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Introduction
Parallel advances and increased ease of access to high-throughput 
next-generation genomic, metabolomic, transcriptomic, and pro-
teomic arrays coupled with widespread adaptation of the electronic 
health record heralded the era of big data in cardiovascular disease 
investigation. Rapid iteration of these technologies increasingly 
generates data outputs that are exponentially more complex com-
pared with their earlier versions. This vast reservoir of clinical and 
biological information has revolutionized cardiovascular health 
and disease by establishing two contemporary needs that are ger-
mane to refining cardiovascular disease (endo)phenotypes. First, 
there has been a shift in focus from data collection toward optimal 
and actionable data analysis and interpretation. Second, harness-
ing therapies for individualized genotypes and phenotypes, which 
collectively form the fundamental basis of precision medicine, has 
emerged as a defining challenge for big data (1).

Cardiovascular medicine stands to gain much by achieving 
these goals, particularly in the face of diminishing progress toward 
improving clinical outcomes in important, highly prevalent dis-
eases such as heart failure (HF) with impaired diastolic relaxation, 
which is increasingly common in aging and obese populations (2–
4). The evolving landscape of previously unrecognized comorbidi-
ties linked to cardiovascular diseases adds further to the challenge. 
Cardiovascular disease phenotypes, however, are complex entities 

that reflect a compilation of diverse endophenotypes, or intermedi-
ate phenotypes, such as fibrosis and thrombosis, that have a genet-
ic association and serve as disease biomarkers or risk factors (5). 
Heterogeneity in cardiovascular disease phenotypes is recognized 
further via the involvement of numerous cell types and complex 
combinations of interacting molecular species, manifestation of 
interrelated disease features, and the expression of variable clin-
ical trajectories. This heterogeneity requires important consider-
ations that are unique to cardiovascular medicine when informa-
tion is extrapolated from big data. Importantly, the pathobiology 
of cardiovascular diseases often stands in stark contrast to diseases 
whose expression is tightly coupled to a sentinel molecular event, 
such as phenotype switching of lymphoid cells in leukemia (6), or 
coupled to an acquired but reversible insult driving a pathopheno-
type, such as extreme nutritional deficiency syndromes (7).

In this Review, we propose key strategies to improve the 
application of big data in cardiovascular disease by clarifying 
the relationships among genotype, endophenotype, and clinical 
phenotype. We discuss examples that show the true translational 
potential of unbiased data sets, and also offer cutting-edge analyt-
ical approaches to address wide-ranging limitations in the conven-
tional reductionist path toward precision medicine.

Deconstructing genotype as the determinant of 
cardiovascular phenotype
The common viewpoint that most cardiovascular diseases result 
from a heritable component (or a limited number of heritable 
components) has fueled the search for pathogenic genes to impli-
cate as causal factors. Certainly, there are notable examples of single 
gene mutations that are directly causal for cardiovascular disease, 
such as the relationship among mutations in the low-density lipo-
protein receptor (LDLR) gene, familial hypercholesterolemia, 
and (accelerated) atherosclerosis (8). There are also genetic vari-
ants that are protective against coronary heart disease, including 
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limited by imperfect and incomplete data sets for the populations 
studied. Here, big data has the opportunity to provide enhanced 
clarity between genomics and precision phenotyping by increas-
ing sample size, enhancing the characterization of more nuanced 
pathophenotypes, providing data important for understanding 
gene modification(s), and offering unique analytical strategies 
heretofore unavailable, chief among which is the application of 
network medicine to complex, heterogeneous molecular interac-
tions (see below) (Figure 1).

Deconstructing clinical cardiovascular 
phenotypes
Most cardiovascular diseases are not circumspect entities that 
involve a single cell type or organ system in isolation. This principle 
has important implications for the applicability of a conventional 
reductionist model in informing an understanding of cardiovascu-
lar disease pathogenesis and phenotype. In addition, focusing on 
single genetic, molecular, or biological features based on expres-
sion frequency (or magnitude) alone does not necessarily elucidate 
functionality and ignores the potential for exploring pleiotropic het-
erogeneity in disease mechanisms and expression (21). Moreover, 
select cardiovascular phenotypes are identifiable only following a 
challenge, such as the use of exercise to provoke myocardial isch-
emia or in clinical trials in which the responsiveness to intervention 
defines the phenotype. This notion has wider implications for deter-
mining pathogenicity using big data in general and for contextualiz-
ing the genotype–endophenotype–clinical phenotype (GECP) rela-
tionship in cardiovascular diseases in particular. Here, we present 
selected examples of complex cardiovascular pathophenotypes that 
are unlikely to be reduced to a simplistic GECP relationship, and 
illustrate the dilemma that big data analytics must address.

Myocardial infarction and ischemic heart disease. The acute, 
late, and chronic phases of MI are associated with stressors that 
trigger crosstalk between cardiomyocytes and fibroblasts (22, 
23), endothelial cells (24), and circulating immune cells, such as 
monocytes and T lymphocytes (25). The result is a mixed isch-
emic cardiomyopathy clinical phenotype with variable extent of 
dysregulated cardiomyocyte energetics, myocardial thinning, and 
replacement fibrosis. These changes, in turn, correspond to differ-
ences in systolic function, myocardial remodeling, and mechani-
cal complications across different patients and temporally within 
the same patient (26). In considering the totality of these events, 
prediction of outcome based on cardiac morphology and clinical 
events in ischemic heart diseases remains challenging and, from 
first principles, would seem to involve more than a single or few 
predisposing genetic risk factors.

Hypertrophic cardiomyopathy. HCM has long been viewed as a 
monogenic disease owing to the discovery of over 2000 variants 
in at least 11 genes encoding proteins of the cardiac sarcomere 
in affected patients (27). The rate of nonsynonymous sarcomere 
variants in “HCM genes” in population studies, however, predicts 
a disease prevalence that is approximately 2.5-fold greater than 
is observed clinically in large echocardiographic studies (28, 29). 
Analyses leveraging exome and whole-genome databases that are 
inclusive of large normal populations, resources more readily avail-
able only in recent years, demonstrate that some HCM mutations 
considered causative are observed at different frequencies in com-

protein- inactivating variants in the sterol transporter NPC1L1, 
which correlate with improved outcome in patients treated with 
anti-NPC1L1 pharmacotherapy (9, 10); and loss-of-function muta-
tions in ANGPTL4, which are associated with lower triglyceride 
levels and protection from cardiovascular disease (11, 12). This 
reductionist approach to defining a complex genotype-phenotype 
relationship, however, is implausible for most cardiovascular dis-
eases with diverse and nuanced phenotypic features (13). Reduc-
tionism in medicine purports that a pathogenetic variant functions 
as the principal determinant of a disease trait or endophenotype, 
which, in turn, is a critical step in the development of a clinical dis-
order. Rather, the expression of overt cardiovascular end-patho-
phenotypes, such as myocardial infarction (MI), more likely rep-
resents the convergence of perturbations in numerous, potentially 
phenotypically related genes that are subject to further modifica-
tion by an individual’s exposome, the cumulative environmental 
exposures that affect health over an individual’s lifespan (14).

As with many other diseases, large-scale GWAS represent a 
major strategy for identifying and implicating pathogenic genes 
in cardiovascular diseases. This approach, however, has inherent 
limitations for discovery, as GWAS are only able to provide an 
association between gene regions harboring the pathogenic gene 
and the disease phenotype, and marginal population sizes (even 
for highly prevalent cardiovascular diseases) limit the statistical 
power needed to seek even simple gene-gene interactions. Fur-
thermore, although coverage of the genome continues to improve, 
restrictions on sensitivity are imposed by the depth and coverage of 
the sequencing platform. GWAS used to dissect complex disorders 
are also limited by the commonality of the genetic heterogeneity of 
many variants, as recently demonstrated by a GWAS meta- analysis 
of 184,305 individuals with MI and referents (15). The Exome 
Aggregation Consortium further established that, on average, indi-
viduals carried 54 mutations considered pathogenic, but approxi-
mately 41 of these mutations occurred with high enough frequency 
in the general population that they were considered unlikely to be 
causal for severe disease (16).

In contradistinction to pursuing identification of disease genes 
related to cardiovascular phenotypes, an alternative approach has 
focused on identifying genes associated with stress adaptation 
or resilience that are protective against adverse cardiovascular 
phenotypes. The existence of resilience genes or gene modifiers 
is substantiated by the identification of individuals with highly 
penetrant disease-causing mutations that do not manifest the dis-
ease phenotype, as occurs in heritable pulmonary arterial hyper-
tension (PAH) and hypertrophic cardiomyopathy (HCM) (17–19). 
An individual’s exposome also modulates resilience. Investiga-
tors developed a polygenic risk score derived from 50 SNPs with 
genome-wide significance to test its utility in predicting coronary 
artery disease (CAD). When assessed in a cohort of 55,685 partic-
ipants, individuals with a high genetic risk score who subscribed 
to three of four healthy lifestyle factors (no current tobacco use, 
no obesity, regular exercise, healthy diet) had a 46% reduction in 
relative risk for coronary events (20). This study and other similar 
studies using GWAS data to explore polygenic diseases represent 
a straightforward effort to define genomic context as the basis for 
disease heterogeneity. Yet, despite their improvement over simple 
GWAS, these studies purely remain associative and are severely 
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structure and function attributable to endothelial dysfunction 
(34), increased vascular smooth muscle stiffness (35), aberrant 
matrix production by adventitial fibroblasts and resident progeni-
tor cells (36), and inflammatory/immune cell infiltration of vessels 
(37). Phenotypic heterogeneity is compounded further by the fact 
that hypertension is provoked by physiological stress, neurohor-
monal regulators, salt intake, and obesity, which may occur alone 
or in concert (38). While efforts to identify a mono- or polygenic 
basis for hypertension have identified variants associated with 
the pathophenotypes, initial positive observations typically have 
not been replicated within populations of a similar ethnic back-
ground. The Framingham Heart Study identified 33 SNPs related 
to blood pressure or hypertension, demonstrated that the preva-
lence of hypertension increased commensurate with genetic risk, 
and validated the SNPs by confirming genome-wide significance 
in 34,433 individuals (39). Similarly, GWAS of 140,886 individuals 
of European ancestry enrolled in the UK Biobank identified 107 
loci related to blood pressure traits. More recently, a GWAS meta- 
analysis of over 1 million individuals identified 535 new loci linked 
to blood pressure traits (40). Despite these efforts, the top candi-

parison with nondisease controls in certain ethnic (racial) groups, 
and do not associate with the pathophenotype in these subgroups 
(30). Furthermore, the HCM spectrum spans a diverse collection of 
endophenotypes that do not hinge on sarcomere-dependent patho-
biology. For example, mitral valve elongation, myocardial replace-
ment fibrosis, and hypertrophic remodeling of intramural coronary 
arteries, among other abnormalities that involve cell types that do 
not express cardiomyocyte sarcomere proteins, are all observed to 
varying degrees in individual HCM patients (31).

Other cardiomyopathies. Missense variants in TTN, encoding 
titin, have been implicated recently in the pathogenesis of left ven-
tricular (LV) dilated cardiomyopathy and LV noncompaction car-
diomyopathy (32, 33). The range of titinopathies is, therefore, vast, 
but the extent to which each variant is disease-causing is uncertain, 
particularly in LV noncompaction. This entity is characterized by 
particularly heterogeneous structural features, and often tracks 
with other congenital anatomic abnormalities that are not likely to 
depend directly on titin.

Hypertension. There is considerable heterogeneity in the 
hypertensive pathophenotype, with dysregulation of vascular 

Figure 1. Big data enhances precision cardiovascular  
phenotyping. Contemporary understanding of the het-
erogeneity in cardiovascular disease requires compilation 
of a diverse array of big data sources. Data from these 
domains are amenable to novel network medicine analytics 
to generate individual patient networks to define networks 
based on population-level data as well as a reticulotype 
(i.e., a patient’s unique molecular network that allows an 
exploration of how perturbations affect phenotype). While 
precision phenotyping may define clusters of patients, 
reticulotyping provides further resolution to clusters by 
identifying the molecular (network) drivers of unique 
patient-specific characteristics.
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adventitial fibroblasts contribute to PAH endophenotypes, and 
that increased oxidant stress, dysregulated metabolism, apoptosis 
resistance, cell proliferation, and fibrosis that underlie vascular 
lesions in PAH have been reported in patients without aberrant 
BMPR2 signaling (44, 45).

Concept of converging pathophenotypes. Many cardiovascular 
diseases exhibit broad phenotypic heterogeneity, with manifesta-
tion of clinical disease comprising a spectrum of potentially related 
subphenotypes that converge on a common end- pathophenotype 
(Figure 2). Deconstruction of these converging cardiovascular 
phenotypes at the disease expression level is an area that will likely 
be informed meaningfully by big data. Disease heterogeneity is 
evident in CAD, in which the clinical manifestation (stable CAD 
versus acute coronary syndromes versus acute MI), underlying 
anatomic pathology (lipid-rich thin cap fibroatheroma versus 
fibrotic negative remodeling), and molecular mechanisms that 
contribute to disease pathogenesis are all heterogeneous processes  
that may be operative alone or simultaneously (46). HF with 
preserved ejection fraction is also recognized to have substan-
tial underlying heterogeneity, which was revealed through clini-
cal phenomapping and unbiased clustering analysis. A cohort of 
patients who appeared phenotypically similar were clustered into 
three groups on the basis of clinical characteristics with apprecia-
ble differences in the risk of HF hospitalization (HR, 4.2; 95% CI, 
2.0–9.1; P < 0.001) (47). Phenotypic heterogeneity has also been 
described for PAH with evidence of differential responses to acute 
challenge with vasodilators, and for cardiomyopathies (48, 49). 
Thus, common cardiovascular diseases are not phenotypically 
homogeneous entities, but, rather, an assembly of widely diverse 
endophenotypes leading to the panoply of clinical phenotypes 
among individual patients and within populations.

Phenotypic heterogeneity in cardiovascular diseases and clinical 
trials. Big data is well positioned to resolve heterogeneous clin-
ical phenotypes by bridging the divide between a reductionist 
approach to cardiovascular phenotypes and the reconstruction 
of a high-fidelity, multifaceted GECP relationship. Data mining 
from the Framingham Heart Study and the Nurses’ Health Study, 

date disease genes were dissimilar among studies, and the role of 
gene-modifying environmental factors and other demographic 
features that may be differentially represented in the study popu-
lations (ethnicity, race) was not assessed (41).

Pulmonary arterial hypertension. A germline mutation in 
BMPR2, encoding bone morphogenetic protein receptor-2, 
accounts for 75% of hereditary PAH cases. Penetrance among 
carriers, however, is highly variable, ranging from 20% to 80% 
depending on the study population and design (42). This finding 
suggests that environmental cues may be required to induce the 
clinical phenotype in many carriers. It is also noteworthy that 
BMPR2, a member of the TGF-β superfamily of receptors, seems 
to modulate vascular remodeling predominantly via effects on 
pulmonary artery smooth muscle cell growth and survival (43). It 
is important to note, however, that endothelial cells, pericytes, and 

Figure 2. Heterogeneity in cardiovascular disease and convergence on a 
common end-pathophenotype. (A) Cardiovascular diseases are complex 
clinical phenotypes that involve many different endophenotypes (e.g., 
inflammation, thrombosis inflammation, thrombosis, calcification, 
fibrosis) that cannot be explained solely by a single pathogenic variant. (B) 
Heterogeneity in cardiovascular diseases is evident as shown by the rela-
tionships among genetic variants (genotypes), the biochemical and cellular 
consequences of harboring these variants (endophenotypes), and clinically 
observed pathophenotypes. (C) In a model based on big data and network 
analyses, specific endophenotypes are determined by modules or a (sub)
network of protein-protein interactions within a larger disease network. 
Crosstalk between pathways that regulate different endophenotypes via 
a critical gene may occur. In this way, post-transcriptional and epigenetic 
mechanisms that are important in the pathogenesis of disease endophe-
notypes are emphasized and, collectively, converge to produce a complex 
pathophenotype. DCM, dilated cardiomyopathy; HFpEF, heart failure with 
preserved ejection fraction; LDL, low-density lipoprotein; LV, left ventricle; 
MI, myocardial infarction; RV, right ventricle; VSMC, vascular smooth 
muscle cell; VT, ventricular tachycardia. Adapted with permission from the 
Journal of the American College of Cardiology (network image in Figure 2C 
of, and bottom right panel of central illustration of, ref. 31).
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strating response to drug. Drug nonresponders were found to har-
bor functional variants in SIRT3 and UCP2 (63). As yet another 
example, endophenotypic and phenotypic heterogeneity is pre-
sumed to be responsible, in part, for spironolactone’s failure to 
reduce the incidence of a composite endpoint of cardiovascular 
death and adverse cardiac events in patients with HF and pre-
served ejection fraction (64), which contrasts with the benefits 
observed for this drug in patients with HF and reduced ejection 
fraction (64, 65) (although the possibility that trial compliance 
among patients in ref. 64 may have varied by geographic region 
needs also to be considered).

Phenotypic heterogeneity in clinical trials is also imparted 
by temporal changes in definition of what constitutes cardio-
vascular disease. Thresholds for categorizing a phenotype as 
healthy, at-risk, or disease are subject to reclassification based 
on accumulating evidence. This reclassification has occurred in 
recent years for hypertension (66), hypercholesterolemia (67), 
and pulmonary hypertension (68), and has substantial implica-
tions for how big data manages historical data recorded using 
previously accepted clinical benchmarks.

Modernizing the approach to understanding endophenotypes. 
Advancing technological capabilities continue to improve the 
throughput and depth of genomic, metabolomic, proteomic, and 
transcriptomic profiling assays. Next-generation tools on the hori-
zon, such as nanopore technology, in situ nucleic acid sequenc-
ing, and enhanced molecular imaging platforms, promise a new 
dimension of high-resolution data collection with greater trans-
lational potential compared with current standards (69). These 

the CHARGE Consortium, SWEDEHEART, and the UK Biobank 
Initiative, among others, has collectively explored GECP relation-
ships for hypertension, coronary heart disease, and MI (39, 50–54). 
These findings will surely be advanced by future reports from 
even larger-scale cohorts, such as the Million Veterans Program 
(55) and the NIH All of Us study (56). Although big data is chang-
ing the strength of evidence available from cardiovascular obser-
vational studies, merging data from these and other increasingly 
large population- based registries, biobanks, and electronic health 
records (EHRs) remains a substantial challenge. As such, big data 
is more likely to be a facet incorporated into clinical trial design 
rather than a replacement for randomized clinical trials designed 
to establish causal effects for cardiovascular diseases (57).

Endophenotypic heterogeneity as the driving factor in pheno-
typic heterogeneity has been recognized and explored in few clin-
ical trials, most notably the association between CYP2C19 loss-of-
function allele(s), diminished platelet inhibition by clopidogrel in 
carriers, and cardiovascular or cerebrovascular events (58–60). 
A rational genotype-driven treatment strategy, however, has not 
always translated into superior efficacy or safety, as demonstrat-
ed by studies that pursued genotyping of CYP2C9 or of VKORC1 
to guide warfarin dosing (61, 62). Conversely, if endophenotypic 
or phenotypic heterogeneity is overlooked in enrolling subjects in 
clinical studies, such heterogeneity often emerges as a contribu-
tor to unexpected outcomes. For example, despite abundant sup-
portive preclinical data, an open-label study of dichloroacetate in 
20 patients with idiopathic PAH on background therapy revealed 
substantial interindividual variability, with only 7 patients demon-

Figure 3. Big data informs reticulotyping and cardiovascular disease phenotyping. (A) The current viewpoint of cardiovascular disease phenotyping 
focuses on reductionism, which posits that a pathogenic variant is causal for a disease trait, or endophenotype, and, therefore, a key determinant of devel-
oping a cardiovascular disease. (B) Network medicine allows for precision endophenotyping and phenotyping for individuals with similar clinical signs and 
symptoms. Using big data, patient-specific integrated networks (e.g., protein-protein interaction networks) can be constructed, and the consequences of 
perturbations owing to an individual’s unique genomic and molecular makeup, known as the reticulotype, can be explored. The reticulotype, in turn, also 
governs endophenotype and defines a patient-specific phenotype that may not have been evident previously.
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exciting advances, nonetheless, seem likely to build upon a perva-
sive problem in the interpretation of big data relative to precision 
medicine: providing context to results. For example, findings from 
state-of-the-art RNA-Seq methods now allow mapping of reads 
with exquisite accuracy and reproducibility, although personaliza-
tion of the meaning of outputs is unlikely to be resolved by a simple 
rank ordering of differentially expressed genes alone, which is cur-
rently a standard approach (70). The complexity of this challenge 
escalates when multiple omics-based platforms are integrated and 
these data are coupled with clinical descriptors mined from the 
EHR. Here, then, we propose three strategies for addressing this 
pervasive and growing problem.

First, acknowledging that limitations of the current GECP 
model welcome new paradigms, we propose that most cardio-
vascular diseases are complex and involve multiple overlapping 
endophenotypes (e.g., fibrosis, thrombosis, inflammation, apopto-
sis resistance, calcification) that converge to determine a specific 
clinical disorder (71). This approach reorganizes the genotype- 
endophenotype relationship from a model of reductive divergence, 
in which a specific mutation is responsible for all disease features, to 
one of convergence (Figure 3). This alternative approach provides 
greater flexibility for integrating genetic risk, environmental trig-
gers or modifiers, and crosstalk between molecular pathways, such 
as protein-protein interactions (PPIs), as the basis of cardiovascu-
lar (and all other) diseases. In this model, individual endopheno-
types are regulated by a network of PPIs, and critical proteins in 
this disease network that are modified by genotype, acquired fac-
tors, exposures, or a combination thereof serve to individualize the 
clinically observed pathophenotype (e.g., fibrosis-dominant HCM, 
calcification-dominant CAD) and, in doing so, may also provide 
novel insights into disease inception.

Second, perinatal, developmental, and epigenetic determi-
nants of biological makeup are often overlooked despite reproduc-
ible data supporting their importance for diseases of adulthood. 
In adults, a history of very low preterm birthweight is associated 
with a 40% increase in 2-hour insulin concentration following a 
standard glucose challenge and a 4.8-mmHg increase in systolic 
blood pressure and correlates positively with CAD incidence (72, 
73). These observations have been expanded more recently to 
include a positive association between preterm birth status and 
adult-onset pulmonary hypertension, among other cardiovascular 
diseases (74, 75). Alterations to the normal, predictive fetal adap-
tation response during the transition from the prenatal to the post-
natal environment, particularly metabolic reprogramming as well 
as more specific epigenetic mechanisms, have been proposed to 
account for these observations (76). It may be the case that unrav-
eling variance in metabolomic data in adult cardiovascular dis-
eases requires greater consideration of the developmental origins 
of disease, including transgenerational epigenetic factors from 
grandparents (77, 78). Although perinatal information may not be 
readily available at point of care, it should be noted that family his-
tory itself is generally underutilized in the process of individualiz-
ing the GECP relationship of a given patient.

Third, incorporation of data from validated personal health 
monitoring devices, including daily exercise dose, physiological 
(e.g., sleep) parameters, and detailed nutritional data, is likely to 
prove pivotal for clarifying acquired cues that inform individual-

ized cardiovascular profiles. Integrating data collected from var-
ious biospecimens is also an emerging strategy for refining the 
interpretation of endophenotypes (79), as insights from the thiol 
redox metabolome in saliva and urine (80), gas chromatographic 
analysis of expired volatile biomarkers (81), and the human- 
microbiome relationship (82) have already advanced knowledge 
on atherosclerotic vascular disease, MI, and stroke (83, 84).

Limitations and opportunities in using big data 
for the future of cardiovascular medicine
Limitations: identifying current roadblocks as avenues for future 
innovation. The advent of next-generation high-throughput omics 
technologies has allowed for deep molecular phenotyping of 
disease tissue concomitant with precision clinical phenotyping. 
Accessibility of disease tissue, and now liquid biopsy (85), formed 
the foundation for precision phenotyping in cancer by vertical 
integration of data from genomics to clinical laboratory and imag-
ing results to outcomes. This pipeline is viable, however, in only a 
limited number of cardiovascular diseases owing to the absence of 
routinely available cardiac and vascular tissue. In current practice, 
endomyocardial biopsy to access right ventricular tissue is limited 
mainly to transplant cardiology or new-onset fulminant HF where 
myocarditis is suspected, while left ventricular biopsy is rarely 
performed (86). Liquid biopsy of the heart, however, is already 
in routine use and is performed to detect myocardial injury and 
MI through the well-known measurement of troponin levels. The 
diagnostic and prognostic utility of liquid biopsy as a long-term 
solution for precision endophenotyping hinges on the ability to 
detect organ- and disease-relevant circulating cells, circulating 
organ-specific biomarkers such as microRNAs, and cell-free DNA 
that have a genomic profile that differentiates between cardio-
vascular health and disease (87, 88). Without access to disease 
tissue or relevant surrogates, accurate and informative detailed 
endophenotyping will remain incomplete.

The EHR is recognized as a repository of diverse longitudinal 
data sets that inform cardiovascular disease and incorporate labo-
ratory, imaging, biological, and descriptive data with heterogeneity in 
data collection frequency (89). As such, the EHR is primed for data 
mining. Despite this wealth of information, the EHR lacks stan-
dardization and a global universal language to facilitate interoper-
ability between investigators and across different platforms. The 
ability to harvest all data variables, including those not believed 
to be associated with the (patho)phenotype of interest (“orthog-
onal” features), from the EHR also depends on the depth of the 
analytic tools available, and is subject to the same data quality, 
reliability, and inconsistency issues observed with any large-scale 
data source (reviewed in ref. 90). Methodologies have been intro-
duced to validate error-prone EHRs, and it is likely that these will 
evolve as the data sources become increasingly large and complex 
(91). Thus, assimilating EHR data into precision phenotyping and 
cardiovascular care remains a key, ongoing challenge.

The increasing size of EHR data sets further necessitates the 
use of high-performance computing (supercomputing with parallel 
processing) with a move toward exascale computing: a computa-
tional system that can perform a quintillion 1018 calculations per 
second (92, 93). Such high-performance computing will accelerate 
and facilitate the use of machine learning and artificial (auxiliary) 
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intelligence (AI) in clinical medicine in general (94, 95), and car-
diovascular medicine in particular (96). Among its many useful 
applications from a big data perspective, AI has informed cardio-
vascular medical imaging analyses and enhanced phenotyping; 
clinical decision making and risk prediction; identification of novel 
phenotype clusters or cohorts; and genomic-phenomic analyses of 
complex data sets in which previously undisclosed relationships 
(some causative) may be revealed.

Although landmark clinical trials have informed endophe-
notyping and phenotyping in cardiovascular disease, continued 
demonstration of disease heterogeneity requires that the GECP 
relationship be continually refined. Available resources for improv-
ing precision phenotyping, however, are limited by what would 
now be considered incomplete or imprecise data from older sourc-
es or concluded trials, the inability to gather new data from these 
resources, and the absence of biospecimens to perform new or 
updated omics testing. Thus, historical studies and data sets may 
have limited applicability for future analyses. While big data ana-
lytics may overcome this limitation by compiling disparate data 
from a large-sized sample collective, this challenge also under-
scores the need to consider the future relevance of data and biospe-
cimens collected in clinical trial design and the creation of large-
scale inclusive and integrated studies at a (multi)national level.

Opportunities: clinical and integrated biological-clinical net-
works. Clinical networks, in which nodes and links are represented 
by physiological parameters and physiological effects, respective-
ly, have been reported on a small scale (97). Although compre-
hensive information on a larger “physiome” remains a goal, a 
modified approach using correlative networks has already proven 
useful in numerous venues, including comorbidity-driven sche-
mata that improve pediatric cardiovascular disease diagnostics, 
and reports that clarify the clinical heterogeneity of patients with 
chronic obstructive pulmonary disease, a common cardiovascular 
disease comorbidity (98, 99).

This approach may be particularly helpful in deciphering car-
diovascular diagnostic testing results, which often rely on branch 
chain logic to organize data. Such methods may overlook collec-
tions of interrelated variables that inform nuanced pathophysiol-
ogies or are effective for identifying patient subgroups. For exam-
ple, invasive cardiopulmonary exercise testing is a comprehensive 
test used to diagnose unexplained dyspnea and generates approx-
imately 100 measurements per patient that span seven physiolog-
ical parameters (e.g., central cardiopulmonary hemodynamics, 
respiratory gas exchange, and others). Current methods used 
to interpret these tests, however, typically focus on a very small 
subset of information, usually fewer than five variables (100). An 
exercise network was reported recently that included 39 nodes and 
98 links, providing comprehensive information on unexpected 
relationships between testing measurements that included vari-
ables across numerous different exercise parameters (e.g., lung 
function, right ventricular function). This network was reduced 
further to a group of ten variables, which, in turn, was effective 
for identifying four distinct patient subgroups defined by unique 
clinical, exercise, and outcome profiles. From this approach, a risk 
prediction model was assembled that was based on network med-
icine, and emerged as superior to probabilistic (traditional) linear 
regression methods for risk stratification (101).

These and other novel approaches to classifying patients that 
are based principally on a collection of related clinical param-
eters, as reported previously for HF with preserved ejection 
fraction (47), may be important for phenotype selection in for-
ward-thinking approaches to cardiovascular medicine clinical 
trial design. These features include enrollment criteria based on 
Mendelian randomization, quantitative trait loci, and adaptive 
trial designs using systems pharmacology–based methods that 
permit flexibility in patient enrollment, data collection sched-
ule, and endpoint selection matched to the ongoing collection of 
data across clinical and pharmacological fronts (102). Some of 
these approaches have already been proposed or considered in 
studies on lipid-lowering agents (103), and in rare cardiovascular 
diseases for which the “N-of-1 trial” may ultimately prove useful 
for patients with a specific biological profile matching a specific 
pharmacotherapeutic agent (104).

Big data’s progress in cardiovascular medicine: 
network medicine
Network medicine can be a useful analytical approach that com-
bines unique genomic features with unique clinical (endo)pheno-
types in a fully integrated way. For example, if one considers the 
universe of (physical) PPI (the interactome) as a global network 
template, we have shown that each disease has a unique discrete 
subnetwork (module) within it (105). Each patient with this dis-
ease, in turn, can be analyzed for genetic variants or differentially 
expressed genes (proteins) in this disease module, rendering the 
individualized disease module or reticulotype (106). Exploring 
this complex personalized module for functional variation pro-
vides a pathway for personalized precision medicine designed to 
restore (normal) network function, correct the reticulotype, and 
improve the clinical (endo)phenotype (ref. 106 and Figure 3).

Network medicine can also be a useful analytical approach for 
clarifying the molecular mechanisms that distinguish function-
al subtypes within a specific endophenotype (71), each of which 
has its own unique module in the PPI. For example, we recently 
developed an endophenotype network that regulates fibrosis (the 
fibrosome) in which we included PPIs stratified by differing colla-
gen biofunctionalities. We used wound healing and PAH as clin-
ical correlates representing adaptive versus pathogenic fibrosis, 
respectively (45). The network was refined to focus on PPIs reg-
ulated by the pro-oxidant and profibrotic hormone aldosterone, 
which is implicated in both fibrosis subtypes (107, 108). Between-
ness centrality, a network measure of node importance, identified 
the Cas protein NEDD9 as important in the phenotype transition 
between adaptive and pathogenic fibrosis in silico. Oxidative post-
translational modification of NEDD9 at Cys18 emerged as a novel 
molecular mechanism that regulates pathogenic collagen synthe-
sis with implications for PAH clinically. Overall, this line of inves-
tigation illustrates the importance of using unbiased but informed 
analytical methods (e.g., network medicine) to characterize the 
GECP relationship in a more nuanced, holistic way, devoid of the 
limitations of conventional reductionism (45).

Diversity in post-transcriptional mechanisms across endophe-
notypes has also been reported in PAH, beginning with our analysis 
of microRNA networks in PAH (109), wherein miR-21 was shown 
to regulate pathogenic signaling in the disease. Subsequently, 
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Conclusions
Cardiovascular diseases are complex heterogeneous pathopheno-
types that cannot typically be resolved by the reductionist concept 
of a singular GECP relationship. At each level, diversity in genotype, 
reticulotype, and endophenotype expression owing to modifying 
factors, such as the exposome, dictates clinical phenotypes, which 
themselves are heterogeneous. This concept is supported by the fact 
that it is the exception, not the rule, that genetic variants identified as 
disease-causing translate into a universal blueprint for an endophe-
notype and a specific cardiovascular disease. Increasingly large 
compendia of clinical trial data and matched omics data have not yet 
provided clarity for precision endophenotyping and clinical cardio-
vascular pathophenotypes, suggesting that we have grossly underes-
timated the sample size, data types, and analytics required to unravel 
heterogeneity in cardiovascular disease. Big data coupled with novel 
analytical approaches, such as network analyses, will have the capac-
ity to elucidate origins of heterogeneity in cardiovascular diseases 
and provide clarity to the genotype–endophenotype–cardiovascular 
disease relationship as espoused by network medicine (106, 114).
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the miR-130/301 family has been shown to affect PPI pathways 
involved in inflammation, vasomotor tone, apoptosis, and hypoxia  
responses (110). Others have shown that miR-34a-3p regulates 
mitotic fission, drawing an important connection between epi-
genetics and dysregulated metabolism. Indeed, the tendency for 
these and other microRNA families to induce a particular vas-
cular morphological feature may be influenced by endothelin-1, 
other vasoactive hormones, or hypoxia (111). Additional empiri-
cal data are needed, however, to establish the framework through 
which microRNAs or other post-transcriptional events interact 
with genetic risk factors to regulate complex disease features, for 
instance, plexogenic vascular lesions in PAH.

Using biological data to discern specific patient subgroups 
from an otherwise heterogeneous clinical population is an evolv-
ing next step toward personalized medicine. Unsupervised anal-
yses of plasma proteomic data from PAH patients reinforced the 
possibility of a common biological thread across patients as deter-
mined by protein clusters (from a k-means analysis) (112). These 
clusters were enriched for different inflammatory/immune path-
ways that were not affected by patient pulmonary vascular dis-
ease subtype or comorbidities, but corresponded to differences in 
clinical risk. Cluster assignment itself was not determined a priori 
by functional relationships between proteins from the perspective 
of the (functional) interactome, and, thus, additional opportunity 
may exist to refine further this approach for optimizing biological 
classification of patients. Such complementary and alternative 
methodologies are proposed in the NIH-sponsored Pulmonary 
Vascular Disease Phenomics Study (PVDOMICS), which aims 
to integrate multidimensional omics, clinical, and outcome data 
from a large cohort of pulmonary hypertension patients using 
informed and agnostic approaches (113).
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