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Shaping the T cell repertoire
The generation of a broad variety of 
T cell receptors (TCRs) during T cell 
development in the thymus creates T cell 
repertoires capable of recognizing large 
numbers of antigens through multitudes 
of different TCRs. By recombination, 
random insertion, deletion, and sub-
stitution, the rather small set of genes 
that encode the TCR can create a great 
diversity, with the complementarity- 
determining region 3 (CDR3), which 
serves as the primary site of antigen con-
tact, accounting for most of the variation 
within an individual’s T cell repertoire. 
Moreover, this CDR3 diversity is primar-
ily affected at the level of the β-chain 
(CDR3β) (1).

The host’s T cell pool is shaped 
through a process by which TCR- 
expressing thymocytes undergo positive 
and negative selection of self-peptide–
MHC complexes in the thymus, thereby 
generating naive T cells that are both 
self-tolerant and self-MHC restricted (2). 
However, a consequence of self-MHC 
restriction is that all peripheral T cells are 
essentially self-reactive, explaining why 

the peripheral T cell repertoire contains 
an elevated frequency of autoreactive  
T cells, even in healthy individuals (3). 
Incidentally, this aspect also creates 
grounds for the possible development 
of autoimmune responses that therefore 
need to be kept under constant control 
throughout life by multiple, often com-
plementary, mechanisms (4).

Of note, although TCR gene rear-
rangement is believed to occur randomly, 
some clonotypes are more commonly pro-
duced than others (5), leading to unequal 
frequencies of naive T cell clonotypes and 
so-called “public” clonotypes that are 
shared among individuals (6). This differ-
ence in frequency distribution has been 
the subject of several investigations that 
have resulted in varied explanations but no 
consensus. As a result, although a dissec-
tion of the events that lead to the forma-
tion and diversification of the human TCR 
repertoire remains critical to understand-
ing the mechanisms of T cell develop-
ment and diversity, ethical constraints and 
lack of suitable models have complicated  
the study of the formation of human TCR 
repertoires in vivo.

New insights from a 
humanized mouse model
In this issue, Khosravi-Maharlooei and 
coworkers monitored TCR formation 
and outcomes in humanized mice that 
had been engrafted with human fetal 
thymus and human hematopoietic stem 
cells (HSCs) (7). This strategy allowed a 
recapitulation of critical mechanisms of 
in vivo formation of the human TCR rep-
ertoire under syngeneic and allogeneic 
conditions, mimicking the development 
of human thymocytes under conditions 
that are as close as possible to physiologi-
cal settings. Through high-throughput and 
single-cell TCRβ-CDR3 sequencing analy-
ses of human thymocytes in human thymi 
(and in the periphery) of humanized mice, 
the authors were able to accredit human 
thymic selection as a major driver of TCR 
sequence sharing and implicate a prefer-
ential selection of shared cross-reactive 
CDR3βs during repertoire formation. As 
such, this study by Khosravi-Maharlooei 
and colleagues delineates the impact of 
human thymic selection on shared TCR 
sequences and their presence among 
mature T cells.

Khosravi-Maharlooei and coworkers 
analyzed the formation of the human TCR 
repertoire under different conditions and 
compared data from three different groups 
of humanized mice. The first group of ani-
mals received the same fetal liver HSCs 
and autologous fetal thymus, resulting in 
the same genetic background and TCR 
selection in the same thymus. The second 
group of mice also had the same genetic 
background and same fetal liver HSCs, 
together with either an autologous fetal 
thymus or an allogeneic fetal thymus. This 
group of mice allowed evaluation of thymic 
selection in a different thymus, with the T 
cells in the grafted thymus derived from 
HSCs given intravenously. Finally, the 
third group of mice consisted of thymecto-
mized animals transplanted with the same 
fetal liver HSCs and autologous fetal thy-
mus. Cell sequencing was done for both 
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bicity at positions 6 and 7 of the CDR3βs, 
the occurrence of weaker interactions 
with self-peptides (due to low affinity for 
self-peptide–MHC) for the shared versus 
unshared sequences could promote these 
sequences by facilitating their escape from 
negative selection (14).

Conclusions
In all, the study by Khosravi-Maharlooei 
and colleagues advances the current 
understanding of basic mechanisms of 
human TCR repertoire formation and T 
cell development. Human thymi formed 
varied TCR repertoires that diverged in the 
presence of the same genetic background. 
Thymic selection narrowed those TCR 
repertoires, promoting an overlap among 
human TCRβ sequences in which shared 
sequences had shorter CDR3β lengths 
and were cross-reactive and autoreac-
tive. While previous work has suggested a 
role for recombination bias or convergent 
recombination in the generation of pub-
lic sequences (15), the work of Khosravi- 
Maharlooei et al. delineates a role of human 
thymic selection in enriching public TCRβ 
sequences, in which distinctive character-
istics of the CDR3βs could favor positive 
selection and escape negative selection.
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