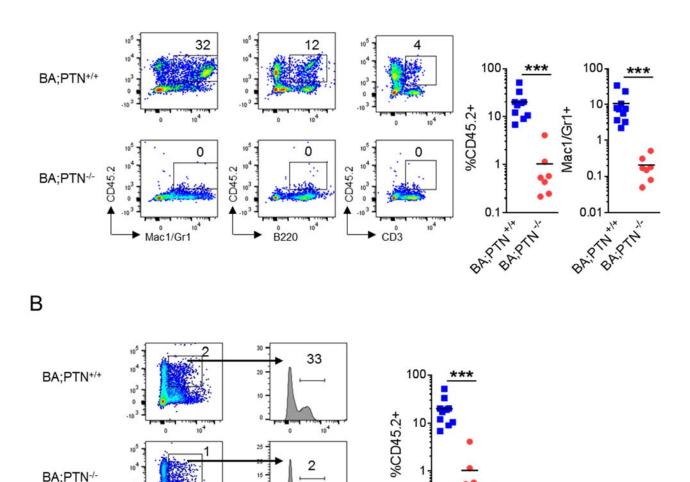

Supplemental Data

А



Supplemental Figure 1. PTN deletion decreases myeloid skewing in BA mice.

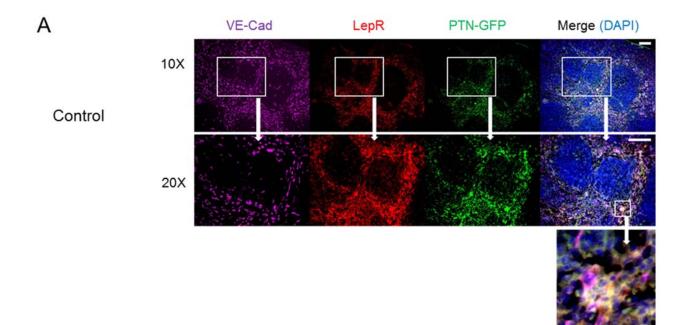
(A) Representative flow cytometric analyses of Mac1⁺/Gr1⁺ myeloid cells, B220⁺ B cells, and CD3⁺ T cells in the spleens of BA;PTN^{+/+} mice, BA;PTN^{-/-} mice and C57BL/6 mice (controls) at 12 weeks post – BCR/ABL induction. (B) Percentages of myeloid cells, B cells and T cells at 12 weeks post – BCR/ABL induction in the PB, BM, and spleens of the mice groups shown (*n*=6/group). Tukey's multiple comparison test for two-way ANOVA. * *P* < 0.05, ** *P* < 0.01, *** *P* < 0.001.

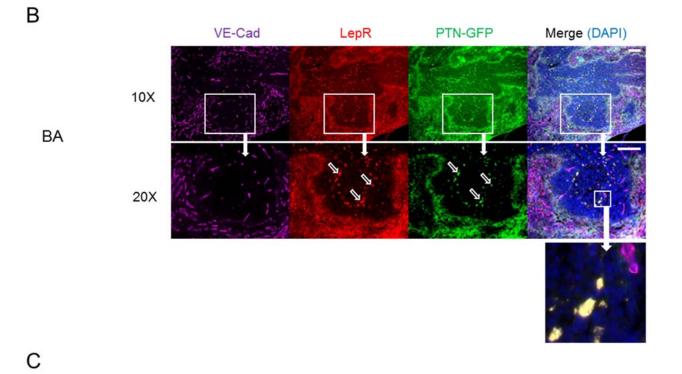
Supplemental Figure 2. PTN deletion decreases CML stem cell enrichment in BA mice. (A) Representative flow cytometric analyses of KSL cells, CD150⁺CD48⁻/41⁻KSL cells and myeloid progenitor cell populations in the spleens of BA;PTN^{+/+} mice and BA;PTN^{-/-} mice at 12 weeks post – BCR/ABL induction, and controls. FcγR⁺CD34⁺ cells are GMPs, FcγR⁻CD34⁻ cells are MEPs, and FcγR⁻CD34⁺ cells are CMPs. (B) Numbers of CD150⁺CD48⁻KSL cells in the spleens of BA;PTN^{+/+} mice, BA;PTN^{-/-} mice and controls (n=5-10/group). Tukey's multiple comparison test for one-way ANOVA. (C) Numbers of MEPs, CMPs, and GMPs in the groups shown at 12 weeks post-BCR/ABL induction (*n*=5/group). Tukey's multiple comparison test for two-way ANOVA. * *P* < 0.05, *** *P* < 0.001.

BAPTH Supplemental Figure 3. PTN deletion decreases CML stem cell repopulating capacity. (A) At left, representative flow cytometric analysis of donor CD45.2⁺ myeloid, B cell, and T cell engraftment in the spleens of recipient (CD45.1⁺) mice at 10 weeks following transplantation with KSL cells from BA;PTN^{+/+} mice or BA;PTN^{-/-} mice. At right, percentage donor CD45.2⁺ cells and donor myeloid cell engraftment (n=7-9/group); 2-sided Student's t test. (B) At left, representative flow cytometric analysis of donor CD45.2⁺ cell engraftment at 10 weeks within the splenic KSL population in recipient mice transplanted with KSL cells from BA;PTN+/+ mice or BA;PTN^{-/-} mice. At right, %CD45.2⁺KSL cells in the spleen of the recipient mice shown (*n*=7-9 per group); 2-sided Student's t test. **P < 0.01, ***P < 0.001.

0 10⁴ CD45.2

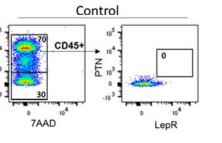
0.1

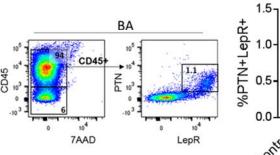

BAPTIN

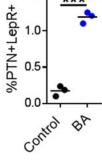

15

CKit

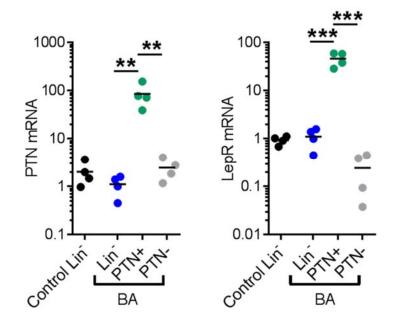
Sca-1

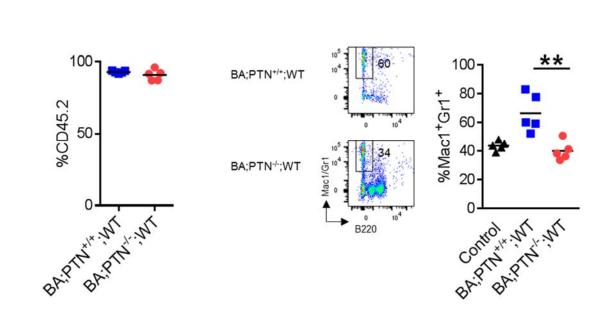

A





CD45

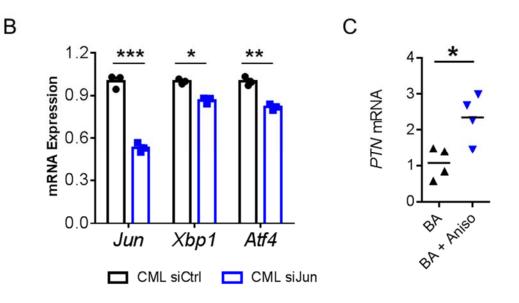




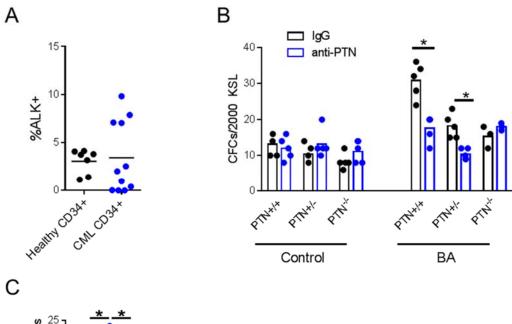
Supplemental Figure 4. A subset of CD45⁺ cells express PTN and LepR in BA mice.

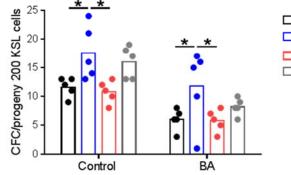
(A) Cross sections of spleens of PTN-GFP control mice are shown. Magnification of each image shown at left. In control mice, PTN expression (green) co-localized with VEcad⁺ ECs (magenta) and LepR⁺ stromal cells (red) in the red pulp region. Nuclei were counterstained with DAPI. The inset box shows a further magnified, merged image revealing the co-localization of PTN expression with LepR⁺ cells and VEcad⁺ ECs (yellow). (B) Cross sections of BA;PTN-GFP mice (BA) at 12 weeks following *BCR/ABL* induction. Corruption of the normal splenic architecture is demonstrated. In the highlighted region (inset box, 10x), PTN expression co-localized with LepR⁺ cells (white arrows, 20x images) and was distinct from VEcad⁺ vascular structures. The magnified, merged image displays PTN-expressing cells co-localized with LepR expression (yellow). (C) Representative flow cytometric analysis of expression of PTN and LepR in the splenic CD45⁺ population of control mice and BA mice at 12 weeks following *BCR/ABL* induction. At right, percentages of PTN⁺LepR⁺ cells within the CD45⁺ population are shown for each group (*n*=3 mice/ group); 2-sided Student's t test. ****P* < 0.001.

Supplemental Figure 5. PTN⁺ cells in the spleen of BA mice are enriched for *LepR* **expression.** At left, *Ptn* gene expression is shown in the cell populations shown from the spleens of PTN-GFP (control) mice and from BA;PTN-GFP mice (BA) at 12 weeks post-*BCR/ABL* induction. At right, *LepR* gene expression is shown in the same splenic cell populations (*n*=4 mice/group); Dunnett's multiple comparison test for one-way ANOVA. ** *P* < 0.01, *** *P* < 0.001.

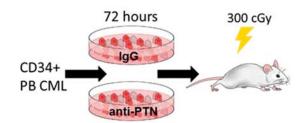

В

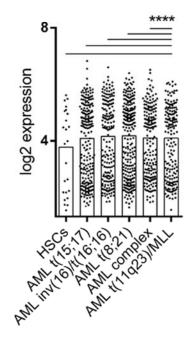
А


Supplemental Figure 6. Hematopoietic cell – specific deletion of PTN abrogates CML pathogenesis in vivo. (A) Donor hematopoietic cell engraftment at 4 weeks post-transplant in chimeric mouse model (n=5/group). (B) At left, representative flow cytometric analysis of Mac1⁺/Gr1⁺ myeloid cells in the BM of wild type (WT) mice transplanted with BM cells from BA;PTN^{+/+} mice or BA;PTN^{-/-} mice, at 16 weeks post-BCR/ABL induction. At right, percentages of Mac1⁺/Gr1⁺ cells in the BM of BA;PTN^{+/+};WT mice and BA;PTN^{-/-};WT mice are shown, compared to adult B6.SJL mice controls (*n*=5/group). Student's t test. ** *P* < 0.01.


,	۱.
 L	7

Gene Symbol	Fold Change (BA;PTN-/- vs BA;PTN+/+)	p-value
Jun	-2.2	0.002
Jak2	-1.58	0.004
Mlh1	-1.59	0.012
Lmo2	-1.92	0.014
ll12a	-2.98	0.023
Cdc42ep3	-1.54	0.025
Cdkn1a	-1.85	0.033
Grb2	-1.32	0.040
Akt1	-1.73	0.046


Supplemental Figure 7. PTN induces *Jun* and *UPR* gene expression. (A) The table shows the genes downregulated by at least 1.5-fold in KSL cells from BA;PTN^{-/-} mice versus BA;PTN^{+/+} mice (P < 0.05). *Jak2* = janus kinase 2, *Mlh1* = MutL homologue 1, *Lmo2* = LIM domain only 2, *IL12a* = interleukin-12 alpha, *CDC42ep3* = Cdc42 effector protein 3, *Cdkn1a* = cyclin-dependent kinase inhibitor 1a; *Grb2* = growth factor receptor bound protein 2, *Akt1* = serine/threonine protein kinase 1. (B) Expression of *Jun*, *Atf4* and *Xbp1* in splenic KSL cells from BA mice at 72 hours following treatment with *Jun* siRNA or sham siRNA (*n*=3 mice/group), Sidak's multiple comparison test for two-way ANOVA. (C) PTN mRNA levels in KSL cells from BA mice at 2 hours following anisomycin – induction of *Jun* expression (n=4/group). Student's t test. *P < 0.05, **P < 0.01, ***P < 0.001.



D

PTN

Supplemental Figure 8. PTN inhibition differentially suppresses CML colony formation. (**A**) Scatter plot of %ALK⁺CD34⁺ cells from healthy adults and CML patients (*n*=5 healthy, *n*=12 CML). (**B**) Numbers of CFCs per 2 x 10³ KSL cells from PTN^{-/-}, PTN^{+/-} and PTN^{+/+} mice (Control) compared to that from the same dose of KSL cells from BA;PTN^{-/-}, BA;PTN^{+/-} and BA;PTN^{-/-} mice, treated with 10 µg/ml anti-PTN or IgG (*n*=3-5/group). (**C**) Numbers of CFCs generated from KSL cells from C57BL/6 mice (Control) or BA mice treated with 200 ng/ml PTN with or without 5 ug/ml anti-PTP ζ (a-PTP ζ) or 3 nM TAE684 (ALK inh)(*n*=5/group). (**D**) Human CML xenotransplantation model in NSG mice. (**E**) PTN gene expression in human HSPCs (*n*= 24), AML t(15;17)(*n*=217), AMLinv(16)(*n*=189), AML (8;21)(n=241), AML complex (*n*=192), AML t(11q23)/MLL (*n*=172). Sidak's multiple comparison test for two-way ANOVA for (**B**) and Dunnett's multiple comparison test for two-way ANOVA for (**C**). **P* < 0.05, **** *P* < 0.0001 for normal HSPCs versus each AML subtype.

Supplemental Table 1. Flow cytometry antibodies

Antibody	SOURCE	Catalog Number
Endothelial and Leptin Receptor Cell Identification		
Anti-mouse VE-Cadherin AF647	Biolegend	138006
Anti-LEPR / Leptin Receptor Antibody PE	LifeSpan	LS-C261834
7 AAD Chaining Colution	Biosciences BD Biosciences	550005
7-AAD Staining Solution	BD Biosciences	559925
Donor/Host Hematopoietic Cell Discrimination		550770
CD45.1 PE Mouse anti-Mouse	BD Biosciences	553776
CD45.2 FITC Mouse anti-Mouse	BD Biosciences	553772
Mature Hematopoietic Lineages Analysis		
B220 (CD45R) APC-Cy7 Rat Anti-Mouse	BD Biosciences	552094
Gr-1 (Ly-6G and Ly-6C) PE Rat anti-Mouse	BD Biosciences	553128
Mac-1 (CD11b) PE Rat anti-Mouse	BD Biosciences	557397
CD3 V450 Rat Anti-Mouse Molecular Complex	BD Biosciences	561389
Hematopoietic Stem and Myeloid Progenitor Analy	sis	
CD41 Alexa Fluor 488 anti-mouse	Biolegend	133908
CD150 Alexa Fluor 647 Rat anti-Mouse	BD Biosciences	562647
c-kit (CD117) PE Rat anti-Mouse	BD Biosciences	553355
Sca-1 (Ly-6A/E) APC-Cy7 Rat anti-Mouse	BD Biosciences	560654
V450 Mouse Lineage Antibody Cocktail	BD Biosciences	561301
CD34 FITC	BD Biosciences	553733
CD16/32 (Fcγ R III/II) APC	Biolegend	101325
CD48 AF488	Biolegend	HM48-1
Human Hematopoietic Cell Analysis		
Human CD45 V450	BD Biosciences	560367
Human CD33 PE	Biolegend	366608
p-PERK Analysis		
Anti-PERK (Phospho T982)	Abcam	ab192591
Alexa Fluor 488 labeling kit	ThermoFisher	A20181