Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

Improving CAR T cell immunotherapy–mediated remissions for pediatric leukemia
David M. Barrett
David M. Barrett
Published April 15, 2019
Citation Information: J Clin Invest. 2019;129(5):1842-1844. https://doi.org/10.1172/JCI128743.
View: Text | PDF
Commentary

Improving CAR T cell immunotherapy–mediated remissions for pediatric leukemia

  • Text
  • PDF
Abstract

Chimeric antigen receptor (CAR) T cells are an effective therapy for relapsed or refractory pediatric B cell leukemia. Analysis of the starting material, the T cells collected from the patient prior to CAR manufacture, reveals possible biomarkers of cells destined to perform poorly in patients. Long-term follow-up shows that long periods of B cell aplasia, a marker of in vivo CAR activity, are associated with longer remission but also a higher chance of antigen-negative relapse. The role of transplantation as consolidative therapy is unclear in this nonrandomized data, but clearly warrants further study.

Authors

David M. Barrett

×

Usage data is cumulative from August 2021 through August 2022.

Usage JCI PMC
Text version 650 72
PDF 102 23
Figure 60 0
Citation downloads 6 0
Totals 818 95
Total Views 913

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts