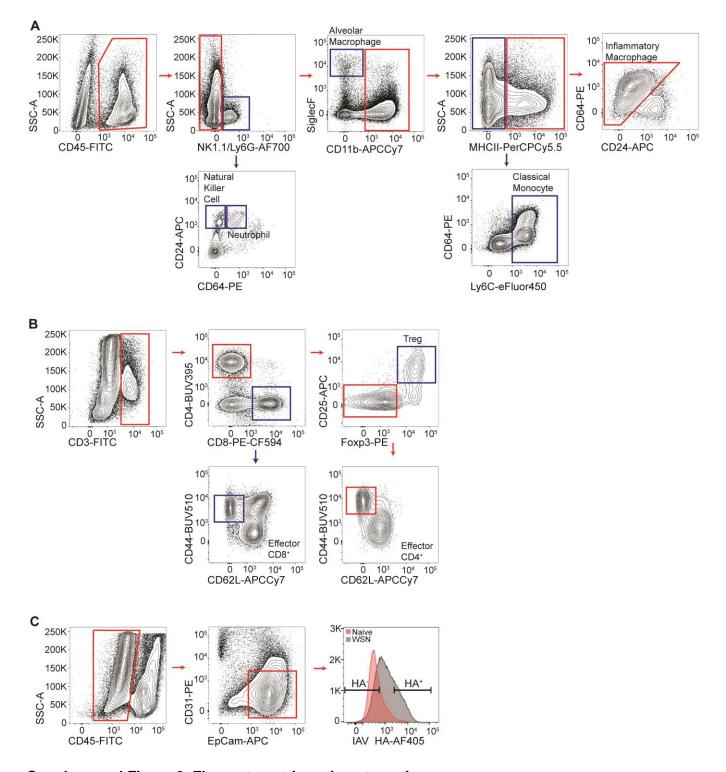



Supplemental Figure 1. LUBAC activates NF-kB and IRF downstream of RIG-I during IAV infection. (A)

A549 cells were infected with WSN (1 MOI, 16 h) after transfection with a non-targeting siRNA (siControl) or siRNA against RIG-I. Representative immunoblot of NF-kB activation (p-lkB $\alpha$ /total lkB $\alpha$ ) and IRF3 activation (p-lRF3/total lRF3) are shown (**B-C**) Bar graphs showing the quantification of (**B**) NF-kB and (**C**) IRF3 activation from **A** (n=3) (**D-E**) Bar graphs showing the quantification of RIG-I activation in the presence and absence of siRNA against (**D**) HOIL-1L or (**E**) HOIP from Figure 1A-B respectively (n=4). (**F-G**) Bar graphs showing the quantification of (**F**) NF-kB 1C and (**G**) IRF3 activation from Figure 1D-E respectively (n=4). Mean  $\pm$  s.d. overlaid with individual data points representing replicates are depicted, \*P < 0.05, \*\*\*P < 0.01, \*\*\*P < 0.005, \*\*\*\*P < 0.0001 (one-way ANOVA followed by Bonferroni post-hoc test).



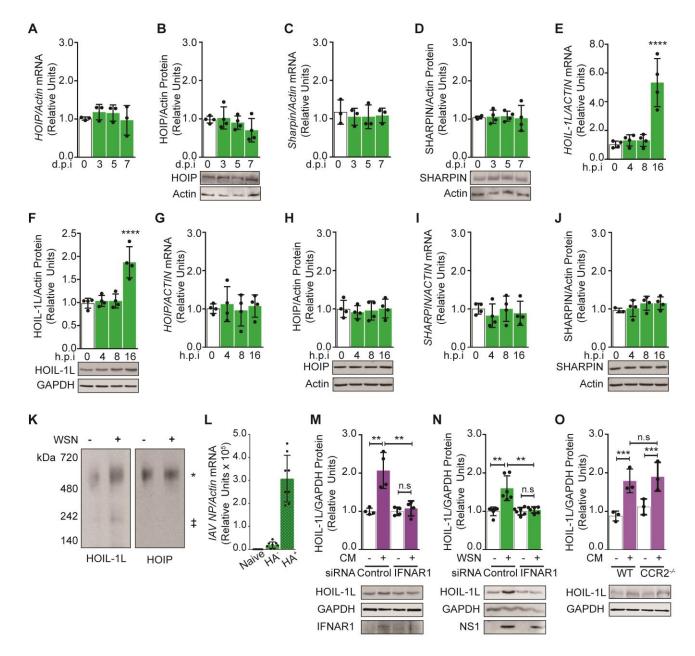

Supplemental Figure 2. Loss of HOIL-1L in the alveolar epithelium decreases inflammation during IAV infection in mice. WT and SPC<sup>cre</sup>/HOIL-1L<sup>fl/fl</sup> mice were i.t. infected with a lethal dose of WSN (A-B)

Representative immunoblot showing HOIL-1L, HOIP and SHARPIN expression in WT and SPC<sup>cre</sup>/HOIL-1L<sup>fl/fl</sup>


AT2 cells, n.s denotes non-specific band (n=3). (C) Brightfield images of lung sections from WT and SPC<sup>cre</sup>/HOIL-1L<sup>fl/fl</sup> mice at 7 d.p.i. stained with H&E, and (D) quantified for severity of lung injury as defined in Methods (Scale bar, 0.5 mm.) (E-H) BALF cytokine levels were analyzed by ELISA at 0 (n=5) and 3, 5, 7 d.p.i. (n=9) (E) MCP-1 (F) IFN-γ (G) TNF-α (H) IL-10. (I) BALF levels of IL-1β at 0 (WT n=3, SPC<sup>cre</sup>/HOIL-1L<sup>fl/fl</sup> n=4) and 5 (n=10) d.p.i. (J) //1b mRNA expression in AT2 cells at 0 (n=3) and 5 (n=4) d.p.i. (K) Representative Immunoblot of Caspase-1 cleavage in AT2 cells at 0 and 5 d.p.i.(n=2). (L-N) Immune populations were

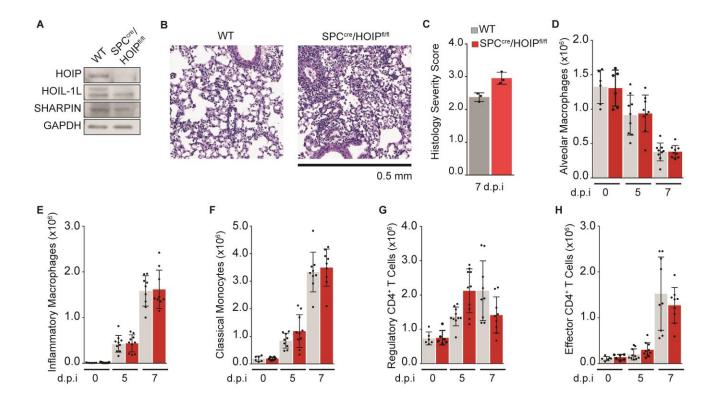
analyzed in whole lung homogenate by FACS at 0 (n=7) and 3, 5, 7 d.p.i. (n=10). **(G)** SiglecF<sup>hi</sup>CD11c<sup>hi</sup> Alveolar Macrophages **(H)** Ly6G<sup>+</sup>CD11b<sup>+</sup>CD24<sup>+</sup> Neutrophils **(I)** CD44<sup>+</sup>CD62L<sup>-</sup>CD4<sup>+</sup> T cells. Mean ± s.d overlaid with individual data points representing replicates are depicted, \*P < 0.05, \*\*P < 0.01, \*\*\*P < 0.005, \*\*\*\*P < 0.0001 (one-way ANOVA followed by Bonferroni post-hoc test).




Supplemental Figure 3. Flow cytometric gating strategies.

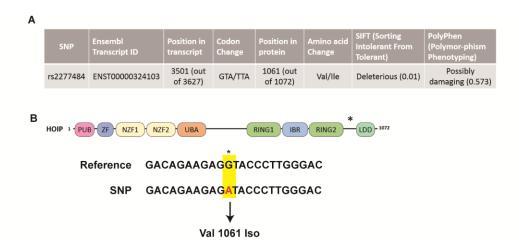
Representative panel for identification of **(a)** myeloid cell populations using known lineage markers, **(b)** lymphoid cell populations using known lineage markers, **(c)** AT2 cells using known surface markers with the addition of influenza virus surface protein HA for separation of infected (HA<sup>+</sup>) and non-infected (HA<sup>-</sup>) cells.




Supplemental Figure 4. SPC<sup>cre</sup>/HOIL-1L<sup>fl/fl</sup> mice challenged with higher doses of IAV remain protected.

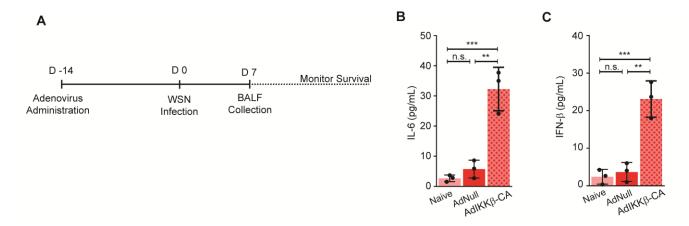
WT and SPC<sup>cre</sup>/HOIL-1L<sup>fl/fl</sup> mice were i.t. infected with a standard lethal dose (StdL) of WSN, a group of SPC<sup>cre</sup>/HOIL-1L<sup>fl/fl</sup> mice receiving a 30% higher dose (Higher). **(A)** Viral load as measured by plaque assay in whole lung BALF was collected for analysis of **(B)** total protein, **(C)** total cell count, **(D)** IL-6 **(E)** IFN- $\beta$ . A-E (n=9) Mean  $\pm$  s.d. overlaid with individual data points representing replicates are depicted, \*P < 0.05, \*\*P < 0.01, \*\*\*P < 0.005, \*\*\*\*P < 0.005, \*\*\*\*P < 0.0001 (one-way ANOVA followed by Bonferroni post-hoc test).




Supplemental Figure 5. HOIL-1L is upregulated during IAV infection though the type I interferon receptor signaling axis. (A-D) AT2 cells were isolated from WT mice 0, 3, 5 and 7 d.p.i. (A,C) mRNA levels and (B,D) representative immunoblots and quantifications depicted. (A) HOIP mRNA (n=3) (B) HOIP protein expression (n=4). (C) SHARPIN mRNA (n=4) (D) SHARPIN protein expression (n=4). (E-J) A549 cells infected for 0, 4, 8 and 16 hours with WSN. (E,G,I) mRNA levels and (F,H,J) representative immunoblots and quantifications depicted. (E) HOIL-1L mRNA (n=4) (F) HOIL-1L protein expression (n=5). (G) HOIP mRNA (n=3) (H) HOIP protein expression (n=4). (I) SHARPIN mRNA (n=3) (J) SHARPIN protein expression (n=4). (K) Representative Native PAGE immunoblot of LUBAC formation in A549 cells treated with WSN (n=3) (L) NP mRNA expression in AT2 sorted based on expression of viral HA (n=9). (M-N) Representative Immunoblot and

quantification of HOIL-1L expression in A549 cells transfected with siControl or silFNAR1 and treated with **(M)** CM (n=4) **(N)** WSN (n=4) **(O)** Representative Immunoblot and quantification of HOIL-1L expression in WT and CCR2 $^{-/-}$  AEC treated with CM in vitro (n=3). Blots in **H,J** from same blot with loading control shown twice. Means ±SD overlaid with Individual data points representing replicates are depicted, \*P < 0.05, \*\*\*P < 0.01, \*\*\*P < 0.005, \*\*\*\*P < 0.0001 (one-way ANOVA followed by Bonferroni post-hoc test).




Supplemental Figure 6. Effect of loss of alveolar epithelial HOIP on host inflammatory response to IAV.

(A) Representative immunoblot showing HOIP, HOIL-1L and SHARPIN expression in isolated mouse AT2 from WT and SPC<sup>cre</sup>/HOIP<sup>fl/fl</sup> mice. (B) Brightfield images of lung sections from WT and SPC<sup>cre</sup>/HOILP<sup>fl/fl</sup> mice at 7 d.p.i stained with H&E, and (C) quantified for severity of lung injury as defined in Methods (Scale bar, 0.5 mm.) (D-H) Whole lung immune cell populations at 0, 3, 5 and 7 (n=9) d.p.i were analyzed by flow cytometry. (D) SiglecF<sup>hi</sup>CD11c<sup>hi</sup> Alveolar Macrophages (E) CD11b<sup>hi</sup>MHCII<sup>hi</sup>CD24<sup>low</sup>CD64<sup>hi</sup> inflammatory macrophages (F) CD11b<sup>hi</sup>MHCII<sup>low</sup>Ly6C<sup>hi</sup> monocytes (G) CD4<sup>+</sup>CD25<sup>+</sup>Foxp3<sup>+</sup> T<sub>reg</sub> cells (H) CD44<sup>+</sup>CD62L<sup>-</sup>CD4<sup>+</sup> T cells. Means ±SD overlaid with individual data points representing replicates are depicted, \*P < 0.05, \*\*\*P < 0.01, \*\*\*P < 0.005, \*\*\*\*P < 0.0001 (one-way ANOVA followed by Bonferroni post-hoc test).



Supplemental Figure 7. HOIP SNP in AA cohort may affect "catalytic core". (A) The consequence of rs2277484 on HOIP (RNF31) transcript is deleterious and possibly damaging based on SIFT and PolyPhen.

(B) Schematic of HOIP domains depicting location of amino acid change (Val1061Iso).



Supplemental Figure 8. Rescue of NF-κB signaling in SPC<sup>cre</sup>/HOIP<sup>fl/fl</sup> mice with AdIKK-β-CA triggers antiviral response (A) Timeline of adenovirus administration prior to WSN infection. (B-C) BALF from SPC<sup>cre</sup>/HOIP<sup>fl/fl</sup> mice naïve or administered either AdNull or AdIKK-β-CA was collected (n=3) and analyzed for (B) IL-6 and (C) IFN-β levels. Mean  $\pm$  s.d overlaid with Individual data points representing replicates are depicted, \*P < 0.05, \*\*P < 0.01, \*\*\*P < 0.005, \*\*\*P < 0.001, \*\*\*P < 0.0001. (B, one-way ANOVA followed by Bonferroni posthoc test).

# **Supplemental Table 1: Immunoblot Primary Antibodies**

| Target           | Clone    | Source         | Cat. No.    | Concentration | Lot         |
|------------------|----------|----------------|-------------|---------------|-------------|
| IFNAR1           | MAR1-5A3 | Biolegend      | 127301      | 1:1000        | B163671     |
| HOIL-1L (C-term) | 2E2      | Millipore      | MABC576     | 1:1000        | 2915256     |
| HOIL-1L(N-term)  | N/A      | K. Iwai (33)   | N/A         | 1:1000        | N/A         |
| HOIP             | N/A      | Abcam          | ab46322     | 1:1000        | GR3176796-2 |
| SHARPIN          | N/A      | Cell Signaling | 4444S       | 1:1000        | 1           |
| GAPDH            | D16H11   | Cell Signaling | 2118        | 1:1000        | 6           |
| Actin            | N/A      | Sigma          | A2066       | 1:1000        | 018M4753V   |
| phospo-lkBa      | 5A5      | Cell Signaling | 9246        | 1:1000        | 19          |
| total-IkBa       | L35A5    | Cell Signaling | 4814        | 1:1000        | 17          |
| phospo-IRF3      | 4D4G     | Cell Signaling | 4947        | 1:1000        | 3           |
| total-IRF3       | EP2419Y  | Millipore      | MABf20      | 1:1000        | NRG1817797  |
| IRF1             | 13H3A44  | Biolegend      | 657602      | 1:1000        | B174685     |
| RIG-I            | Alme-1   | Enzo           | ALX-804-960 | 1:1000        | 6281213     |
| NS1              | N/A      | Thermo Fisher  | PA5-32243   | 1:1000        | RH2247201   |
| NEMO             | DA10-12  | Cell Signaling | 2695        | 1:1000        | 3           |
| Linear Ubiquitin | LUB9     | Life Sensors   | AB130       | 1:1000        | 1           |
| IKKbeta          | W15160A  | Biolegend      | 688402      | 1:1000        | B220786     |
| NEMO (IP)        | FL-419   | Santa Cruz     | sc-8330     | 1/50          | B0615       |
| IRF1 (ChIP)      | c-20     | Santa Cruz     | sc-497      | 10ug          | C1913       |

## **Supplemental Table 2: Antibodies for Myeloid Flow Cytometry**

| Target    | Fluorophore            | Clone      | Source        | Cat. No.   | Concentration | Lot        |
|-----------|------------------------|------------|---------------|------------|---------------|------------|
| CD45      | FITC                   | 30-F11     | eBioscience   | 11-0451-81 | 2 μg/mL       | 4277449    |
| MHCII     | PerCP/Cy5.5            | M5/114.152 | Biolegend     | 107626     | 0.6 μg/mL     | B209411    |
| Ly6C      | AmyCyan<br>(eFluor450) | hk1.4      | eBioscience   | 48-5932-80 | 0.4 μg/mL     | 4306742    |
| LY6G      | Alexa700               | 1A8        | BD Bioscience | 561236     | 2 μg/mL       | 6102838    |
| NK1.1     | Alexa700               | PK136      | BD Bioscience | 560515     | 2 μg/mL       | 6137598    |
| CD11b     | APC-Cy7                | M1/70      | Biolegend     | 101225     | 0.4 μg/mL     | B213160    |
| CD11c     | PE-Cy7                 | HL3        | BD Bioscience | 561022     | 0.4 μg/mL     | 6033690    |
| CD24      | APC                    | M1/69      | eBioscience   | 17-0242-80 | 0.6 μg/mL     | E14923-105 |
| SiglecF   | PE-CF594               | E50-2440   | BD Bioscience | 562757     | 0.4 μg/mL     | 7292939    |
| Viability | eFluor506              | N/A        | Invitrogen    | 65-0866-14 | 1:1000        | 1923275    |

## **Supplemental Table 3: Antibodies for Lymphoid Flow Cytometry**

| Target    | Fluorophore       | Clone    | Source        | Cat. No.   | Concentration | Lot     |
|-----------|-------------------|----------|---------------|------------|---------------|---------|
| CD3e      | FITC              | 145-2C11 | Invitrogen    | 11-0031-81 | 2 μg/mL       | 4323281 |
| CD8       | PE-CF594 / TexRed | 53-6.7   | Biolegend     | 100762     | 1 μg/mL       | B200503 |
| CD25      | APC               | PC61.5   | eBioscience   | 17-0251-82 | 2 μg/mL       | 4276862 |
| CD62L     | APCe780           | MEL-14   | eBioscience   | 47-0621-82 | 1 μg/mL       | 4272740 |
| CD44      | BV510             | IM7      | Biolegend     | 103043     | 1.5 µg/mL     | B240582 |
| CD4       | BUV395            | GK1.5    | BD Bioscience | 563790     | 2 μg/mL       | 6336811 |
| Foxp3     | PE                | FJK-16s  | eBioscience   | 15-5773-82 | 4 μg/mL       | 4323635 |
| Viability | UV                | N/A      | invitrogen    | L34961     | 1:1000        | 1724751 |

## **Supplemental Table 4: Antibodies for AT2 Flow Cytometry**

| Target    | Fluorophore | Clone  | Source      | Cat. No.         | Concentration | Lot                 |
|-----------|-------------|--------|-------------|------------------|---------------|---------------------|
| EpCAM     | APC         | G8.8   | eBioscience | 17-5791-80       | 0.40 μg/mL    | 4289559             |
| CD45      | FITC        | 30-F11 | eBioscience | 11-0451-81       | 2.00 μg/mL    | 4277449             |
| CD31      | PE          | 390    | Invitrogen  | 12-0311-81       | 0.40 μg/mL    | E01191              |
| IAV HA    | AF405       | IVC102 | Novus       | NB100-65047AF405 | 7.00 µg/mL    | 210515-091217-AF405 |
| Viability | eFluor506   | N/A    | Invitrogen  | 65-0866-14       | 1:1000        | 1923275             |

## **Supplemental Table 5: qRT-PCR Primer Pairs**

| Target  | Species | Forward                       | Reverse                       |
|---------|---------|-------------------------------|-------------------------------|
| Actin   | Mouse   | 5'-GGCTGTATTCCCCTCCATCG-3'    | 5-CCAGTTGGTAACAATGCCATGT-3'   |
| HOIL-1L | Mouse   | 5'-GATGTCAACGAGTTCACCTG-3'    | 5'-TCCTTCTTCTGCACCACA-3'      |
| HOIP    | Mouse   | 5'-GGTCTTCTCAGCTCTCCA-3'      | 5'-CACACTCCTCTACAGCTTCA-3'    |
| Sharpin | Mouse   | 5'-ATGCCTGAACGAAGCCTT-3'      | 5'-TTGGGAGACTGGAACTGG-3'      |
| IL-6    | Mouse   | 5'-TAGTCCTTCCTACCCCAATTTCC-3' | 5'-TTGGTCCTTAGCCACTCCTTC-3'   |
| MCP-1   | Mouse   | 5'-TTAAAAACCTGGATCGGAACCAA-3' | 5'-GCATTAGCTTCAGATTTACGGGT-3' |
| IFN-β   | Mouse   | 5'-CAGCTCCAAGAAAGGACGAAC-3'   | 5'-GGCAGTGTAACTCTTCTGCAT-3'   |
| Actin   | Human   | 5'-CTGGACTTCGAGCAAGAGATGG-3'  | 5'-AGGAAGGAAGGCTGGAAGAGTG-3'  |
| HOIL-1L | Human   | 5'-CTTCATTGACAACACCTACTC-3'   | 5'-TGAACTCATTGACATCATCCT-3'   |
| HOIP    | Human   | 5'-TTTACGCCAAGAATAAATGTCC-3'  | 5'-CTCCTTCTGCTCTATCACTC-3'    |
| Sharpin | Human   | 5'-GACCTAGCCCTCAGCA-3'        | 5'-CTACACATCTCACAGCCA-3'      |
| NP      | IAV     | 5'-CTCGTCGCTTATGACAAAGAAG-3'  | 5'-AGATCATCATGTGAGTCAGAC-3'   |