		TST+/IGRA+		ТВ				TST+/IGRA+		ТВ				TST+/IGRA+		ТВ	
		r	р	r	р			r	р	r	р			r	р	r	р
S#1	\$.	0.39	0.26	0.40	0.18	S#11	СНЗБ	0.18	0.63	0.26	0.39	S#23	Por Inositol-	0.21	0.56	0.22	0.47
S#2		0.61	0.07	0.35	0.24	S#12		0.20	0.58	-0.27	0.37	S#25	****	0.28	0.43	-0.25	0.40
S#3	8	0.70	0.03	0.38	0.20	S#15	***	0.38	0.28	0.24	0.42	S#44	**	0.13	0.73	-0.09	0.77
S#4	\$***	0.36	0.31	-0.22	0.46	S#16	**	0.33	0.35	0.43	0.14	S#46	•••	-0.18	0.63	0.11	0.71
S#5		0.05	0.89	-0.02	0.95	S#17	\$ -	0.16	0.66	-0.69	0.01	S#49	Inosital-3-P	0.68	0.03	0.29	0.33
S#6	84×	0.14	0.70	0.04	0.91	S#18	*****	0.45	0.19	0.21	0.48	S#50	0 ⁰ 0-	-0.17	0.64	-0.34	0.26
S#7	сназ В	0.68	0.03	0.27	0.38	S#19	****	0.56	0.10	0.03	0.92	S#56	*********	0.58	0.09	0.26	0.40
S#8		0.77	0.01	0.47	0.10	S#20	ALL	0.43	0.22	0.43	0.14	S#57	********	0.55	0.10	0.16	0.61
S#9	СНЗБ	0.76	0.01	0.03	0.92	S#21		0.55	0.10	0.14	0.64	S#58	0 0-	-0.43	0.21	-0.46	0.11
S#10	CH3S	-0.02	0.97	-0.02	0.96	S#22		0.47	0.18	0.24	0.43	S#59	800-	0.01	> 0.99	-0.04	0.90

Supplemental Table 1. AM oligosaccharide structures and correlations between serum IgG reactivity to each AM OS and Mtb macrophage phagocytosis in TST+/IGRA+ and TB subject groups

Green star: Araf residue; green circle: mannose; orange star: xylose residue. Spearman rank correlation. Compound S#46 is an OS motif of the mycobacterial capsular PS alpha-glucan, which served as a control. TST+/IGRA+: Tuberculin skin-test positive, interferon-gamma release assay positive asymptomatic subjects; TB: subjects with active tuberculosis.

Supplemental Figure 1. Comparison of IgG1-4 subclass responses to Mtb (H37Rv) capsular AM among subjects at various Mtb infection states. (A–D) Sera (1:50) from (A) asymptomatic TST- subjects, n = 36; (B) Asymptomatic TST+/IGRA- subjects, n = 24; (C) Asymptomatic TST+/IGRA+ subjects, n = 14; and (D) TB patients, n = 23. Subjects with an anti-IgG subclass titer > 0.4 in TST+/IGRA+ group, and > 0.5 in other groups have been assigned individual different colors. TST: Tuberculin skin-test; IGRA: Interferon-gamma release assay; TB: active tuberculosis. Dashed lines represent Friedman test for comparison of paired values of multiple groups. Solid lines represent Wilcoxon matched-pairs signed rank test. Lines and error bars represent medians with interquartile ranges. *: P < 0.05, **: P < 0.01, ***: P < 0.001, and ****: P < 0.0001.

Supplemental Figure 2. Cross-reactivity of IgG to capsular AM isolated from different strains of the Mtb complex group irrespective of Mtb infection state. (A–D) Scatter plots show correlations between serum (1:50) IgG responses to AM isolated from Mtb H37Rv versus (A) the avirulent Mtb strain H37Ra; (B) the lab Mtb strain Erdman; (C) the clinical Mtb strain CDC1551; and (D) the M. *bovis* BCG vaccine stain (Pasteur) for each subject group. TST-: Asymptomatic TST negative subjects, n = 36; TST+/IGRA-: Asymptomatic TST positive IGRA negative subjects, n = 24; TST+/IGRA+: Asymptomatic TST positive subjects, n = 14; and TB: patients with active tuberculosis, n = 23. TST: Tuberculin skin-test; and IGRA: Interferon-gamma release assay. Spearman rank.

Supplemental Figure 3. Significant reduction of IgG reactivity to AM but not to other Mtb antigens in heat-inactivated sera depleted of anti-AM antibodies. (A) IgG responses to capsular AM isolated from Mtb H37Ra in non-depleted compared to anti-AM Ab depleted sera (1:100) by AM-coupled beads. (B–C) IgG responses in non-depleted compared to anti-AM Ab depleted sera to (B) the secreted Mtb protein CFP10, and (C) the surface protein GroEL2. Lines and error bars represent medians with interquartile ranges. TST+/IGRA+: Tuberculin skin-test positive, interferon-gamma release assay positive asymptomatic subjects, n = 10; and TB: subjects with active tuberculosis, n = 13. Wilcoxon matched-pairs signed rank test. **: P < 0.01, ***: P < 0.001, and NS: not significant ($P \ge 0.05$).

Supplemental Figure 4. Depletion of sera with AM-coupled beads enhanced Mtb intracellular growth compared to non-depleted sera or sera depleted with BSA-coupled beads. Columns and error bars represent mean and SD. Unpaired t test. *: P < 0.05, ***: P < 0.001, and NS: not significant ($P \ge 0.05$).

Supplemental Figure 5. Purification of anti-AM polyclonal IgG from human sera. (A) Anti-AM polyclonal IgG purified from two TST+/IGRA+ (L1 & L2) and two TST+/IGRA- sera (T1 & T2) showed higher binding capacity to capsular AM than the corresponding total IgG used at the same concentrations. (B) Reactivity of serum IgG to AM OS motifs before (+) and after AM-specific Ab depletion (-), and for purified AM-specific IgG (p). Color features represent the median fluorescent reactivity (MFI) to each of the OS motifs.

Supplemental Figure 6. Passive transfer of purified human anti-AM polyclonal IgG from a TB patient showed no effect on mycobacterial burden in Mtb-infected mice. Lung CFU (mean and SD) 2 weeks after low-dose infection (Erdman; mean lung CFU 35 ± 3 one day post infection) in mice receiving i.p. normal saline (NS; n = 10), irrelevant IgG1 control mAb (Ctrl IgG1; n = 6) or anti-AM IgG (8 µg i.p. one day pre-infection, 4 µg at one day and 4 µg at one week post-infection) from one high-titer pulmonary TB patient (n = 6). One-way ANOVA P = 0.9.