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signaling network that is central to metabolic homeostasis.

Obesity, i.e., increased adipose tissue mass, is a major driving
force in insulin resistance and the pathogenesis of type 2 diabe-
tes (T2D) and metabolic syndrome. Over the past decade it has
become clear that this association depends not only on the balance
between energy intake and utilization, but also on the balance
between white fat, which is the primary site of energy storage, and
brown and beige adipose tissue, which are sites for energy expen-
diture (1, 2). On the other hand, lipodystrophy, i.e., complete or
partial loss of body fat, can also be associated with insulin resis-
tance and metabolic syndrome (3). These diametrically opposed
states illustrate the complex interaction between body fat and the
control of metabolism. In addition, some people appear metabol-
ically healthy despite obesity, and there is growing evidence that
this may reflect the fact that white adipose tissue is heterogeneous
and that different classes of adipocytes have differing metabolism
and ability to communicate with other tissues by secretion of pep-
tides, lipids, and miRNAs, which affect systemic metabolism dif-
ferently (4-6). In this Review, we will explore these relationships,
focusing on some of the newest aspects linking adipose tissue to
the control of whole-body metabolism.

Heterogeneity of adipose tissue

at multiple levels

Adipose tissue is classically divided based on anatomic location
and major cell type constituent (Figure 1A). Histologically, there
are three major types of adipose tissue: white adipose tissue
(WAT), which represents more than 95% of adipose mass; brown
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Over the past decade, great progress has been made in understanding the complexity of adipose tissue biology and its role in
metabolism. This includes new insights into the multiple layers of adipose tissue heterogeneity, not only differences between
white and brown adipocytes, but also differences in white adipose tissue at the depot level and even heterogeneity of white
adipocytes within a single depot. These inter- and intra-depot differences in adipocytes are developmentally programmed and
contribute to the wide range of effects observed in disorders with fat excess (overweight/obesity) or fat loss (lipodystrophy).
Recent studies also highlight the underappreciated dynamic nature of adipose tissue, including potential to undergo rapid
turnover and dedifferentiation and as a source of stem cells. Finally, we explore the rapidly expanding field of adipose tissue
as an endocrine organ, and how adipose tissue communicates with other tissues to regulate systemic metabolism both
centrally and peripherally through secretion of adipocyte-derived peptide hormones, inflammatory mediators, signaling
lipids, and miRNAs packaged in exosomes. Together these attributes and complexities create a robust, multidimensional

adipose tissue (BAT), which represents 1% to 2% of fat and, in
humans, occurs in small collections in the cervical, axillary, and
paraspinal regions; and beige/brite adipose tissue, which is dif-
ficult to quantitate but represents cells interspersed within WAT
that are capable of transforming into brown-like adipocytes fol-
lowing cold exposure or adrenergic stimulation. In contrast to
white adipocytes, which have a large unilocular lipid droplet,
brown and beige adipocytes have multilocular droplets and high
mitochondrial density for dissipation of energy through uncou-
pled mitochondrial respiration, a feature that could potentially
be used to combat obesity (1, 2). In vivo, the abundance of BAT
and, to some extent, beige fat can be estimated using PET/CT with
2-deoxy-2-[*F]fluoroglucose (1, 2), xenon-enhanced CT (7), and,
in mice, luciferase-based markers (8); however, these techniques
all depend on functional aspects of brown and beige fat and do not
necessarily represent the actual mass of tissue.

In addition, it is important to keep in mind that adipocytes only
make up a portion of the adipose depot and that adipose tissue con-
tains other cell types that contribute to its physiology and patho-
physiology, including preadipocytes, mesenchymal stem cells, vas-
cular cells, and inflammatory cells. While there is no specific marker
for preadipocytes, studies suggest that these may come from vascu-
lar mural cells, pericytes, and/or adventitial fibroblasts and include
adipogenic and fibrogenic subtypes (9-11). Fat also contains dipep-
tidyl peptidase-4-expressing (DPP4*) multipotent progenitors that
give rise to committed preadipocytes and CD142* cells, which have
anti-adipogenic properties (12). In addition, a fibroblast popula-
tion that secretes fibroblast-specific protein-1 (FSP1* fibroblasts) is
important for maintaining the preadipocyte pool (13).

Depot-specific differences between visceral and subcutaneous
adipose tissue. Anatomically, WAT is divided into visceral and
subcutaneous depots. Accumulation of visceral intra-abdominal
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A Figure 1. Heterogeneity of adipose tissue at mul-
tiple levels. (A) Human adipose tissue illustrating
the multiple depots of brown and white subcuta-
neous and visceral fat. The different roles, prop-
erties, and marker/development genes of these
depots are indicated. (B) Heterogeneity of adipose
tissue in the mouse, showing different depots of
white adipose tissue, each containing a mixture of
white adipocytes of different subtypes.
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WAT, i.e., central obesity, is associated with insulin resistance
and increased risk of metabolic disease, whereas accumulation of
subcutaneous WAT, i.e., fat in the hips and flanks, has no adverse
effect and may even be protective against metabolic syndrome
(14, 15). Indeed, studies have shown lower cardiovascular risk in
individuals with subcutaneous obesity, independent of whether
they have visceral obesity (16, 17). In rodents, transplantation of
subcutaneous WAT improves glucose metabolism, indicating that
these depot effects are mediated, at least in part, by cell-autono-
mous differences, not simply anatomical position (18, 19). Consis-
tent with this, subcutaneous preadipocytes have increased rates
of proliferation and lipid accumulation (20, 21), whereas visceral
adipocytes have increased rates of lipolysis and increased suscep-
tibility to apoptosis (22, 23). Many of these differences are due to
variations in gene expression, including the expression of develop-
mental genes (21, 24-26). Thus, subcutaneous adipocytes/pread-

Hormone/cytokine release

Differential . i .
function Expression of adipokines

Role in adipose inflammation

adipocytes within dermal layers are develop-
mentally distinct from subcutaneous WAT
(30) and play roles in wound healing, hair
development, and pathogen resistance (31).
Bone marrow adipose tissue (MAT) is also a
distinct depot and includes two distinct sub-
types (32): constitutive MAT (cMAT), con-
centrated in the distal skeletal bones, and
regulated MAT (rMAT), which is diffusely dis-
tributed in the spine and proximal limb bones
and is regulated in response to environmental
factors (33, 34). MAT plays important roles
in bone metabolism and osteoblastic activi-
ty (35). Interestingly, MAT is not depleted in
calorically deficient states and may be a major
source of circulating adiponectin (36, 37).

Intra-depot heterogeneity in adipose tissue.
A growing body of evidence indicates that
adipocytes, even within a single fat pad, are
heterogeneous in nature both genetically and
metabolically (Figure 1B and refs. 38-41).
This was initially suggested by a bimodal size distribution of adi-
pocytes in mice with fat-specific ablation of the insulin receptor
or hormone-sensitive lipase (HSL) (42, 43). Recent studies using
clonal cell analysis and single-cell RNA-Seq further highlight this
heterogeneity. Thus, white preadipocytes with low levels of CD9
are more adipogenic, whereas preadipocytes with high CD9 are
more profibrotic and proinflammatory (44). By combining clonal
analysis and lineage tracing, Lee et al. identified at least three
functionally and developmentally distinct subpopulations of white
preadipocytes in mice characterized by unique gene expression
profiles and high expression of the marker genes Wilms tumor-1
(Wt1), transgelin, and myxovirus-1 (Mx1), termed types 1-3, respec-
tively (45). Likewise, single-cell transcriptomic profiling of human
preadipocytes and mesenchymal progenitor cells (46) has identi-
fied up to four adipocyte subtypes, including a beige/brite thermo-
genic subtype and a subtype specialized for leptin secretion.
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Figure 2. Adipose tissue development and remodeling in health and disease.

From left to right, the figure illustrates the conversion of preadipocytes to mature

adipocytes followed by adipose expansion due to preadipocyte proliferation and hyperplasia of adipocytes followed by adipocyte hypertrophy, adipose tissue
inflammation, and changes in adipocyte hormone leading to insulin resistance. In lipodystrophy this process is also disrupted, leading to insulin resistance.

Lineage tracing has also provided insights into different devel-
opmental origins of white adipocytes. Using a tetracycline trans-
activator under the control of the PPARy gene locus, Tang et al.
demonstrated that preadipocytes can be found within the mural
cell compartment of the adipose vasculature (9). A subset of these
preadipocytes, marked by smooth muscle actin (SMA), was found
to be important in adipose tissue homeostasis later in life (47).
Transgelin (also called smooth muscle-22a) is also highly expressed
in vascular smooth muscle and pericytes, suggestive of similar
mural origin, and marks a subset of adipocytes in all depots (45,
48). Some adipose progenitor cells can be labeled by endothelial-
specific VE-cadherin-Cre, and the preadipocyte marker Zfp423 is
found in both mural and vascular endothelial precursors, further
supporting the idea of a vascular origin of preadipocytes (49).

The visceral mesothelium, which covers internal organs, has
been shown to contribute to adipocyte lineages in visceral and
cardiac adipose depots. This subpopulation of adipocytes has
reduced triglyceride accumulation and highly glycolytic metabo-
lism (45). Mesothelial cells are highly responsive to inflammatory
signals and secrete high levels of IL-6 and IL-8 following stimula-
tion (50, 51), suggesting a potential role for mesothelial-derived
adipocytes in the inflammatory response in visceral fat.

Most adipose originates from the mesoderm. Lineage tracing
using the paraxial mesoderm-specific genes Meox1, Pax3/7, and
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Myf5, originally thought to give rise only to brown adipocytes
and skeletal muscle, also gives rise to subsets of white adipocytes
in retroperitoneal and interscapular depots (52, 53). By contrast,
lateral plate mesoderm, marked by HoxB6, contributes to poste-
rior and ventral adipose depots, including inguinal, mesenteric,
and perigonadal WAT of mice (Figure 2B). Lineage tracing has
shown that Prx1-expressing progenitors gives rise to a majority
of subcutaneous, but not visceral, adipocytes (54, 55). A subset
of visceral white adipocytes may be bone marrow-derived from
hematopoietic lineages (56), although this has been challenged
(10). Finally, a subset of adipocytes in the face and neck are
derived from neural crest progenitors marked by Wntl and Sox10
(57, 58), although over time they are replaced by mesodermal-
derived adipocytes (59).

Brown and beige adipocytes also display intrinsic heterogene-
ity and a broad range of thermogenic competency (60-62). Sim-
ilarly, beige adipocytes demonstrate distinct subpopulations with
differences in the expression of regulators of lipid synthesis and
oxidation (63). Beige/brite adipocytes may also be derived from
different developmental sources, including a vascular smooth
muscle origin (64). Lastly, a developmentally distinct type of glyco-
lytic beige fat has been described (65). Molecular characterizations
of BAT in adult humans suggest that it may be composed of both
conventional brown fat cells and beige/brite adipocytes (61, 62).
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Lipodystrophy — clinical evidence of adipocyte
heterogeneity

Lipodystrophies encompass a range of genetic and acquired dis-
orders in which the body is unable to produce/maintain adipose
tissue, resulting in either partial or generalized loss of fat (66).
The effects of absence of adipose tissue on metabolism are strik-
ingly similar to those found in individuals with an excess of adi-
pose tissue, i.e., severe insulin resistance, hypertriglyceridemia,
hepatic steatosis, and metabolic syndrome (3, 67), indicating the
critical role of maintaining an optimal adipose tissue mass in the
regulation of metabolism. One common feature of obesity and
lipodystrophy is the diversion of excess calories into formation of
ectopic fat in other tissues, including liver, skeletal muscle, and
pancreatic f cells. This ectopic fat deposition is thought to directly
drive insulin resistance (68, 69). The concept that adipose tissue
provides protection against ectopic storage is supported by mouse
models overexpressing adiponectin or with knockout of collagen
VI, both of which allow for uninhibited expansion of adipose tis-
sue and improved glucose and insulin sensitivity (70, 71). This is
also observed in mouse models with genetic or pharmacological
inhibition of lipolysis and B-oxidation (72, 73). In addition to lipid
storage, the low levels of adiponectin and leptin in patients with
lipodystrophy may play important roles in mediating the severe
insulin resistance and metabolic complications. Leptin infusion
into lipodystrophic patients or mice improves insulin sensitivity
and decreases hepatic and circulating triglycerides (74, 75).

The abnormal distributions of adipose tissue seen in partial
lipodystrophies support the concept of developmental and func-
tional heterogeneity of adipose tissue. Dunnigan-type familial
partial lipodystrophy is characterized by the loss of subcutaneous
fat in the extremities and trunk, but an accrual of fat in the viscer-
al and head/neck regions (76, 77). Similarly, patients with muta-
tions in the p85a regulatory subunit of PI3K, which is critical for
adipocyte differentiation, are characterized by selective lipoatro-
phy of subcutaneous and facial fat (78), and patients with Barra-
quer-Simons syndrome have selective loss of upper body fat (79).
Although many of the genes implicated in various forms of partial
lipodystrophy, including those encoding PPARy, CIDEC, peril-
ipin-1, and AKT-2, are known to have critical roles in adipocyte
biology, why these lead to loss (or gain) of fat in particular regions
remains unknown (80-82). Finally, an acquired form of lipoatro-
phy associated with increased dorsocervical adipose tissue (buffa-
lo hump) is observed in treated HIV patients and has been attribut-
ed to changes in transcription factors and miRNAs involved in
differentiation and increased adipocyte apoptosis (83, 84).

Adipose tissue turnover

In terms of mass, WAT is the most variable and dynamic tissue in
the body, ranging from less than 2% to more than 70% of body
weight. The dramatic increase in fat mass in obesity can occur
through adipocyte hypertrophy, i.e., enlargement due to lipid
accumulation, and adipocyte hyperplasia, i.e., proliferation/dif-
ferentiation of preadipocytes resulting in increased numbers of
adipocytes (Figure 2 and ref. 14). In general, the total number of fat
cells is set during childhood and remains constant through adult-
hood (85, 86), but may be increased with early-onset obesity and
in some depots in adults by overfeeding (87).

REVIEW SERIES: MECHANISMS UNDERLYING THE METABOLIC SYNDROME

Taking advantage of changes in atmospheric *C, Spalding et
al. have shown that in humans approximately 10% of adipocytes
are replaced every year, regardless of age or obesity, whereas the
half-life of adipocyte triglycerides is only approximately 1.6 years
(86). Individuals with hypertrophic obesity tend to produce fewer
adipocytes than individuals with hyperplastic obesity (88). While
heavy water labeling suggests that adipocyte and triglyceride turn-
over may be higher (89), studies using multi-isotope imaging mass
spectrometry find similar results to the atmospheric *C studies
(90). Likewise, basal adipocyte turnover is very low in rodents, but
can be accelerated by high-fat diet (HFD) feeding (91). The effect
is depot-specific and higher in visceral versus subcutaneous fat
(92). Lineage tracing studies show that adipogenesis increases in
visceral fat within 4 weeks of HFD feeding (93). The full capaci-
ty for adipose tissue regeneration is observed in models in which
adipose tissue is acutely ablated, such as the Fat-AATC mouse
(in which apoptosis in adipose tissue is induced by activation of
caspase-8) (94) and mice with fat-specific inducible knockout of
the insulin receptor and IGF-1R (95). Both lead to rapid fat loss
followed by rapid induction of preadipocyte proliferation and dif-
ferentiation, producing new populations of brown and white adi-
pocytes to restore fat tissues and resolve the metabolic syndrome
within 10-30 days. These results suggest the presence of a feed-
back mechanism that attempts to maintain adipose tissue mass.

Adipocyte dedifferentiation. Recent work suggests that adi-
pocytes can also dedifferentiate back into pluripotent progeni-
tor cells in vivo in both healthy and pathological conditions (96,
97). Lineage tracing has demonstrated that “pink” adipocytes in
mouse mammary gland can give rise to mammary epithelial cells
during lactation, then revert back to adipocytes during involution
(98), although these reports have been challenged by others who
find that it is adipocyte progenitors that transition into epitheli-
al cells (99). Adipocyte dedifferentiation has also been linked to
some cancers, including breast cancer (100), suggesting the thera-
peutic potential of PPARy agonist treatment to revert some breast
cancer cells into adipocytes. Dedifferentiated white adipocytes
may also represent a source of stem cells to repair cardiac tissue
and spinal cord injuries (101, 102). Adipocytes in dermal WAT can
revert into myofibroblasts and contribute to wound healing (31).

Adipose tissue as an endocrine organ
Adipocyte hormones. Over the past two decades it has become clear
that in addition to their roles in energy storage, adipose tissues are
endocrine organs secreting a large number of factors with hormon-
al, autocrine, and paracrine properties (Figure 3). While a complete
review of these adipocyte hormones is beyond the scope of this
Review, many of them have important effects on metabolism.
Leptin is a 16-kDa protein produced primarily by white adi-
pocytes that acts on leptin receptors (LEPR/LepR) in the hypo-
thalamus to suppress feeding and increase energy expenditure
(103, 104). While LEPR has multiple isoforms, leptin’s metabolic
actions are mediated by the long-form LepRb, whose cytoplasmic
tail associates with the Jak2 tyrosine kinase to mediate intracel-
lular signaling. This engages multiple downstream molecules,
including SHP-2 and STAT3, which regulate ERK activation and
suppressor of cytokine signaling 3 (SOCS3) as well as PI3K (105).
Mice and humans with mutations in leptin or LEPR are massively
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Figure 3. Adipocyte hormones in intertissue
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obese and hyperphagic (106-108). In humans or mice with obesity
due to mutations in the leptin gene, treatment with recombinant
leptin restores near-normal health. Unfortunately, common forms
of human obesity do not respond to leptin, indicating leptin resis-
tance (108, 109). Physiologically, leptin may be most important
when its levels are low. In fasting or starvation, low leptin creates
a strong stimulus for increased food intake and decreased ener-
gy expenditure (110, 111), and leptin replacement during fasting
prevents starvation-induced changes in the hypothalamic-pitu-
itary axis through actions on expression of corticotropin-releasing
hormone, thyrotropin-releasing hormone, and gonadotropin-
releasing hormone (112, 113). Some peripheral tissues also express
LEPRs, contributing to leptin effects on bone, immune cells, and
angiogenesis. Leptin treatment lowers blood glucose in mouse
models of insulin-deficient diabetes, suggesting possible use in
type 1 diabetes; however, this has not been shown in humans (114).

Adiponectin is an approximately 30-kDa protein produced in
both white and brown adipocytes, with the highest levels in sub-
cutaneous WAT. Paradoxically, adiponectin levels are high when
fat mass is low and vice versa. Adiponectin circulates as a range
of multimers, from trimers to high-molecular weight (HMW)
dodecamers (115, 116). HMW adiponectin appears to account
for most of its effects (117). Adiponectin levels are markedly ele-
vated in patients with severe insulin resistance due to anti-insu-
lin receptor antibodies or insulin receptor mutations, suggesting
feedback between insulin resistance and adiponectin secretion
(118). Adiponectin acts to improve insulin sensitivity through two
atypical seven-transmembrane receptors. In muscle, adiponectin
acts through AdipoR1 to activate AMPK; in liver, adiponectin acts
on both AdipoR1 and AdipoR2 to suppress hepatic glucose out-
put (119, 120). Whether the latter effect occurs through AMPK or
increased ceramidase activity is controversial (121, 122). In addi-
tion, adiponectin can act in the CNS to stimulate appetite, reduce
energy expenditure, and perhaps affect neurodegeneration (123,
124); on endothelial cells, it affects angiogenesis (125, 126).
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In addition to leptin and adiponectin, adipose tissue produces
a number of other peptide adipocyte hormones linked to insulin
resistance and metabolic syndrome. Resistin is an approximately
12-kDa polypeptide. In mice, resistin is produced mainly by vis-
ceral WAT and was shown to induce insulin resistance through
a mechanism involving SOCS3 activation (127, 128). In humans,
resistin is produced mainly by macrophages, and its role in insu-
lin resistance is less clear (129). Retinol-binding protein 4 (RBP4)
is also produced by visceral adipocytes and other tissues, espe-
cially liver (130, 131). RBP4 can activate promote adipose tissue
inflammation, thus contributing to insulin resistance (130, 132).
Other peptide adipocyte hormones include apelin, which has
three active peptides potentially involved in regulating cardiovas-
cular function (133, 134); omentin, an insulin-sensitizing peptide
produced by non-adipocyte cells in adipose depots (135); vaspin,
a serine protease inhibitor thought to act as an insulin sensitizer
(135); nesfatin-1, a peptide derived from nucleobinding-2 suggest-
ed to potentiate glucose-induced insulin secretion from B cells
(136); DPP4, the peptidase that degrades GLP-1 (137); and aspros-
in, a cleavage product of the fibrillin-1 gene, which stimulates
hepatic glucose release (138).

Adipose tissue is also a source of multiple growth factors,
including FGF21, BMPs, TGF-B, VEGFs, and growth differentia-
tion factors. BMPs such as BMP2, BMP4, BMP7, and BMP8b not
only come from fat but also play important roles in fat. BMP2 and
BMP4 stimulate white adipocyte differentiation (139, 140), where-
as BMP7 is critical for brown adipocyte development (141). BMP4
also plays a role in development and browning of WAT, while
BMP8b enhances BAT’s response to f-adrenergic stimulation
(142). VEGF-A, a potent angiogenic factor, is expressed in both
white and brown adipocytes (143) and is important in sustaining
adequate circulation to adipose tissue (144, 145). Finally, adipose
tissue is a site for production of neurotrophic factors such as NGF,
Nrg4, and the semaphorins, which play a particularly important
role in innervation of BAT.
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Adipose tissue and inflammatory crosstalk
ininsulin resistance

Inflammation in adipose tissue is a characteristic of obesity and is
marked by secretion of multiple inflammatory cytokines and pro-
teins of the alternate complement system, as well as infiltration of
adipose tissue with macrophages and leukocytes. Evidence for a role
of inflammation as a component of T2D dates to the century-old
observation that high doses of sodium salicylate reduce blood glu-
cose in people with T2D (146). This occurs through inhibition of the
IKKB/NF-«B pathway and improvement in insulin sensitivity (147,
148). Epidemiologically, T2D is associated with increased levels of
markers/mediators of inflammation, including C-reactive protein,
IL-6, plasminogen activator inhibitor-1 (PAI-1), and TNF-a (reviewed
inref. 149). TNF-o expression is increased in adipose tissue in rodent
models of obesity and diabetes (150), where it induces insulin resis-
tance by impairing insulin receptor and insulin receptor substrate-1
(IRS-1) phosphorylation (151). Neutralizing TNF-a increases periph-
eral tissue glucose uptake in obese diabetic rats (150). Although one
clinical trial showed that targeting TNF-a can reduce hyperglycemia
in patients with metabolic syndrome (152), most studies report no
beneficial effect of TNF-o antagonism on insulin sensitivity (153,
154), questioning TNF-o’s role as the causative link between adipose
tissue inflammation and insulin resistance in humans.

In obesity, adipose tissue undergoes remodeling during which
macrophages infiltrate the tissue and secrete multiple proinflam-
matory cytokines. Increased expression of monocyte chemoat-
tractant protein-1 (MCP-1) is seen as early as 3 weeks after HFD
feeding in rodents; however, the number of macrophages in WAT
does not increase until 10 to 16 weeks later (155), suggesting that
adipose tissue inflammation could be an adaptive response to
insulin resistance rather than its cause. Indeed, immunocompro-
mised mice develop a degree of insulin resistance similar to that in
controls after short-term HFD feeding (156). Supporting the idea
that proinflammatory signaling in adipocytes may be required for
healthy expansion of visceral WAT, an impaired proinflammatory
response in adipocytes can lead to ectopic lipid accumulation and
glucose intolerance in mice on HFD (157). It has also been suggest-
ed that an ineffective inflammatory response in mesenteric WAT
could allow gut microbial-derived antigens to enter the circulation
and serve as triggers for systemic inflammation (157).

In addition to increased macrophage number, the polarity of
adipose tissue macrophages also changes during obesity progres-
sion (158). In obesity, there is an increase in M1 (classically activat-
ed) macrophages, while alternatively activated M2 macrophages
are reduced. This change is thought to occur through proinflamma-
tory mediators, such as lipopolysaccharide. T cells have also been
found in adipose tissue, and their composition changes as obesity
progresses, with increased infiltration of CD8* cytotoxic T cells and
decreased presence of regulatory T cells (159, 160). These chang-
es precede macrophage infiltration. Drugs that block the effects of
proinflammatory cytokines, such as CCL2 antagonists and IL-1R
antagonists, reduce systemic inflammation and improve glycemic
control in obese/diabetic rodents (161). Amlexanox, an inhibitor of
noncanonical IkB kinases IKKe and TBK1, also shows beneficial
effects in both rodents and humans (162, 163).

Emerging evidence suggests that adipose tissue fibrosis also
plays a role in the regulation of adipose tissue health (see ref. 164,
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this issue of the JCI). Clinical studies report a link between excess
extracellular matrix accumulation in subcutaneous WAT and
insulin resistance (165). Importantly, repression of adipose tissue
fibrosis by whole-body collagen VI knockout (71) or adipose tissue-
specific repression of profibrosis program (166) significantly
improves glucose metabolism, suggesting that adipose tissue fibro-
sis is more than just a morphological marker of dysfunctional fat.

Signaling lipids as adipocyte hormones

The normal physiology of lipid storage as triglycerides and release
as free fatty acids (FFA) and glycerol means that adipose tissue
is a site of high lipid flux. In addition, adipose tissue may secrete
specialized signaling lipid species that mediate communication
between adipose tissues and other tissues.

One class are the branched fatty acid esters of hydroxyl fat-
ty acids called branched fatty acid esters of hydroxy fatty acids
(FAHFAs) (167). These were discovered to be markedly elevated in
mice with Glut4 overexpression in adipose tissue and were associ-
ated with the improved metabolic phenotype in these mice (167).
FAHFAs may have varying fatty acid composition, including pal-
mitoleic acid, palmitic acid, or oleic acid as the fatty acid moiety,
and hydroxyl-palmitic acid or hydroxyl-steric acid as the hydroxyl-
fatty acid moiety, creating many isoforms. The effects of palmit-
ic acid-hydroxy-stearic acids (PAHSAs) have been studied in the
most detail. Serum PAHSA levels are decreased in insulin-resistant
humans and positively correlate with insulin sensitivity (167). Oral
gavage of 5-PAHSA and 9-PAHSA reduces blood glucose levels in
HFD-fed mice and improves glucose tolerance in both chow- and
HFD-fed mice (167). Chronic PAHSA administration in HFD-fed
mice improves insulin sensitivity and glucose tolerance (168).
Mechanistically, PAHSAs exert their beneficial effects through acti-
vating GPR120 and GPR40 (167, 168). Knockdown or blockade of
GPR120 reverses the enhanced insulin-stimulated glucose trans-
port in PAHSA-treated adipocytes (167). Blocking GPR40 inhibits
PAHSA augmentation of glucose-stimulated insulin secretion from
islets (167,168). Less abundant fatty acids, such as docosahexaenoic
acid (DHA), can also be incorporated into novel FAHFASs if provid-
ed externally (169). Both human and murine WAT can synthesize
several kinds of DHA hydroxyl-linoleic acid (DHAHLA). 13-DHA-
HLA demonstrates antiinflammatory properties and reduces LPS-
induced macrophage activation (169). Although enzymes respon-
sible for FAHFA synthesis have not been identified, four FAHFA-
specific hydrolases, AIG1, ADTRP, CEL, and Ces3/CES], have been
identified (170, 171). These inhibitors could serve as a new class of
antidiabetic and antiinflammatory drugs.

A second class of lipid adipocyte hormones are the diHOMEs,
products of linoleic acid metabolism, such as 12,13-dihydroxy-9Z-
octadecenoic acid (12,13-diHOME). Lynes et al. have shown that
12,13-diHOME is elevated in BAT versus WAT, and its levels in BAT
and serum increase upon cold exposure in humans and rodents (172).
12,13-diHOME then acts back on BAT to increase fatty acid uptake,
resulting in enhanced cold tolerance (172). Increased release of
12,13-diHOME in BAT has also been observed following exercise,
and its actions on skeletal muscle increase fatty acid uptake and oxi-
dation (173). Recently, 12,13-diHOME was also identified in periph-
eral nervous tissues in response to inflammatory pain (174). Thus,
induction of 12,13-diHOME in BAT might be part of a stress response.
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Exosomal miRNAs as novel adipocyte
“hormones”

miRNAs are small noncoding RNAs of approximately 22 nt pro-
duced by all cells of the body (175). miRNAs play important roles
in differentiation and function of brown, beige, and white fat (83,
176, 177). In addition, miRNA expression in adipose tissue differs
between obese and lean humans (178, 179), and levels of these
miRNAs variably correlate with BMI, glycemia, and insulin resis-
tance. The importance of miRNAs in adipose development/func-
tion is illustrated by the fact that adipocyte-specific knockout of
the miRNA-processing enzyme DICER (ADicerKO) or its partner
DGCRS8 (ADgcr8KO) in mice produces partial lipodystrophy and
insulin resistance (83, 180, 181).

There is growing evidence that fat is a major source of circu-
lating miRNAs and that miRNAs secreted by adipocytes, especial-
ly those in extracellular vesicles or exosomes, may participate in
intertissue communication and serve as novel adipose hormones.
Thus, ADicerKO mice exhibit significant decreases in about half of
circulating exosomal miRNAs (6). Circulating exosomal miRNAs
are also decreased in humans with genetic or HIV-related lipo-
dystrophy, and in the latter this is associated with a decrease in
DICER in adipose tissue (6, 84). These adipose-derived circu-
lating miRNAs can act on other tissues like liver and muscle to
modulate mRNA translation and stability (6, 182). An example of
an adipose-derived circulating miRNA contributing to the con-
trol of metabolic homeostasis is the regulation of liver FGF21 by
adipose-derived miR-99b (6). Accordingly, ADicerKO mice have
reduced levels of miR-99b in circulating exosomes and upregu-
lation of Fgf21 mRNA and its 3'-UTR reporter activity in liver (6),
which can be partially corrected by administration of exosomes
loaded with miR-99b. ADicerKO mice exhibit a wide range of
phenotypes reflecting dysfunction in other nonadipose tissues, as
well as systemic insulin resistance (83, 181), suggesting that this is
a generalized mechanism of intertissue communication.

Since adipose tissue is a major contributor to circulating
exosomal miRNAs, it is not surprising that circulating miRNAs
are altered in individuals with obesity, lipodystrophy, T2D, and
metabolic syndrome, and may contribute to insulin resistance in
these diseases (6, 183-187). In obese humans and rodents, there
is upregulation of miR-122, miR-142-3p, miR-192, miR-222, and
miR-378a and downregulation of miR-138 and miR-221 (188-190).
Among these, miR-222 is a negative regulator of insulin sensitivity
in adipocytes, where it reduces GLUT4-mediated glucose uptake
(191), and hepatocytes, where it targets IRS-1 (192). miR-222 levels
increase in blood (193, 194) and fat (195) with obesity (193-195).
Circulating miR-222 is both found in exosomes and associated
with HDL (196, 197). Mice injected with exosomes containing
miR-122 mimetics develop metabolic dysfunction with insulin
resistance and dyslipidemia (190). Likewise, miR-155 released
in exosomes from adipose tissue macrophages during inflamma-
tion has been shown to be transferred to adipocytes, myotubes, or
hepatocytes, where it worsens insulin resistance (182).

Adipose-derived exosomal miRNAs may also serve paracrine
functions. Thus, miRNA-containing vesicles released from large
adipocytes can be transferred to small adipocytes and stimulate
lipogenesis and adipocyte hypertrophy (198). Secretion of miRNAs
by adipocytes may also be regulated by FFA and H,0, (199),
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indicating that signals promoting lipid accumulation and insulin
resistance may spread from insulin-resistant adipocytes to newly
formed adipocytes. Conversely, amelioration of metabolic dys-
function by weight loss may be due in part to changes in circulat-
ing miRNAs (199). In addition, miRNAs differentially released in
the circulation of obese versus lean subjects may act on the TGF-
pathway, thus providing a link to nonalcoholic fatty liver disease
(200, 201). This may be part of a more complex regulatory loop in
which TGF-B induces adipocyte secretion of miR-130b, which is
then transferred to muscle, where it acts to reduce the expression
of PGC-1a, reducing muscle oxidative metabolism (202). Skele-
tal muscle is also responsive to miR-27a, which is present in adi-
pose-derived exosomes and induces insulin resistance via PPARy
repression (203). Serum levels of miR-27a are positively associat-
ed with obesity and insulin resistance in children and in mice with
obesity, indicating that miR-27a may be another modulator of
obesity-associated insulin resistance (203).

Inflammation in adipose tissue and liver may also be mediated,
in part, by circulating adipocyte-derived exosomes. Mice inject-
ed with extracellular vesicles from adipose tissue of obese mice
develop increased levels of circulating IL-6 and TNF-o and develop
insulin resistance (204). This appears to be controlled by miR-155,
which can target SOCS1 in macrophages, promote STAT1 signaling,
and suppress STAT6 signaling, thereby promoting M1 macrophage
polarization (205). Conversely, it has been shown that extracellular
vesicles from adipose tissue macrophages of obese mice, which con-
tain miR-155, can induce insulin resistance when administrated to
lean mice or incubated in vitro with adipocytes, myocytes, or hepato-
cytes, and knockout of miR-155 in HFD-fed mice results in improved
insulin sensitivity (182). This effect is reversed by transplantation of
WT bone marrow, further supporting a role for exosomal miRNAs in
adipocyte-macrophage crosstalk (206, 207). Exosomes secreted by
adipose-derived stem cells may also contribute to effects on macro-
phages (208) and vascular integrity in obesity (209, 210). Together
these data indicate that adipose tissue is a major contributor to cir-
culating exosomal miRNAs and that adipose-derived exosomes may
possess hormone-like functions, communicating with other tissues
to coordinate metabolic homeostasis and energy balance. When
these systems are perturbed, they may also contribute importantly
to the pathophysiology of metabolic diseases.

Targeting adipose tissue to treat metabolic
syndrome

From the evidence above, it is clear that targeting adipose tissue and
its signaling molecules can provide unique opportunities to better
understand the pathophysiology and treatment of obesity, insu-
lin resistance, T2D, and metabolic syndrome. While considerable
effort has already been made to target the inflammation in adipose
tissue as a component of insulin resistance and some work has been
devoted to finding AdipoR agonists, there remains great opportu-
nity to find mimics or antagonists of other adipose hormones. This
includes not only the peptide adipose hormones, but also bioactive
signaling lipids secreted by white and brown fat. Adipose-secreted
exosomal miRNAs might also provide new diagnostics to distin-
guish metabolically healthy versus metabolically unhealthy obesity
and new approaches to deliver miRNAs that target genes in liver and
other tissues to regulate metabolic syndrome. Finally, understand-
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ing the heterogeneity of adipose tissue — both from the perspec-
tive of white, brown, and beige fat and within WAT itself — offers a
unique opportunity to develop drugs that can change distribution of
adipose tissue as well as shift it from a metabolically unhealthy sub-
type to a more metabolically healthy subtype. With modern tech-
nologies, all of these opportunities are within the reach of reality.
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