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Introduction
The high-throughput omics technologies, based on next-gen-
eration sequencing and mass spectrometry, have considerably 
advanced in recent years, allowing molecular physiology studies 
of whole-tissue and organismal homeostasis in exceptional depth. 
The technological improvements include simplification of sample 
preparation workflows (1), enhanced instrument sensitivity (2), 
and upgraded computational analysis methods (3). In studies of 
mitochondrial biology, omics data have been especially benefi-
cial in identification of relevant genes, metabolites, and proteins 
(4, 5). Moreover, use of genomics, transcriptomics, proteomics, 
and metabolomics data has provided valuable insights into patho-
genic pathways involved in mitochondrial diseases, including 
molecular stress responses and major remodeling of the metab-
olome and proteome (6–10). Integration of different levels of 
these data (multi-omics) facilitates robust insights into complex 
molecular functional mechanisms by reinforcing complementa-
ry evidence from multiple levels (11). As mitochondrial functions 
are involved at multiple levels of regulatory pathways, the multi- 
omics approaches are expected to be of extensive value for eluci-
dating the pathogenic pathways in mitochondrial diseases, a dis-
ease group extending to almost all fields of medicine (Figure 1).

Mitochondrial diseases are the most common group of inher-
ited metabolic diseases, with exceptional clinical variability (12). 
Primary mitochondrial diseases, which arise from pathogenic 
mutations in the nuclear or mitochondrial genome and affect a 
variety of mitochondrial functions, have an estimated prevalence 
of 1:2000 to 1:5000 and can manifest at any age (13). Furthermore, 

secondary mitochondrial diseases include, for instance, neurode-
generative disorders, such as Parkinson’s disease, and mitochon-
drial metabolism also may contribute to cancer progression (14). 
The reasons why mitochondrial disorders show tissue-specific 
manifestations in almost any organ system are still poorly under-
stood. Sometimes a mitochondrial disease manifests in a newborn 
immediately after birth with, e.g., a multisystem disease or an iso-
lated cardiomyopathy with severe lactic acidosis, leading to death 
within a few days. Sometimes a healthy teenager develops acute, 
severe epilepsy and liver dysfunction and progresses to a severe 
neurodegenerative disease (12). Despite the scarcity of curative 
options, preliminary evidence suggests that sometimes interven-
tions modifying a critical target in metabolic pathways may ame-
liorate the disease, indicating the vast importance of molecular 
studies to reveal such targets (15, 16). For these studies, omics 
analyses have become a valuable tool, facilitating a wide-angle 
view on the complex mechanisms of tissue homeostasis.

Mitochondria are best known as the cellular power plants; via 
the process of oxidative phosphorylation (OXPHOS), they catab-
olize nutrients to provide cells with fuel, adenosine triphosphate 
(ATP). Mitochondrial DNA (mtDNA) encodes 13 proteins, which 
form the core components of the respiratory chain enzymes and 
two subunits of ATPase, as well as the transfer RNAs and ribosom-
al RNAs that mitochondrial ribosomes require to synthesize these 
proteins. However, the mitochondrial proteome mostly consists of 
approximately 1500 nuclear-encoded proteins that are translated 
in the cytoplasm and translocated into the mitochondria through 
elaborate and complex import machinery (17). These proteins are 
assembled with mtDNA-encoded OXPHOS-enzyme subunits to 
form functional enzyme complexes, involving coordinated inser-
tion of metal cofactors. Lipid synthesis and catabolism is dependent 
upon functional interactions between mitochondria and the peroxi-
somes and on physical contact sites between mitochondria and the 
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is very likely associated with the metabolic needs of the tissue 
at a specific point in time — and only sensitive omics can reveal 
such pathways. Therefore, animal models that faithfully replicate 
human disease mutations and manifestations are especially valu-
able, combined with human samples to study the relevance of the 
identified pathways in humans (Figure 1).

Omics analyses of animal models have provided completely 
novel — even unexpected — views of pathogenic pathways. For 
instance, metabolomics analyses have suggested that mitochon-
drial defects modify not only organellar functions but also whole 
cellular flux of metabolic pathways and affect nuclear transcrip-
tion and even nuclear genome maintenance (23). A recent study 
using transcriptomics, metabolomics, and in vivo imaging showed 
that the affected tissue can send hormone-like signals to the whole 
body; for example, in the case of mitochondrial muscle disease, 
FGF21 endocrine signaling rewires the metabolism of the brain 
(24). These studies highlight the importance of a global view of 
changes in the metabolome. Proteomics and transcriptomics can 
also provide complementary views.

To date, only a few animal models with primary mtDNA muta-
tions exist (25, 26). However, mtDNA mutagenesis and mtDNA 
depletion have been generated by modification of mtDNA mainte-
nance proteins encoded by the nucleus (27–29), and approximate-
ly 50 knockout mouse lines have been described for mitochondrial 
proteins encoded by the nuclear genome (29, 30). Knockout mice 
are excellent mechanistic models, but do not often serve as good 
disease models: even the most severe mitochondrial disease mod-
els often retain a low level of expression of the mutant protein, as 
full knockouts are embryonically lethal (with some exceptions) 
(31). Furthermore, tissues have crosstalk and send secreted fac-
tors to modulate organismal physiology. Therefore, tissue-specific 
postnatal conditional knockout strategies that lead to death of the 
targeted cell are non-optimal to assess disease physiology. Impor-
tantly, transgenic/knockin mice harboring homologous patient 
mutations have shown their value: the proteins of interest are well 
conserved in species, and the findings and physiology have been 
replicated remarkably well in human patient samples (8, 27, 32). 
However, to date, few of these models have been analyzed by inte-
grative multi-omics techniques.

endoplasmic reticulum (17). Furthermore, these events respond to 
nutrient status and stress signals, adding to the complexity of mito-
chondrial physiology. The metabolic activity of a given cell type 
tends to correlate with the number of mitochondria (18–20), being 
high for instance in cardiac muscle, nerve cells, sensory organs, skel-
etal muscle, and the liver. However, mitochondrial diseases rare-
ly affect all these tissues, and can be restricted even to one tissue, 
indicating that deficient ATP synthesis does not solely explain tis-
sue-specific disease manifestations. In addition to catabolic nutri-
ent breakdown, mitochondria are versatile players in anabolic cel-
lular functions, including biosynthetic one-carbon cycle, iron-sulfur 
cluster synthesis, and cellular stress responses (17). Mitochondria 
also contribute to apoptosis as well as calcium storage and signaling 
between cells (17, 21). The mitochondrial contributions to anabolic 
biosynthesis pathways are an intriguing mechanism to explain the 
tissue-specific disease manifestations (8, 9, 17).

Because of the variable manifestations, diagnosis of mito-
chondrial disorders is challenging. The development of next- 
generation sequencing technologies has been especially valuable, 
as a known genetic defect can be identified in up to 40% to 60% of 
the patients (22). The genetic diagnosis provides means for coun-
seling and sometimes directs treatment choices, and it also is the 
first step toward understanding the disease mechanisms. To facili-
tate the discovery of novel mechanisms contributing to the tissue- 
specific manifestations, a combination of multifaceted molecular 
and physiological analyses of carefully designed disease models 
and patient materials is needed.

In this Review, we describe how research related to human 
mitochondrial physiology and diseases has evolved in recent years, 
fueled by the increasing use of omics data. We discuss the pros-
pects of omics analyses for understanding the mechanisms of tis-
sue-specificity of mitochondrial disorders and discovering clinically 
relevant biomarkers, with special focus on metabolic biomarkers.

Animal models of mitochondrial function  
and disease
Owing to the complexity of mitochondrial functions, precise 
mouse models for mitochondrial diseases are invaluable tools 
for omics approaches. Tissue-specificity of metabolic disorders 

Figure 1. From mouse models and patient-derived samples to therapy development. Mitochondrial diseases are modeled in mouse knockouts of 
mitochondrial proteins or in mouse models that recapitulate patient mutations in conserved homologous amino acids. Patient samples are derived from 
biopsies, postmortem tissue, and induced pluripotent stem cells. Integrative analysis of genomics, transcriptomics, proteomics, and metabolomics data 
allows the prediction and validation of targets.
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the mitochondrial integrated stress response (ISRmt), a multifac-
eted tissue-specific response activated upon mitochondrial stress, 
such as in mitochondrial muscle myopathy patients (7, 8, 24, 34). 
Although some components of it overlap with the mitochondrial 
unfolded protein response (UPRmt), described mostly in studies 
of Caenorhabditis elegans (35), the key transcription factors and 
downstream targets differ (8–10, 24). The cellular response signa-
ture of ISRmt comprises changes in gene expression mediated by 
activating transcription factor 4 (ATF4), ATF5, and ATF3, result-
ing in de novo synthesis of the metabolic cytokines FGF21 and 
GDF15 and remodeling of the one-carbon and folate metabolisms 
and thus leading to increased serine and nucleotide pools. All 
these processes are collectively mediated by the upstream kinase, 
called mechanistic target of rapamycin complex 1 (mTORC1), 
and, strikingly, inhibition of mTORC1 with rapamycin reverses 
these molecular defects and skeletal muscle tissue-level patholo-
gy in a mouse model of mitochondrial muscle myopathy (34, 36). 
FGF21 and GDF15 are secreted from the affected muscle to circu-
lation and also show high specificity to mitochondrial disorders in 
humans, serving as sensitive and specific blood biomarkers espe-
cially for muscle-manifesting mitochondrial diseases (24, 37, 38).

Another comprehensive multi-omics study provided a glob-
al transcriptome, proteome, and metabolome analysis of ISRmt 
in human HeLa cells elicited by treating the cells with drugs that 
block mitochondrial translation, import, membrane potential, or 
OXPHOS (39). In addition to identifying ATF4 as the key regula-
tor of the mitochondrial stress–activated transcriptional program 
in cultured cells, the authors also described a global decrease in 
mitochondrial ribosomal protein levels and mitochondrial trans-

Multi-omics analyses reveal pathways in mitochondrial disease 
models. Recent studies have provided valuable examples of how 
multi-omics approaches can discover specific metabolic pathways 
and metabolites mediating mitochondrial dysfunction (summa-
rized in Table 1). Nikkanen et al. analyzed the cell transcriptome 
and metabolome in two mouse models with recessive and domi-
nant mutations in the mtDNA helicase Twinkle (encoded by Twnk), 
and in human patients carrying the same mutations. They identi-
fied a major remodeling of the anabolic folate-driven one-carbon 
cycle specifically in the affected tissues in mice, driving one-carbon 
units for purine and glutathione synthesis, suggesting therapy tar-
gets in the folate cycle as a means of treatment (8). A similar finding 
was reported by Bao et al. in human cells depleted for another gene 
essential for mtDNA maintenance, mtDNA polymerase-γ (encod-
ed by Polg) (9). Kühl et al. analyzed the cellular transcriptome and 
mitochondrial proteome of five different conditional knockout 
mouse models of genes essential for mtDNA expression in mouse 
heart tissue (Twnk, Tfam, Polrmt, Mterf4, and Lrpprc) (10) and 
similarly found remodeling of the one-carbon cycle, substantially 
reduced coenzyme Q (CoQ) levels, and decreased levels of multi-
ple mitochondrial CoQ biosynthesis enzymes (10). CoQ functions 
as an electron carrier from complexes I and II to complex III in the 
inner mitochondrial membrane and is a redox-active compound 
with antioxidant characteristics (33). Thus, these omics studies 
propose controlled therapy trials with CoQ derivatives for patients 
with mtDNA maintenance defects.

Identifying biomarkers and targets in mitochondrial disease mod-
els. A milestone achievement of multi-omics approaches in mito-
chondrial research was the identification of novel regulators of 

Table 1. In vivo and in vitro model studies using multi-omics approach

Manipulation Species Tissue Omics types Major finding Reference
Transgenic constitutive overexpression 
(50%–50% Tg vs. WT allele) of dominant 
Twnk mutation, homologous to patients 

M. musculus Muscle and heart Transcriptomics,  
metabolomics

One-carbon cycle changes nucleotide 
metabolic imbalance

Nikkanen et al. (8),  
Forsström et al. (24),  

Khan et al. (34)
Genetic knockdown of mitochondrial DNA 
polymerase-γ

Human Cell lines Transcriptomics, proteomics, 
metabolomics 

Mitochondrial one-carbon cycle  
is changed

Bao et al. (9)

Conditional knockout of Twnk, Tfam, 
Lrpprc, Polrmt, Mterf4 (cardiac and 
skeletal muscle)

M. musculus Heart Transcriptome,  
mitochondrial proteome

Perturbations in mitochondrial gene 
expression induce CoQ deficiency

Kühl et al. (10)

Rapamycin treatment M. musculus Liver, plasma, and 
brain

Transcriptome,  
metabolome

Administration of low dose of  
rapamycin improves survival in  
Tk2-mutant mice; changes in  

metabolism are observed

Siegmund et al. (44)

Mitochondrial drug treatment 
(doxycycline, actinonin, FCCP, MitoBloCK) 
of HeLa cells

Human HeLa cells Transcriptome, proteome, 
metabolome

Mitochondrial stress induces an ATF4-
dependent integrated stress response

Quirós et al. (39)

High-fat, high-sucrose diet to induce 
nonalcoholic fatty liver disease  
(NAFLD)

M. musculus (100 strains 
of the Hybrid Mice 

Diversity Panel)

Liver and adipose Genome, transcriptome Mitochondrial dysfunction drives  
NAFLD (Pklr and Chchd6 are  

novel regulators)

Chella Krishnan  
et al. (46)

Dietary changes (chow and  
high-fat diet)

M. musculus (40 strains 
of the BXD mouse genetic 

reference population)

Liver Genome, transcriptome, 
targeted metabolome 

and proteome (focus on 
mitochondria) 

UPRmt genes are coregulated in mice, 
and Dhtkd1 gene predicts levels of 
2-aminoadipate (an intermediate  

of lysine metabolism)

Wu et al. (47)

Dietary changes (chow and  
high-fat diet)

M. musculus (80 strains 
of the BXD mouse genetic 

reference population)

Liver Genome, transcriptome, 
proteome, metabolome 

Cox7a2l is identified as a regulator 
of mitochondrial respiratory chain 

supercomplex assembly

Williams et al. (53) 
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ments toward solving the lack of cellular and subcellular resolution 
(50). Finally, the combined use of CRISPR-based genetic screens 
with deep sequencing and other omics methods provides power-
ful ways of discovering new genes and pathways essential for cel-
lular health under mitochondrial stress. Notable examples of such 
approaches have uncovered genes that are essential for OXPHOS 
(51) and for survival upon inhibition of the respiratory chain (5).

Substantial challenges still lie ahead, not necessarily in our 
ability to generate omics data, but more in developing appropriate 
data analysis methods and biologically insightful computation-
al models that would provide candidate therapeutic targets for 
intervention. However, progress achieved in the last decade in dis-
covering novel metabolic pathways and therapeutic targets by the 
use of animal models and omics analyses holds great promise for 
future progress in development of treatment options for patients. 
The field is ready to start utilizing the data from model systems 
and translate the results to well-designed treatment studies.

Different approaches for multi-omics data 
integration
As reviewed in the previous section, in vivo and in vitro disease 
model studies have used multiple omics levels to gain novel bio-
logical insights into mitochondrial function and disease (summa-
rized in Table 1). The majority of these studies have investigated 
more than two levels of omics, most commonly the underlying 
genome with the transcriptome and, further, either with the pro-
teome and/or the metabolome. These data levels can be studied 
either separately with cross-comparison between the different 
omics results or in a more integrative fashion.

In general, integrative approaches can be broadly classified 
into supervised and unsupervised approaches (3). The supervised 
approaches typically use multiple omics levels to train a model 
with labeled training data to predict a phenotype — for instance, to 
distinguish a disease phenotype from control. The unsupervised 
approaches characteristically aim to integrate different omics lev-
els by clustering the omics features, such as expression levels of 
genes/proteins/metabolites or samples, including network-based 
methods. In this section, we focus on the commonly used unsu-
pervised approaches used in the studies presented in Table 1.

In order to gain insight into the genetic contributions to the 
regulation of molecular pathways and phenotypes, quantitative 
trait loci (QTL) analysis is commonly used. The associations of 
genetic loci or intervals with expression profiles of transcriptome, 
methylome, proteome, or metabolome are determined to define 
eQTLs, meQTLs, pQTLs, or mQTLs, respectively (Figure 2). The 
underlying mutations in mitochondrial diseases have been gener-
ated in animal models with known genotype information, allowing 
QTL analysis when combined with expression data. For instance, 
the GeneNetwork database contains whole-genome sequence 
data or high-density genotype information for the whole BXD 
family of mouse strains and their parents along with expression 
data for the key cell types, tissues, and organs (52). For the human 
genome, the Genotype-Tissue Expression Project (GTEx) is a 
large initiative that collects eQTL information on multiple human 
tissues (40). Williams et al. analyzed eQTLs, pQTLs, and mQTLs 
in BXD mice to identify genomic variants associated with gene, 
protein, or metabolite expression levels and thereby influencing 

lation and a global increase in amino acid biosynthesis as cellu-
lar response markers of ISRmt. Importantly, interrogating gene 
expression databases for humans (40) and mice (BXD strain; refs. 
41, 42) to identify ISRmt-induced genes revealed tight clustering of 
mitochondrial stress genes across multiple tissues in both humans 
and mice, highlighting the relevance of ISRmt processes identified 
in mouse models to human mitochondrial disease physiology.

Another mitochondrial myopathy, the muscle-specific and rap-
idly progressive mtDNA depletion syndrome, appears in infants with 
mutations in nuclear-encoded thymidine kinase 2 (TK2), encoding 
an enzyme that localizes to the mitochondria and is required in 
deoxyribose nucleoside triphosphate synthesis during mtDNA rep-
lication (43). Siegmund et al. found rapamycin to increase survival 
of a mouse model with a mutant Tk2 and identified tissue-specific 
metabolic changes based on large-scale transcriptomics analysis of 
brain and liver and metabolomics analysis of brain, liver, and plas-
ma (44). However, although rapamycin holds a promising avenue 
for treatment of some mitochondrial disease patients, it would 
require long-term treatment. Moreover, its side effects, including 
immunosuppression, make it a non-optimal treatment choice (45).

Integrating complex data from multiple reference strains and 
models. A particularly useful approach to explore genetic and envi-
ronmental factors underlying complex systems, such as metabo-
lism, is the analysis of omics data generated from a large number 
of different mouse strains, such as the Collaborative Cross mouse 
genetic reference population (42). Although this approach has not 
been used for mitochondrial disease per se, it has yielded interest-
ing new information about aspects of mitochondrial regulation in 
other physiological and disease settings. For example, the integra-
tive analysis of liver transcriptomes and whole genome sequences 
of approximately 100 different mouse strains revealed mitochon-
drial dysfunction and novel metabolic genes (Pkl2 and Chchd6) 
underlying nonalcoholic fatty liver disease (46). In another study, 
combined analysis of transcriptomic and proteomic data sets 
overlaid with genome sequences from 40 different mouse strains 
characterized coregulated genes of the mitochondrial UPRmt and 
further identified novel genes implicated in glucose homeostasis 
and diabetes (47). Looking forward, investigations of omics data 
sets generated using the mouse genetic reference population after 
treatment with different kinds of metabolic stressors (nutritional, 
genetic, or drug-induced) hold remarkable potential to discover 
novel mitochondrial pathways relevant to human disease.

Novel omics methods that reach beyond merely quantifying 
levels of transcripts and metabolites, reporting on posttransla-
tional modifications and signaling pathway activation, are con-
tinuously being developed (48, 49). For example, the methyl cycle 
is dependent on the folate cycle, which is remodeled by mtDNA 
maintenance defects; integrative approaches to study genome-
wide methylation and its cellular effects in disease models would 
be invaluable. Another important future development lies in the 
invention of new omics methods that enable analysis of activities 
in fine subcellular localizations: in mitochondria, but also in oth-
er organelles that intimately interact with the mitochondria, such 
as the endoplasmic reticulum, lysosomes, and peroxisomes. The 
recent generation and use of the transgenic MITO-Tag mouse line, 
which expresses a mitochondria-localized epitope tag that can be 
used for immunoisolation of mitochondria, are notable advance-
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networks in order to detect regulatory genes in the UPRmt pathway 
(47). The weighted gene coexpression network analysis (WGCNA) 
(57) has become a widely used approach to integrate genomics, tran-
scriptomics, and more recently metabolomics data. WGCNA groups 
genes/proteins/metabolites into modules based on coexpression 
patterns, considering also the network topology to reduce spurious 
connections. The modules have often been shown to be enriched 
for similar functions (58). While WGCNA has been used for time- 
resolved data, it has been shown that group averaging of individual- 
level expression measurements may worsen the reproducibility of 
the results; hence, an approach based on individual-level networks 
has been suggested to provide more reproducible results (59).

While most pairwise methods are not able to identify the 
directions of regulatory interactions, Bayesian networks consist 
of directed acyclic graphs, and hence they can represent causal 
regulatory relationships among nodes, e.g., genes or proteins or 
metabolites (60). However, the identification of a network topol-
ogy of a Bayesian network becomes challenging with respect to 
the number of nodes and connecting edges. In order to apply a 
Bayesian approach to large-scale network reconstruction, several 
methods have been developed, including approximation meth-
ods for network topology identification as well as methods reduc-
ing the search space (60, 61).

Identifying and interpreting metabolomic 
multibiomarkers using integrated multi-omics
Metabolomics aims to capture and quantify small-molecule 
metabolites (<1500 Da) detected within a given biological system. 
The metabolome can be considered the downstream product of 

cellular processes and overall mitochondrial function and metab-
olism (53). Their analysis led to a number of interesting findings, 
such as mapping of mitochondrial respiratory chain supercomplex 
assembly to the Cox7a2l gene.

QTLs can be studied either in cis, where a genetic variant 
affects expression of nearby genes, gene products, or methylat-
ed gene regions, or in trans, where the variant’s effect ranges fur-
ther away in the same chromosome or in other chromosomes. For 
example, a trans-eQTL analysis in the BXD mouse genetic refer-
ence population was used to identify the mitochondrial protein 
fumarate hydratase 1 (FH1) in the control of ATF4 activity, which is 
proposed to contribute to mitochondrial stress responses (24, 39).

Networks have become popular tools to present all associations 
of a system, such as all QTL associations (54). A network is represent-
ed as a graph where molecules and their relationships are depicted as 
nodes and edges, respectively. Nodes in a network are typically con-
nected based on various association or similarity measures, enabling 
also combination of different types of data. For instance, QTL results 
can be combined with protein-protein interactions (PPIs), which can 
be used to build networks together with expression or association 
data. Wang et al. applied a hidden Markov random field model to 
integrate QTLs with PPI information to improve prediction accuracy 
of disease-related genes (55). Kogelman et al. first built a coexpres-
sion network of QTL genes and subsequently incorporated known 
PPI information to prioritize the QTL results (56).

Overall, networks provide convenient means for data integra-
tion (Figure 2). For example, Wu et al. used robust Spearman correla-
tion measures to construct pairwise protein association networks 
and compared those with the corresponding transcript association 

Figure 2. Multi-omics data analysis workflow using integrative analysis approaches to identify a set of multibiomarkers for downstream validation. 
Integrative approaches commonly include clustering and association analysis of the omics features that can be inspected in networks. Enrichment and 
mapping of candidate multibiomarkers to known canonical pathways can be used to interpret the findings. Metabolic data with or without accompanying 
transcriptome-level data can be analyzed by GEMs that combine data from various sources to represent the metabolism of a given biological system. The 
illustration of genome-scale metabolic models is adapted with permission from Cell Systems (105).
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upstream cellular biological regulatory processes, with contribu-
tions from underlying layers of the genome, epigenome, transcrip-
tome, and proteome as well as environmental factors ultimately 
linking genotype to phenotype (62). In the following sections, we 
describe approaches that use multilayered omics data to identify 
and interpret metabolomic multibiomarkers.

Targeted versus global omics approaches. Approaches to study 
genomes, transcriptomes, proteomes, and metabolomes can be 
either targeted or global. For instance, targeted metabolomics 
aims to measure either the absolute concentrations (quantitative 
analysis) or relative intensities (semiquantitative analysis) of a 
predefined set of metabolites based on prior knowledge about the 
given biological system. In contrast, global metabolomics aims to 
measure all the small-molecule metabolites in a cell, fluid, tissue 
compartment, or organism in a semiquantitative manner.

Both targeted and global approaches can be applied to deter-
mine metabolic fingerprints, i.e., subsets of the metabolome that 
have potential to distinguish phenotypes (63). Such fingerprints can 
be used as multibiomarkers for different disease phenotypes (6), as 
well as for patient stratification (64), for drug discovery (65), and to 
monitor disease progression, treatment effect, and/or toxicity (66). 
Khan et al. recently demonstrated this use in wild-type mice and 
those with mtDNA deletions, showing that rapamycin shifted the 
metabolome considerably in the skeletal muscle. After treatment, 
the metabolomes of control and diseased mice were overlapping 
with each other and not with the original untreated cohorts, reveal-
ing specific rewiring of the metabolome by rapamycin (34).

Common to all omics data analysis workflows is the computa-
tionally intensive data preprocessing, followed by reduction of data 
complexity and interpretation of the results. Especially in the context 
of metabolomics, the data preprocessing tends to be more straight-
forward for the targeted approach than for the global approach. For 
the global approach, the preprocessing step of noise reduction is 
especially critical, as noise signals introduced by contaminants and 
artifacts need to be filtered from the biological signals. While the 
two most commonly used tools for noise reduction of metabolom-
ics data, MZmine 2 (67) and XCMS (68), perform relatively well, a 
recent study showed that there is still room for improvement to 
achieve high-quality data for downstream analyses (69).

Extracting functional insights from exceptionally complex data. 
Omics data, including metabolomics data, are typically extreme-
ly complex, and “top-down” methods consist most commonly of 
comparative analysis, enrichment analysis, and pathway mapping. 
Comparative analysis to determine differential abundance of 
metabolites between two groups of samples still often uses t test, 
although there is evidence (70) that tools including limma (71) or 
ROTS (72), which were originally developed for other omics data, 
can be beneficial to metabolomics studies.

Commonly used approaches to gain functional insights into 
metabolic fingerprints use overrepresentation or enrichment anal-
ysis (73), with or without quantitative data. These approaches rely 
on known annotations in public databases. The discovered set of 
metabolites, such as a metabolic fingerprint, is compared with pub-
licly available, functionally annotated metabolite data sets, such as 
metabolic pathways (74). The aim is to identify whether certain path-
ways contain a significantly larger number of fingerprint metabolites 
than expected by chance (Figure 2). The enrichment analyses most 

commonly use Fisher’s exact test or the hypergeometric distribu-
tion, but many other enrichment methods have been applied, such 
as Kolmogorov-Smirnov or Wilcoxon statistical tests (75, 76). While 
the first enrichment analysis tools for omics data were designed for 
gene expression studies, in recent years, several tools have been 
developed specifically for metabolomics data, such as MetaboAna-
lyst 4.0 (77) and IMPaLA (78). A recent comparison of the most com-
monly used tools for metabolite enrichment analysis showed that, in 
general, the different tools yielded consistent results (79).

The widely used metabolic pathway databases and metabo-
lite data collections include the Human Metabolome Database 
(HMDB) (80), the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) (81), the PubChem database (82), the Chemical Entities 
of Biological Interest (ChEBI) (83), the Metabolite and Chemical 
Entity Database METLIN (84), and the human metabolic recon-
struction Recon 2.2 (85) (and the most recent version, Recon3D; 
ref. 86), PubChem being the largest.

Challenges in these types of knowledge-based approaches relate 
most commonly to the quality and completeness of the annotation 
databases (87, 88). This is particularly a problem with metabolite 
disease sets, which have not yet reached the level of completeness 
that would allow disease-based enrichment analysis (79). However, 
there have been recent efforts to improve metabolite disease sets. 
For instance, the number of compounds with disease links in the 
newest version of HMDB has increased by 77% in comparison with 
the previous version (80). The recently published MetSigDis data-
base contains 6849 curated relationships between 2420 metabolites 
and 129 diseases across eight species, including human (89).

GEMs incorporate omics data sets into metabolic modeling. 
Genome-scale metabolic models (GEMs) are network-based mod-
els that aim to capture the chemical reactions and metabolites that 
represent the metabolism of a given biological system (90, 91). 
The involved gene-protein-reaction associations are determined 
on the basis of various sources, including databases, literature, 
and experimental measurements. Different omics and other mea-
surement data can be used in the modeling, including transcrip-
tomics data, metabolic constraints, localization information, and 
thermodynamic measurements (Figure 2). Recent efforts have 
reconstructed human metabolic models with all known metabol-
ic reactions, Recon3D (86) being one of the most comprehensive 
models. Recon3D encompasses 4140 unique metabolites, 12,890 
protein structures, 13,543 reactions, and 3288 associated genes. 
The metabolic reactions and their metabolites are distributed over 
nine cellular compartments, mitochondria being one of them.

In multicellular organisms, like humans, metabolic reactions 
that are activated in disease settings vary across different cells and 
tissues, and hence a general model needs to be tailored to construct 
cell type–specific metabolic models. These context-specific models 
aim to shed light on the underlying molecular basis of the metabol-
ic phenotype and can be used to predict regulatory mechanisms. 
Recently, several algorithms have been developed to extract con-
text-specific models. However, many factors, including algorithms’ 
parameter settings, influence the model content and predictive 
accuracy (92). An evaluation of six algorithms to construct cell line– 
and tissue-specific metabolic models concluded that, although the 
choice of the parameters affected the model content, the largest 
variability to the output came from the selected algorithm (92).
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MitoCore is a GEM of human central metabolism with two 
compartments, representing the cytosolic and the mitochondrial 
side. It encompasses 74 metabolites, 324 reactions, and 83 trans-
port steps between mitochondrion and cytosol. It incorporates 
both normal and abnormal physiological conditions, including 
hypoxia and mitochondrial diseases. The authors of MitoCore 
compared the model with the human metabolic reconstruction 
Recon 2 and found only partial overlap, mainly because of the 
different partitioning of metabolism between the cytosol and the 
mitochondrial matrix (93). This indicates the importance of res-
olution and context in measuring metabolites; as resolution and 
context-specificity improve, GEMs become increasingly com-
prehensive and accurate. However, already in their current state, 
GEMs have been useful in exploring and gaining new insights into 
metabolomics (94). Considering modeling of large-scale meta-
bolic data and its complexity, machine learning methods have 
proved useful in different steps of metabolism model building, 
including parameter determination and model optimization. Sev-
eral machine learning approaches for metabolism modeling have 
recently been developed (95).

Limitations in metabolomics data integration and interpretation. 
Associations between different omics layers are typically com-
plex. Although transcriptome-level changes are often reflected in 
the proteome, discordances exist. Furthermore, a large variety of 
post-transcriptional and posttranslational modifications modulate 
protein functions. Still, these different omics approaches often 
point to changes in similar key pathways, which can then be specif-
ically tested with traditional cell biological and protein biochemical 
means (8–10). It is also noteworthy that metabolite detection with 
aforementioned techniques only captures products or substrates 
of an enzymatic reaction (96): the steady-state levels of specific 
metabolites, which can reflect their increased use or decreased pro-
duction. Integrative omics can bring light to dynamics, as construc-
tion of pathways (e.g., high substrate, low enzyme protein levels 
indicating a putative block or bottleneck in the pathway) may give 
insight into usage versus synthesis. Use of stable isotope–labeled 
metabolites (such as 13C-glucose or glutamine) and analysis of their 
carbon flux to downstream pathways enable direct interpretation of 
pathway dynamics (97). Recently, computational approaches have 
been developed to incorporate experimental flux profiling to build 
differential flux maps at a genome scale and context-specifically 
(98). These examples indicate that interpretation of data requires 
multidisciplinary approaches and development of computational 
approaches specifically addressing the challenges (99).

While mass spectrometry–based (MS-based) detection of 
metabolites is more sensitive than the NMR-based approach, the 
diversity of metabolites with respect to their chemical properties 
remains a technical challenge also with MS-based detection (100). 
Furthermore, the approach may be (a) targeted, in which case a 
specific preselected set of metabolites is analyzed, in a semiquan-
titative manner, or (b) untargeted, giving hundreds, even thou-
sands of compounds, the nature of which is interpreted by their 
mass. As a result, the coverage of the total metabolome may be 
limited, and key metabolites may be missed. To overcome these 
limitations, progress has been made in improving the MS instru-
mentation and sample handling strategies, as well as metabolite 
identification and pathway analyses (101).

Conclusions and future directions
Thanks to the continuously improving omics technology, research 
on mitochondrial diseases is poised to be transformed. A growing 
body of studies on animal disease models highlights how differ-
ent layers of omics data and their integrative analyses can help to 
elucidate novel molecular mechanisms of mitochondrial function 
and disease. For instance, functional genetic screens coupled with 
deep sequencing enable identification of new genes essential for 
specific bioenergetic or metabolic aspects of mitochondrial func-
tion, which would otherwise be exceedingly difficult and costly to 
predict by a series of conventional experiments.

With tissue-specificity postulated to underlie the observed 
heterogeneity of clinical manifestations of mitochondrial disor-
ders, efforts have been undertaken to identify which factors deter-
mine the tissue-specificity of mitochondrial diseases. However, 
a large number of constitutive or cell type–specific knockouts for 
mitochondrial proteins remain to be investigated with respect to 
global changes in their tissue-specific gene expression and metab-
olome. Further, these analyses can be coupled with well-designed 
treatment studies with metabolic supplementation, drugs, or envi-
ronmental stressors that alter cellular metabolism. Ultimately, the 
study of the genome, transcriptome, proteome, and metabolome 
of mitochondrial disease patient cohorts is anticipated to reveal 
human disease–specific perturbations in gene expression and 
metabolism and uncover the range of genetic and environmental 
contributions to metabolic regulation. Finally, longitudinal stud-
ies of patient groups allow characterization of disease stage–spe-
cific clinical markers that can be used for follow-up of disease pro-
gression and therapy response.

The development of measurement technologies and com-
putational tools, including machine learning approaches, will 
undoubtedly facilitate new lines of research. For instance, ear-
ly progression of cellular stress can be investigated by cell type– 
specific morphological studies using still images or time-lapse vid-
eos (102, 103). Recently, a machine learning–based mitochondrial 
imaging approach was developed (102). Moreover, the technologi-
cal advances in single-cell technologies allow improved resolution 
of cell mechanisms that will further extend the understanding of 
mitochondrial disease mechanisms (101, 104).
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