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PTCy improves allogeneic bone 
marrow transplant outcomes
Allogeneic hematopoietic stem cell trans-
plantation (alloHSCT) remains the most 
effective curative therapy for patients 
with high-risk hematologic malignancies. 
Unfortunately, the development of acute 
and chronic graft-versus-host disease 
(GVHD) continues to affect the majority 
of transplant patients, causing high mor-
bidity and mortality and consequent ther-
apy failure. Administration of high-dose 
posttransplantation cyclophosphamide 
(PTCy) following alloHSCT has dramat-
ically changed the therapeutic landscape 
of alloHSCT. PTCy has allowed almost 
universal access to the alloHSCT proce-
dure through haploidentical donor use 
without a parallel increase in GVHD inci-
dence or other immunosuppression-relat-
ed toxicities (1, 2). Moreover, regardless 
of the degree of HLA matching or stem 

cell source for alloHSCT, PTCy effectively 
ablates chronic GVHD (1–5), thus enabling 
permanent discontinuation of immuno-
suppression in the majority of patients 
within the first year after transplanta-
tion (2, 6). In addition to being protected 
against GVHD, PTCy recipients maintain 
antiinfectious and antitumor responses 
(6–9), thus not compromising survival out-
comes (10–12).

Despite clinical advances with the 
use of PTCy to improve alloHSCT out-
comes, the mechanistic underpinnings of 
PTCy efficacy are not fully understood. 
Until recently, insight into PTCy action 
has been primarily driven by decades-old 
data obtained from experiments in MHC-
matched murine models of skin allograft 
rejection (13, 14), in which selective elim-
ination of alloantigen-reactive CD4+ but 
not CD8+ T cells was critical for prevent-
ing rejection (15). These highly contex-

tual observations have not been tested in 
alloHSCT models, in which more complex 
immune interactions are at play, and Tregs 
have recently been described as essential 
for the GVHD-protective benefits of PTCy 
(16, 17). Now, in this issue, Wachsmuth 
et al. demonstrate that previously pro-
posed preferential elimination and clonal 
deletion of alloreactive T cells following 
cyclophosphamide use (13, 14) are not the 
dominant mechanisms needed for the 
beneficial effects of PTCy after alloHSCT, 
while solidifying the evidence supporting 
Treg importance in mediating long-term 
posttransplant tolerance and GVHD con-
trol with PTCy (18).

Tregs are essential
Wachsmuth et al. performed meticulous-
ly executed studies in multiple models of 
murine transplantation, with a particular 
focus on alloantigen-specific responses 
following PTCy to reach their conclu-
sions. However, some limitations to the 
study remain. Authors base their findings 
mostly on a model of haploidentical trans-
plantation (B6C3F1→B6D2F1) in which 
the pathogenic role of CD4+ versus CD8+ 
T cells remains undefined, thus limiting 
complete interpretation of study results. 
This is particularly relevant when super-
antigen responses are considered, as CD8+ 
T cell responses are of questionable sig-
nificance in mice and more so in humans. 
Nevertheless, experiments investigating 
the fate of transgenic 2C and 4C T cells 
unequivocally demonstrated the limited 
impact PTCy has on alloreactive T cell 
proliferation, expansion, and persistence, 
despite parallel GVHD protection (though 
the latter was documented only for the 2C 
T cells). Wachsmuth et al. did not observe 
any measurable effects of PTCy on the 
posttransplant profile or recovery kinetics 
of 2C CD8+ T cells, while only prolifera-
tion of 4C CD4+ T cells was affected by the 
drug. The similarities between this work 
and the original studies of cyclophospha-
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attention while providing leads for future 
studies. For example, a clear difference 
between CD8+ and CD4+ T cell responses 
with PTCy use after allotransplantation — 
in both hematopoietic cell and solid organ 
transplants — has now been repeatedly 
observed; however, the significance of this 
finding has not been fully queried. It is 
plausible that PTCy has distinct effects on 
T cell subsets and can thereby differential-
ly mediate their functions after transplan-
tation (e.g., antitumor or antiinfectious 
immunity vs. GVHD). Therefore, identifi-
cation of these individual T cell roles could 
open new approaches to modulating post-
transplant alloreactivity and optimizing 
PTCy-based GVHD prevention as a plat-
form for cellular therapies after alloHSCT. 
These observations are highlighted in data 
demonstrating the impaired proliferation 
of PTCy-treated CD8+ and CD4+ T cells 
in a mixed-lymphocyte reaction assay 
and the ability to transfer PTCy-medi-
ated GVHD protection in the absence of 
Tregs (see Figures 6 and 7 in ref. 18), sug-
gesting that T cell–intrinsic effects, which 
have thus far been largely ignored, may 
be essential for the long-term benefits 
of PTCy administration. In addition, the 
results of the Wachsmuth et al. study pro-
vide further guidance about when to query 
post-PTCy immune responses, as toleriz-
ing imprinting occurs within a very short 
window after cyclophosphamide adminis-
tration. These results provide clear fodder 
for dedicated investigation and further 
narrow down the time line within which 
PTCy modulates the alloresponse. Early 
control of the alloresponse is increasingly 
proving to be critical for long-term success 
of immunosuppression strategies, yet no 
other approaches are further reaching than 
PTCy. The robust chronic GVHD control, 
which is not seen with other novel acute 
GVHD-controlling strategies, such as siro-
limus or IL-6 receptor inhibition (20–22), 
coupled with the ability to break the tol-
erance barriers, ease of use, and unequiv-
ocal evidence of outcomes comparable to 
standard alloBMT approaches, all provide 
for an enhanced access to transplantation 
across the globe. These clinical develop-
ments are made possible by the years of 
work aimed at increasing the understand-
ing of how PTCy works, and now the study 
of Wachsmuth provides critical informa-
tion for further advances.

mide and allograft tolerance end here, as 
the study by Wachsmuth et al. unques-
tionably dispels the notion that thymic 
function is necessary for PTCy-mediated 
GVHD protection and subsequently rein-
forces previous work to establish a role for 
Tregs in mediating PTCy benefits (16, 17). 
While the thymic independence of PTCy 
was hinted at in previous work describ-
ing the impact of distinct Treg subsets 
on PTCy outcome (16) and based on the 
observation that clinical PTCy benefits 
are maintained in adult human patients 
with limited thymic function, the current 
study by Wachsmuth and colleagues pro-
vides the definitive experimental proof. 
Several aspects regarding the role of 
Tregs in PTCy-mediated tolerance still 
require additional clarification, particular-
ly regarding the duration of Treg benefit 
mediated by PTCy. Experiments in which 
Treg depletion can be induced validate the 
requirement for Tregs in mediating long-
term alloHSCT tolerance; however, the 
precise impact of PTCy on the observed 
GVHD-like disease remains unclear. Nota-
bly, a GVHD-like condition that was dis-
tinct from the model-specific GVHD phe-
notype was also seen with Treg depletion 
following murine alloHSCT when GVHD 
was prevented without PTCy use (19).

Conclusions and future 
directions
The observations reported by Wachsmuth 
et al. lay particularly strong foundations for 
future studies, as their work provides deci-
sive evidence that PTCy-dependent ben-
efits are not mediated via alloreactive T 
cell elimination, while solidifying the evi-
dence of Treg importance in delivering the 
PTCy outcome. Indeed, the sparing of the 
alloantigen-specific T cells and an overall 
negligible impact on T cell proliferation 
and expansion is the likely foundation 
behind the robust immune reconstitution 
and limited impact of PTCy on antiinfec-
tious and antitumor responses. Moreover, 
the documented ability of PTCy-exposed 
T cells to respond to alloantigen further 
hints that immune responses remain pre-
served, though dedicated in vivo or in vitro 
experiments are needed to confirm this 
finding and to investigate its relevance for 
graft-versus-tumor responses.

Several of the observations made 
by Wachsmuth et al. will require careful 
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