome, and high IL-18 levels in BM were associated 
with poor prognosis (86).

Thus, increasing evidence suggests that myeloma progres-
sion is associated with loss of immune control that is reflective 
of changes in T cell differentiation, T cell exhaustion, and a sup-
pressive BM microenvironment. Importantly, these changes can 
now be targeted with rational immunotherapeutic combinations.

Clinical status of myeloma immunotherapy and 
preclinical lessons
We have now entered a new era of therapy for myeloma firmly 
centered on immunotherapy, with a clear expansion in the num-
ber of clinical trials exploring various immune-based therapies. 
Most prominently, these therapeutics include agents targeting  
myeloma-specific antigens, including daratumumab (CD38), onco-
lytic viruses, and chimeric antigen receptor (CAR) T cells (targeting 
B cell maturation antigen [BCMA]), and T cell–targeted therapies, 
including checkpoint inhibition and tumor vaccination, typically in 
combination with current standard-of-care drugs (Figure 2).

Immune checkpoint inhibition. Use of immunotherapy in myelo-
ma patients has had a somewhat tumultuous start, with early clini-
cal studies reporting a lack of efficacy of nivolumab monotherapy 
(87). Furthermore, in preclinical studies to date, anti–PD-1 mono-
therapy has only been described as effective in myeloma when 
administered after stem cell transplantation (14, 42, 88–90), and 
at an early time point (26). Interestingly, a clinical trial using pem-
brolizumab early after ASCT, followed by lenalidomide, reported 
a complete response (CR) in 7 of 23 (31%) patients (91). This rep-
resents an improvement from the initial trial in relapsed/refrac-
tory MM (RRMM) patients, in which CR was observed only in 
one patient who underwent radiotherapy (87). Notably, this small 

responses ex vivo (22, 68), indicating that the tumor microenvi-
ronment (TME) may also influence DCs’ ability to prime effective 
antimyeloma immunity. Consistent with this, aberrant IL-6 levels 
in the myeloma milieu have been associated with dysfunctional 
antigen presentation (63, 69).

Additionally, changes in the TME cytokine milieu can influ-
ence tumor escape by driving noncytolytic T cell differentiation 
paradigms that in turn are permissive of tumor growth. IL-6, a 
cytokine known to be dysregulated in patients with myeloma (70), 
plays a role in myeloma progression (71) and, together with TGF-β, 
IL-21, and IL-23 (72), promotes the expansion of IL-17A–producing 
Th17 cells (73, 74). Clinical studies have linked angiogenesis with 
elevated IL-17A levels in the sera of myeloma patients, and IL-17A 
broadly promotes myeloma growth (75–78). Importantly, IL-17A 
deletion in donor grafts, or IL-17A mAb blockade, was sufficient to 
promote long-term myeloma control in mice after transplantation 
(26); IL-17A inhibition was also able to delay disease progression 
in the nontransplant setting (79).

In the TME, macrophages are either antitumorigenic (M1) or 
differentiate into tumor-associated macrophages with an immu-
nosuppressive M2-like phenotype. This differentiation occurs 
in response to cytokines, chemokines, and growth factors in the 
TME (80). CSF-1 is an important mediator of macrophage surviv-
al, differentiation, and function, and CSF-1 overexpression has 
been associated with tumor development and progression (81–83). 
Accordingly, CSF-1 receptor (CSF-1R) blockade has been shown 
to promote antitumor immunity (83, 84). Importantly, myeloma  
progression has been associated with accumulation of CSF-1R–
expressing macrophages in preclinical studies, and targeting 
these populations using CSF-1R–blocking antibodies has proven 
effective, particularly after ASCT (14, 82, 85). Additionally, IL-18–
dependent MDSCs have been implicated in myeloma progression, 
and IL-18 blockade improved survival in a murine model (86). 

Figure 3. Induction of a favorable immunological environment after ASCT. Active myeloma is associated with an immunosuppressive bone marrow (BM) 
microenvironment that is characterized by an expansion of suppressive dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), CSF-1R–expressing 
macrophages, regulatory T cells (Tregs), and exhausted CD8+ T cells. T cell exhaustion occurs in response to chronic antigen exposure and IL-10 derived from 
suppressive DCs. Furthermore, myeloma cell growth is supported by IL-17A from Th17 cells and paracrine IL-6 production. After ASCT, a lymphodepleted and 
inflammatory environment is created that promotes myeloma-specific memory T cell expansion and the priming of naive T cells by functional dendritic 
cells. Myeloma-specific CD8+ effector T cells (Teff) mediate IFN-γ–dependent myeloma-specific immunity in the context of CD4+ T cell help.
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thalidomide derivatives with demonstrable degradation of Ikaros 
and Aiolos (99). Specifically, IMiDs boost proliferation, enhance 
IL-2 and IFN-γ production, and reduce IL-10 production in both 
CD4+ and CD8+ T cells, which subsequently enhance NK cell acti-
vation (100, 101). Treg expansion is also suppressed in vitro (102). 
To this end, lenalidomide is being explored in combination with 
DC/myeloma hybridoma vaccines and was shown to increase 
this therapy’s immunogenicity, with enhanced cytolytic capacity 
observed against myeloma cells (101). In patients with RRMM, the 
combination of elotuzumab with pomalidomide and dexameth-
asone produced superior outcomes and reduced risk of progres-
sion compared with pomalidomide and dexamethasone alone 
(NCT02654132) (103).

In accordance with the concept of improving responses using 
combinatory approaches, several studies suggested that combin-
ing IMiDs with anti–PD-1/PD-L1 antibodies may produce superior 
responses compared with either agent alone (104). Unfortunate-
ly, the clinical implementation of anti–PD-1/PD-L1 agents with 
IMiDs has resulted in substantial toxicity and no improvement in 
objective response rates (ORRs; NCT02289222, NCT02036502) 
(105–107), such that a number of trials were placed on a clinical 
hold by the FDA and subsequently terminated. With the recent 
development of a murine model that is sensitive to thalidomide 
and its derivatives (99), it may be prudent to assess the toxicity of 
combinations in preclinical myeloma models before taking any 
new IMiD-containing combinatory approaches to the clinic.

Monoclonal antibodies. Elotuzumab, described above, showed 
clinical efficacy in combination with IMiDs and dexametha-
sone and is FDA-approved for use in previously treated myeloma 
patients (103). A preclinical mouse study suggests that elotuzumab  
in combination with anti–PD-1 may further improve response 
rates, and a phase III clinical trial in RRMM patients is currently 
under way (NCT02726581) (108).

Daratumumab, a fully human mAb that binds to CD38, also 
has FDA approval for previously treated myeloma patients after 
several phase III trials demonstrated strikingly improved out-
comes for RRMM patients in the daratumumab arms when it was 
administered in combination with dexamethasone and lenalid-
omide (NCT02076009) (109) or bortezomib (NCT02136134) 
(110). Interestingly, although daratumumab targets CD38+ 
myeloma cells, it also depletes suppressive CD38+ Tregs and 
myeloid populations. Subsequently, T cells from patients treated  
with daratumumab had oligoclonal expansion and enhanced 
capacity to secrete IFN-γ (111). This represents a mechanism 
beyond the direct killing of CD38-expressing myeloma cells 
by ADCC and complement-mediated cytotoxicity (111). Pre-
liminary results from preclinical solid tumor models suggest 
that combination therapy with daratumumab and anti–PD-1 
may prove synergistic (112). Clinical trials are currently ongo-
ing of daratumumab and nivolumab/pembrolizumab in RRMM 
patients, and results are eagerly awaited (NCT02431208, 
NCT01592370, NCT03357952).

IL-17A’s role in promoting myeloma progression is now 
well established, and treatment with anti–IL-17A after stem cell 
transplantation prolonged myeloma control in preclinical mod-
els (26, 76). A phase I clinical trial combining anti–IL-17A with 
PDR001 (anti–PD-1) is currently recruiting RRMM patients 

post-transplant study was terminated early for failure to meet its 
interim analysis endpoint; however, the treatment was associated 
with minimal residual disease (MRD) negativity in 75% of patients 
at 180 days after ASCT (91). Nonetheless, although preclinical 
studies suggest that current immunotherapies may be most effec-
tive when implemented early after ASCT (a concept supported 
by clinical observations in patients) (10), further investigation in 
large randomized clinical trial cohorts is required.

Preclinical models also suggest that a combination approach 
targeting multiple checkpoint inhibitors may promote syn-
ergistic tumor control (88). A corroborating, phase I/II trial 
(NCT02681302, ClinicalTrials.gov) investigating ipilimumab 
in combination with nivolumab early after ASCT, in high-risk 
transplant-naive or recurrent MM patients, reported promising 
preliminary results with 71% and 67% of patients, respectively, 
achieving progression-free survival at 18 months follow-up. This 
promising rate of progression-free survival may be, in part, due 
to Treg depletion, which is at least one mechanism of action of 
ipilimumab in vivo (92, 93). This trial provides further evidence 
for both the implementation of immunotherapy early after ASCT 
and the synergistic potential of combination approaches. Unsur-
prisingly, with this combination of checkpoint inhibitors, 65% of 
patients developed immune-related adverse events grade 2 or 
higher and required treatment with systemic steroids. An alter-
native strategy to checkpoint blockade is treatment with agonist 
antibodies against the costimulatory receptor CD137 (4-1BB), 
which promotes CD8+ T cell effector function and proliferation 
(94). Accordingly, CD137 agonists have been shown to prolong 
myeloma control in preclinical models by promoting CD8+ T cell 
effector function in BM in both transplant and nontransplant set-
tings (26, 42, 95). A phase I clinical trial (NCT02252263) inves-
tigating the combination of elotuzumab and the CD137 agonist 
urelumab in patients with myeloma has been completed; how-
ever, results have not been reported. It should be noted that, in 
a preclinical model, treatment with a CD137 agonist antibody 
early after ASCT also upregulated PD-1 and TIM-3 expression 
on CD8+ T cells, and the staged addition of an anti–PD-1 block-
ing antibody further enhanced myeloma control (26). Delayed, 
or staged, anti–PD-1 treatment is particularly important, as 
simultaneous PD-1 blockade abrogated the effects of a CD137 
agonist in a preclinical model (96). This effect, although yet to 
be confirmed in a clinical setting, will need to be considered in 
the design of clinical trials in an era of combination approaches. 
Furthermore, the potential toxicities of agonist CD137 with anti–
PD-1 after ASCT are yet to be assessed and will likely be specific 
to the particular CD137 agonist mAb used.

IMiDs. Myeloma-targeted therapies provide another avenue 
to promote disease control and are particularly attractive in com-
bination with immune-targeted therapies. An additional strategy 
involves the use of agents with both myeloma on-target effects 
and immunologically favorable off-target effects, such as IMiDs 
(e.g., thalidomide, lenalidomide, and pomalidomide). IMiDs act 
through cereblon-dependent degradation of the transcription fac-
tors Ikaros (IKZF1) and Aiolos (IKZF3), which induce myeloma 
cell apoptosis but also stimulate T and NK cells (97, 98). Impor-
tantly, studying these drugs in preclinical models is now possible 
with the generation of genetically modified mice that metabolize 
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(NCT03111992). This combination’s activity in RRMM remains to 
be seen, and negative data would not preclude activity when it is 
used early after ASCT.

Oncolytic viruses. Oncolytic viruses are used to promote spe-
cific lysis of myeloma cells; however, early clinical trials showed 
limited long-term tumor control, and this therapy is currently 
being investigated in various combinations. The most common 
combinations are with standard myeloma therapies including 
IMiDs (reovirus: NCT03015922), proteasome inhibitors plus 
dexamethasone (reovirus: NCT02514382, NCT02101944), or 
cyclophosphamide to limit natural antiviral immunity (mea-
sles: NCT00450814, NCT02192775; vesicular stomatitis virus: 
NCT03017820, NCT00450814). A preclinical study using a bor-
tezomib-resistant Vk*MYC myeloma clone demonstrated a syner-
gistic antitumor effect with coadministration of bortezomib and 
reovirus (113). This synergism was due to augmented reovirus rep-
lication in target cells, which stimulated T and NK cell responses 
and reduced Treg accumulation. Another study, using the 5TGM1 
murine model and human myeloma cell lines, demonstrated 
enhanced immune-mediated antimyeloma effects after treat-
ment with a reovirus (114), which was augmented by lenalidomide 
in vitro (115). Oncolytics remain in early stages of clinical investi-
gation, and more information is needed about how these viruses 
promote immune-mediated antimyeloma effects. Results from 
clinical trials combining oncolytic viruses with IMiDs may provide 
some further insights into this possible mechanism of action.

Cellular-based therapies. ASCT remains an effective therapy 
for eligible patients and provides a survival benefit beyond novel  
agents alone (116–119). Currently, the prolongation of plateau 
phase induced by ASCT is largely assumed to be the result of 
myeloablative chemotherapy and cytoreduction therein (120). 
However, a subset of patients entering ASCT in complete remis-
sion demonstrate a survival plateau similar to that seen with 
immune-mediated graft-versus-leukemia effects after allogeneic 
stem cell transplantation (121). Indeed, several key immunological 
changes associated with ASCT suggest that disease plateau after 
transplant may arise from more than just cytoreduction. Firstly, 
melphalan, the cytotoxic agent routinely used during condition-
ing, has been shown to induce immunogenic cell death, a rapid 
burst of inflammatory cytokines, and enhanced tumor antigen 
uptake by DCs (122). Secondly, the reconstituting CD4+/CD8+ 
T cell ratio is inverted following ASCT and provides a favorable 
effector T cell/Treg ratio (10, 123). Finally, ASCT conditioning 
ablates BM, disrupting the suppressive TME that is established in 
myeloma patients. Indeed, given that ASCT generates an inflam-
matory environment, in the context of lymphodepletion, antigen 
presentation, and BM microenvironment disruption, it can be 
postulated that ASCT reestablishes a state of myeloma-immune 
equilibrium, perhaps even elimination, in patients who achieve 
long-term control of disease (Figure 3).

Allogeneic stem cell transplantation (allo-SCT) remains the 
only curative treatment option for many hematological malignan-
cies, particularly leukemias (124). The curative potential of allo-
SCT is largely mediated by alloreactive T cells, referred to as the 
graft-versus-leukemia effect (125). However, allo-SCT is limited 
by transplant-related complications, particularly graft-versus-host 
disease (GVHD), and relapse remains the major cause of fail-

ure (120). Surprisingly, in patients with myeloma, alloreactive T 
cells are limited in their ability to generate a potent graft-versus- 
myeloma (GVM) response, and allo-SCT is not used in this patient 
cohort outside of clinical trials. Clinical evidence of GVM effects 
was observed in some patients, who relapsed after allo-SCT and 
subsequently responded to donor lymphocyte infusions (DLI), 
often in association with GVHD (124, 125). However, the com-
parison of response rates to DLI highlighted less potent graft- 
versus-tumor effects in patients with myeloma compared with 
other hematological malignancies (126, 127). Furthermore, a large 
prospective study found that allografting patients with myeloma 
did not provide a survival advantage above ASCT, and relapse 
remained the major cause of death (48%) (128). Therefore, it 
appears that alloreactive T cell responses are specifically subverted  
in patients with myeloma, and the potential mechanisms govern-
ing this immune escape remain unclear.

Another cellular-based therapy still under evaluation is the 
use of marrow-infiltrating lymphocytes (MILs) as a source of T 
cells for adoptive cell therapy. MILs have been shown to be a par-
ticularly rich source of myeloma-specific cytotoxic and memory 
T cells owing to exposure to malignant plasma cells in BM (129). 
In a murine myeloma model, adoptive transfer of MILs resulted 
in superior survival compared with peripheral blood lymphocytes 
(130). Furthermore, in a small clinical trial with 25 patients, an 
approximately 30% CR rate was observed in patients receiving 
MILs early after ASCT, and median overall survival had not been 
reached at 7 years (130). A randomized phase II trial assessing the 
efficacy of MILs administered early after ASCT with lenalidomide 
is ongoing (NCT01858558).

The future of immunotherapy in myeloma
Novel immune checkpoint inhibitors. The upregulation of TIGIT on  
T cells from both mice and patients with myeloma, in both trans-
plant and nontransplant settings, has revealed a novel therapeutic 
target that may prove more attractive than current PD-1–targeted 
therapies (9, 14). TIGIT mAb blockade significantly enhanced 
effector CD8+ T cell function and improved survival when admin-
istered early after ASCT in mice (14). Surprisingly, TIGIT blockade 
was also effective at preventing myeloma progression when admin-
istered in a nontransplant, preclinical setting prior to myeloma 
progression (9). Furthermore, TIGIT blockade effectively targets 
both T cell exhaustion and DC-driven immunosuppression, as this 
therapy also reduced DC-derived IL-10 (14), another described 
mechanism of immune evasion (131). A preliminary report (132) 
suggests that specific Fc-binding anti-TIGIT antibodies may also 
deplete Tregs in vivo. Therefore, targeting of TIGIT holds consid-
erable promise, and it would be particularly interesting to explore 
TIGIT blockade in combination with immunotherapies targeting 
the BM microenvironment, including CSF-1R–dependent (14, 84) 
or IL-18–dependent (86) myeloid cells. The combination approach 
of stimulating T cells with a CD137 agonist followed by PD-1 block-
ade after ASCT (to allow expansion of myeloma-specific clones in 
the absence of exhaustion) is also attractive (26).

Vaccination approaches. Several vaccination approaches have 
been tested in myeloma, including idiotype-based, DC-based, 
cancer testis antigen–based (MAGE-A3, NY-ESO-1, etc.), and 
GM-CSF cellular-based vaccines (133). Unfortunately, despite 
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induction of immunogenicity, many of these formulations have 
proven largely ineffective as monotherapies (54, 134–138). This 
has been attributed to a range of factors, including impaired anti-
gen presentation (63, 67, 139), an immunosuppressive TME (84–
86), and low immunogenicity or lack of activity with single pep-
tide targets (138) in patients with myeloma. To provide meaningful 
clinical responses, recent efforts have sought to combine immu-
nomodulating therapies with myeloma vaccination approaches. 
The most successful combination to date is the administration of 
a DC/myeloma fusion vaccination after ASCT (140). In this trial 
with a cohort of 24 patients, 78% achieved a CR or a very good par-
tial response (VGPR), and all evaluable patients showed at least 
a two-fold expansion of myeloma-specific CD4+/CD8+ T cells. 
Notably, the rate of CRs increased dramatically between day 100 
and 1 year after vaccination, in the absence of other maintenance 
therapy. These data suggest that the clinical effect is largely due 
to the vaccination, such that a randomized, multicenter trial using 
DC/myeloma fusion vaccination is being conducted through a 
cooperative consortium (BMT CTN 1401, NCT02728102). In 
RRMM patients without ASCT, the same DC/myeloma fusion 
vaccination approach resulted only in disease stabilization in 69% 
of patients (141). Therefore, the rationale to incorporate vaccina-
tion early in the course of disease, particularly in combination with 
ASCT, is strong (142).

Idiotype vaccination has, historically, proven unsuccessful in 
patients with myeloma (143, 144). However, a recent study incor-
porating idiotype-pulsed DC vaccination after ASCT showed 
improved survival in treated patients compared with historical 
controls who underwent ASCT without vaccination at the same 
center during the same time period (median overall survival 5.3 
vs. 3.4 years) (145). Although promising, this therapy does need to 
be investigated in a controlled clinical trial before these results can 
be clearly interpreted.

Bispecific antibodies. Bispecific antibodies that bridge T cells 
(typically via CD3) and tumor-specific antigens (typically BCMA 
in MM) are now entering clinical trials (146). The most common 
formulations are bispecific T cell engagers (BiTEs), which only 
comprise the variable heavy and light chain regions. This allows 
for T cell engagement and activation after tumor antigen recog-
nition that is independent of TCR specificity (147). The BCMA 
BiTE AMG-420 was tested in a heavily pretreated patient cohort 
and showed a 70% response rate, including 5 MRD-negative 
stringent CRs, 1 VGPR, and 1 partial response (148). An addi-
tional BCMA BiTE with an extended half-life is also being tested 
(149) and showed increased efficacy in vitro in combination with 
lenalidomide or pomalidomide (150). It is important to note that 
BiTEs rely on the presence of a functional T cell response, and 
this therapy is likely to be most efficacious after ASCT or in newly  
diagnosed patients. Nonetheless, an early-phase trial demon-
strates promising efficacy of a BCMA-CD3 bispecific antibody 
(CC-93269) in heavily pretreated patients, with an ORR of 88.9% 
after treatment at the highest dose bracket (151). However, lon-
ger follow-up and larger cohorts are necessary to determine the 
durability of these responses.

CAR T cells. Chimeric antigen receptor (CAR) engineered T 
cells have been revolutionary in the treatment of patients with B 
cell malignancies, in which CD19 serves as an ideal target. The 

use of CAR T cells in hematological malignancies is compre-
hensively reviewed by Frigault and Maus in this Review series 
(152). In patients with myeloma, there are several available 
targets, but BCMA is the most widely studied (153). BCMA is 
expressed only in late memory B cells and plasma cells, is more 
highly expressed on malignant plasma cells compared with 
healthy cells (154), and is widely expressed in myeloma patients 
(155). BCMA-targeted CAR T cells have produced very promis-
ing results in phase I clinical trials in RRMM patients, with many 
reporting ORRs of 64%–88% in this historically difficult-to-treat 
patient cohort (NCT03090659, NCT03093168, NCT03288493, 
NCT03318861, NCT02658929, NCT02215967) (156–158). 
Other potential CAR T cell targets in myeloma include CD138 
(NCT03672318) (159), SLAMF7 (NCT03958656) (160), and 
GPRC5D (161). These targets are all in early stages of testing, but 
preclinical and in vitro studies show promising activity against 
tumor cell lines and primary myeloma cells.

Disappointingly, despite impressive responses early after 
CAR T cell infusion, lack of persistence and durability of current 
CAR T cells has precluded long-term disease control in many 
patients (153), likely owing to CAR T cell–intrinsic factors (162, 
163), rejection, loss of target antigen (156, 164), and the immuno-
suppressive BM TME (165). Early clinical formulations of CAR T 
cells were generated without regard for phenotype or functional 
heterogeneity in leukapheresis products. However, a clinical study 
found that higher frequencies of CD8+ T cells with a naive or stem 
memory phenotype in the leukapheresis product correlated with 
a better outcome (158). Importantly, the frequency of early mem-
ory T cells was reduced in T cell products from heavily pretreated  
patients, which suggests that intervention at earlier stages of dis-
ease might prove beneficial (166). Interestingly, a clinical study 
(NCT03455972) exploring combination of CD19 and BMCA CAR 
T cells administered between days 14 and 20 after ASCT report-
ed dramatic in vivo CAR T cell expansion, 100-fold greater than 
that observed in the group’s previous study using RRMM patients 
(167); however, the presence of the CD19 CAR T cells is poten-
tially confounding (168). Nonetheless, the degree of CAR T cell 
expansion was the most robust marker correlating with response 
across MM trials, and this expansion was most prominent in 
lymphodepleted patients (156, 158, 169). Therefore, it is plausi-
ble that CAR T cells will also be most efficacious when used in 
combination with ASCT. Additional approaches to improve CAR 
T cell quality include selecting for naive or stem/memory T cells 
(158), engineering of CAR T cells for exhaustion resistance (170), 
administration of defined compositions of CD4+/CD8+ T cells 
(164), and informed selection of costimulatory domains for CD28 
(brisk T cell proliferation but limited T cell persistence) and/or 
4-1BB (less potent effector function but increased persistence) 
(171–173). Recently, BCMA expression by MM has been dramati-
cally enhanced by prevention of cleavage of BCMA from the cell 
surface with a γ-secretase inhibitor, and a phase I clinical trial 
(NCT03502577) is ongoing (174). Finally, the BM TME could be 
targeted with therapies including daratumumab, other suppres-
sive myeloid cell–targeted mAbs, or IMiDs (14, 86, 111, 175) to lim-
it CAR T cell exhaustion. Ideally, these combination approaches 
should be studied in preclinical models to examine the potential 
for additive or synergistic toxicity.
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ical evidence to suggest that ASCT generates a state of T cell– 
dependent myeloma control and thus represents a rational 
MRD-low platform for immunotherapy approaches. Finally, 
combining immunotherapies that target myeloma cells and the 
BM TME with ASCT, CAR T cell, and/or vaccination approaches 
may be the key to reestablishing immune equilibrium and gener-
ating durable immunological control of disease.
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Conclusions
Immunotherapy is now a cornerstone therapeutic approach for 
the treatment of myeloma but at present is limited by the ability  
to generate durable functional antimyeloma T cell responses. 
While preclinical models of myeloma are important in generat-
ing rational therapeutic paradigms, these must be tested in rigor-
ous and well-designed clinical trials. We now have a wide range 
of active agents to choose from for the treatment of myeloma, 
and while many of these are immunostimulatory (e.g., IMiDs,  
elotuzumab), many are immunosuppressive (e.g., dexameth-
asone, proteasome inhibitors). To date, the field has combined 
agents without a clear regard for the immunological consequences 
and has largely taken a “more agents is better” approach. Given our 
increasing understanding of the importance of myeloma-specific  
immunity, now would seem an appropriate time to consider com-
bining agents in a more strategic fashion and including explor-
atory immunological endpoints in studies. Furthermore, initiat-
ing immunotherapy earlier in the course of disease at a time of 
superior T cell fitness may also improve the quality of responses. 
Additionally, there is strong preclinical and preliminary clin-
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