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Introduction

Angiogenesis is the growth of new blood vessels from preexisting
vessels and occurs through a tightly regulated response of
endothelial cells (ECs) to proangiogenic factors (1, 2). Insufficient
vascular supply, which may arise due to impaired vessel growth
(3), capillary loss (4), or vessel obstruction (5), causes tissue
ischemia. While increased angiogenesis correlates with better
outcomes in ischemic diseases like stroke (6), ischemia and
the upregulation of VEGFA can drive aberrant angiogenesis,
exacerbating certain diseases. This is particularly evident in
retinal diseases, such as proliferative diabetic retinopathy, retinal
vein occlusion, and retinopathy of prematurity, in which aberrant
angiogenesis (neovascularization) increases the risk of severe
vision loss and blindness (7). Current treatments for neovascular
disease in the retina revolve around reducing the angiogenic
stimulus either by decreasing the metabolic activity of the retina
or by direct inhibition of VEGFA (8-12). While these approaches
improve visual outcomes, many patients show either no response
or a suboptimal response (8, 9). Capillary regression and the loss
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Aberrant, neovascular retinal blood vessel growth is a vision-threatening complication in ischemic retinal diseases. It is
driven by retinal hypoxia frequently caused by capillary nonperfusion and endothelial cell (EC) loss. We investigated the

role of EC apoptosis in this process using a mouse model of ischemic retinopathy, in which vessel closure and EC apoptosis
cause capillary regression and retinal ischemia followed by neovascularization. Protecting ECs from apoptosis in this model
did not prevent capillary closure or retinal ischemia. Nonetheless, it prevented the clearance of ECs from closed capillaries,
delaying vessel regression and allowing ECs to persist in clusters throughout the ischemic zone. In response to hypoxia,
these preserved ECs underwent a vessel sprouting response and rapidly reassembled into a functional vascular network.
This alleviated retinal hypoxia, preventing subsequent pathogenic neovascularization. Vessel reassembly was not limited by
VEGFA neutralization, suggesting it was not dependent on the excess VEGFA produced by the ischemic retina. Neutralization
of ANG2 did not prevent vessel reassembly, but did impair subsequent angiogenic expansion of the reassembled vessels.
Blockade of EC apoptosis may promote ischemic tissue revascularization by preserving ECs within ischemic tissue that retain
the capacity to reassemble a functional network and rapidly restore blood supply.

of ECs from the microvasculature is commonly associated with
progression to neovascular disease in the retina and can occur
in response to metabolic dysregulation (4), hyperoxia (13), or
interrupted blood flow (14, 15). ECs die by apoptosis, a genetically
programmed form of cell death (16), in settings where extensive
vessel regression occurs (17, 18). Retinal capillaries in patients
with diabetic retinopathy, for example, show elevated levels of
EC apoptosis before progression to the proliferative phase (4,
19). Understanding the role of apoptosis in EC loss and vessel
regression leading to retinal ischemia may therefore provide
new insight into vascular changes associated with ischemia and
potentially new avenues for preventing disease progression.

Apoptosis is regulated by 2 pathways, one consisting of
BCL2 family proteins, the other consisting of cell surface “death
receptors.” Previous studies have demonstrated a key role for the
BCL2 family of proteins in the regulation of EC apoptosis (17).
The BCL2 family consists of opposing factions of prosurvival and
proapoptotic members (16), the balance of which determines
whether the apoptosis effector proteins BAK and BAX become
activated (20). Previous studies have shown that among the BCL2
family, the prosurvival protein MCL1 (21), the proapoptotic protein
BIM (22, 23), and the 2 effector proteins BAK and BAX (24) have a
central role in regulating EC apoptosis in the retina in vivo.

Vessel regression is a normal process necessary for establishing
hierarchic vessel patterning during angiogenesis and the removal
of redundant or damaged vascular networks (17, 18). During
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Figure 1. Blocking apoptosis prevents loss of ECs from retinas exposed

to high oxygen. (A and B) Representative images and quantification of

EC apoptosis visualized by active caspase-3 staining (cyan) and PECAM1
(red) in control (n = 8) and Bak™”- Baxt“/f¢ (24 hours, n = 3; 48 hours, n = 5)
retinas after 24 or 48 hours in high oxygen. Quantitative data from control
mice exposed to high oxygen for 48 hours are not shown because there are
no central retina capillaries remaining. Arrow indicates rare apoptotic EC

in Bak~~ Baxt“/ ¢ retina. Scale bars: 100 um. Student’s 2-tailed t test. (C)
PECAM1 staining of control and Bak~- Baxt“/£ retinas after 48 hours in high
oxygen. Scale bars: 500 pum. (D) Quantification of central retina vessel area
in mice exposed to high oxygen for 24 hours (control, n = 4; Bak”- Baxt“/t,

n = 5) or 48 hours (control, n = 6; Bak”- Baxt"/¥¢, n = 6) compared with 8-day-
old normoxic mice (control, n = 3; Bak”~ Baxt“/¢, n = 3). Multiple t tests using
Holm-Sidak correction for multiple comparisons. (E) PECAM1 (cyan) and col-
lagen IV (red) staining within the central retina of control and Bak™~- Baxt“/&¢
mice raised in room air (normoxia) or for 48 hours in high oxygen. Scale bars:
80 um. (F and G) Quantification of vessel regression and network fragmen-
tation in the central retina of Bak™~ Baxt“/f mice exposed to high oxygen for
24 hours (n = 5) or 48 hours (n = 6) compared with 8-day-old normoxic mice
(control, n = 3; Bak”~ Baxt“/f¢, n = 3). Quantitative data from control mice
exposed to high oxygen are not shown because there are no central retina
capillaries remaining. One-way ANOVA with Tukey’s multiple-comparisons
test. All data are mean + SEM. Each circle represents 1 animal.

angiogenic vessel remodeling, local differences in blood flow
shear between neighboring vessel segments determine which will
be “pruned” away (25-27). This selective vessel pruning is driven
by EC migration (25, 27, 28), does not cause ischemia, and does
not require EC apoptosis (24). In contrast, apoptosis does appear
responsible for capillary regression in other contexts, including
those that leave tissues with insufficient vascular supply, causing
ischemia. Exactly how apoptosis contributes to vessel loss in this
context and the outcomes of preventing it are not well understood.

Here we have investigated the effect of blocking EC apoptosis
in a mouse model of ischemia-induced neovascular disease (4),
in which blocking apoptosis is known to prevent capillary loss
and subsequent neovascularization (23). Our results show that
EC apoptosis in this model is secondary to a vessel closure event
that deprives downstream capillaries of blood flow. Rather than
preventing this vessel closure or subsequent vessel degeneration,
protecting ECs from apoptosis instead preserved ECs from these
closed vessels within the ischemic region that were capable of
rebuilding a functional vascular network in response to hypoxia-
derived signals, restoring tissue oxygenation and mitigating the
damaging effects of prolonged hypoxia on the retina.

Results

Blocking BCL2 pathway apoptosis results in EC survival and
delayed vessel regression. To determine whether EC apoptosis was
responsible for vessel regression causing ischemia, we investigated
its role in the oxygen-induced retinopathy (OIR) model (ref. 29
and Supplemental Figure 1A; supplemental material available
online with this article; https://doi.org/10.1172/JCI127668DS1).
In this model, transient exposure of mice to high oxygen causes
the apoptotic death of ECs and consequent regression of retinal
capillaries in the center of the retina, resulting in relative retinal
hypoxia once the mice are returned to room air oxygen levels.
This is followed by the development of abnormal vascular lesions
that resemble those found in neovascular retinal diseases (4) and
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was developed as a model of retinopathy of prematurity. To block
apoptosis, we used mice that we previously generated, in which
apoptosis was inactivated in ECs through combined deletion
of BAK and BAX (Bak”~ Bax®“E¢ mice [ref. 24]). Bak”~ Bax"“/E¢
mice lack BAK in all tissues and BAX only in ECs, a necessary
strategy because Bak”" mice are viable, whereas most Bak”~ Bax”~
double-null mice die at birth due to a range of birth defects
(30). Relevant to the age of mice studied here, Bak”~ Bax®®/tc
mice develop a normal retinal vascular network in the first few
weeks after birth (24). After 24 hours of exposure to high oxygen,
control-genotype mice contained extensive numbers of apoptotic
ECs (active caspase-3* PECAM1" cells). In contrast, retinas from
Bak”~ BaxE%E¢ mice were almost completely devoid of apoptotic
ECs after 24 or 48 hours of oxygen exposure (Figure 1, A and B).
By contrast, other forms of programmed cell death, namely death
receptor-mediated apoptosis (caspase-8-dependent) and MLKL-
dependent necroptosis, were dispensable for vaso-obliteration, as
caspase-8”~ Mlkl”~ double-knockout mice underwent normal vaso-
obliteration when exposed to high oxygen (Supplemental Figure
1, B and C). These results confirm the central role of the BCL2-
regulated apoptosis pathway in the apoptotic response of ECs in
the OIR model.

As a result of blocking apoptosis, Bak”~ Bax®“*C retinas
contained significantly more vasculature than retinas of control
littermates following 24-48 hours of high oxygen exposure (Figure
1C and Supplemental Figure 1D). Despite this, the vessel area in
Bak”~ Baxt“/EC retinas declined with increasing duration of high
oxygen exposure (Figure 1D). This loss of vasculature was due to
vessel regression based on the reduced occupancy of collagen IV*
vascular basement membranes with PECAM1* ECs (ref. 31; Figure
1, E and F; and Supplemental Figure 1E). By 48 hours of exposure to
high oxygen, ongoing vessel regression had caused the network in
Bak”~ Bax™®/*C retinas to degenerate into isolated vessel fragments
and endothelial clusters that in many cases remained linked by
empty collagen IV sleeves (Figure 1, E and G), evidence that they
were once part of an interconnected vascular network.

The Tie2-Cre transgene used to generate Bak”~ Bax"“/£¢ mice
is active in hematopoietic cells as well as ECs. The Cdh5-CreERT2
transgene (32) is active in ECs but not hematopoietic cells
following postnatal administration of tamoxifen (21). Postnatal
deletion of Bax only from ECs using this Cre (Bak”~ BaxT%/t¢
mice) recapitulated the fragmented vascular phenotype after 48
hours of high oxygen exposure (Supplemental Figure 1, F-H). This
result confirmed that the fragmented vascular phenotype is due
to apoptosis blockade specifically in ECs. Therefore, blocking
apoptosis in ECs does not prevent vessel regression triggered by
exposure to high oxygen.

EC apoptosis-independent loss of blood flow precedes vessel
regression. We sought to determine why apoptosis suppression
could not prevent the loss of retinal capillary network integrity
following high oxygen exposure by investigating the causes of EC
apoptosis and vessel regression. VEGFA promotes EC survival via
the BCL2 pathway (33, 34). It is downregulated during exposure
to high oxygen, and this has been suggested to contribute to
vessel regression in the OIR model (35-37). VEGFR2 is the major
VEGFA receptor responsible for survival signaling by VEGFA (38).
Using tamoxifen-inducible, EC-specific Vegfr2 mutants described
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previously (39), we found that reducing VEGFR2 through
tamoxifen administration from postnatal day 7 (P7; the age at
which retinal vessels are susceptible to high oxygen) did not result
in widespread loss of central retina capillaries when analyzed at
P10 (Supplemental Figure 2, A and B). This result suggests that a
reduction in VEGFA activity alone is not sufficient to replicate the
vaso-obliteration that occurs in the OIR model and is consistent
with previous findings (40, 41).

Reduced blood flow triggers the regression of immature
retinal vessels (28, 41), and EC apoptosis in OIR has previously
been proposed to occur secondary to loss of blood flow (41, 42).
Widespread EC apoptosis was evident in control mice but not
Bak”’- Bax"/*¢ mice 8 hours after onset of exposure to high oxygen
(Supplemental Figure 2, C and D). With few exceptions, apoptosis
was localized to nonperfused vessels based on costaining for active
caspase-3 and intravenously perfused Lycopersicon esculentum
lectin (Supplemental Figure 2E), which binds to and marks ECs
in patent vessels. Loss of flow was mostly observed downstream
of arterial side branches that had closed (Figure 2A). This pattern
of vessel closure was observed in both control and Bak”~ Bax®®/¢
mice (Figure 2A). The number of perfused arterial side branches
remaining at 8 hours was not different between Bak”~ Baxt%/t¢
mice and controls (Figure 2, A and B). This demonstrates that
apoptosis is not responsible for hyperoxia-induced arterial side-
branch closure or deprivation of downstream capillaries of blood
flow. Nonetheless, the regression of closed arterial side branches
was delayed in the absence of apoptosis, as fewer nonperfused side
branches in the Bak”~ Bax“/E¢ mice had fully disconnected their
lumens from the artery by 8 hours (Supplemental Figure 2, F and
G). There was also less regression occurring in nonperfused Bak”
Bax/E¢ capillaries relative to controls (Figure 2, C and D), although
the nonperfused capillaries in mutants still showed slightly elevated
levels of regression relative to the peripheral capillary plexus region
that is unaffected by high oxygen exposure (Figure 2D).

Retinas vaso-obliterated by exposure to high oxygen become
hypoxic onreturn toroom air owing to the loss of the central capillary
network (43), and this was observed in control mice following either
24 or 48 hours of exposure to high oxygen (Figure 2, E and F). The
extent of hypoxia in littermate Bak”~ Bax"C retinas was equivalent
to that in the controls, consistent with loss of blood flow to and
fragmentation of the central retinal capillaries (Figure 2, E and F).
These data suggest that vessel regression still occurs in the absence
of apoptosis, likely as a result of blood flow loss.

Preserved Bak”~ Bax"/E¢ ECsrapidly reassemble the vessel network
in response to hypoxia. In WT mice, the onset of hypoxia following
return to room air induces a sprouting angiogenic response from
the remaining vasculature that gradually revascularizes the
central retina through centripetal growth of the network (44, 45).
To determine whether the preserved ECs in the central retina of
Bak”~ Bax®“E¢ mice could also respond to hypoxia, mice were
exposed to high oxygen for 48 hours to fragment the vascular
network, returned to room air to induce hypoxia in the avascular
retina, then examined 24 hours later (referred to as 48 + 24 RA)
(Supplemental Figure 3A). As expected, new-vessel growth from
the peripheral plexus and radial veins in control mice only partially
revascularized the retina 24 hours after onset of hypoxia (Figure
3, A-C). In contrast, Bak”" Bax®“/*¢ retinas showed a significant
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increase in vessel area accompanied by the cessation of vessel
regression and reestablishment of an interconnected vascular
network (Figure 3, A and C-F).

To understand how an intact vascular network was
reestablished in the Bak”~ Bax“E¢ mice, we performed time-
lapse imaging to track the fate of the preserved ECs. For this,
the Cre-inducible, cell membrane-targeted EGFP reporter
allele mTmG (46) was intercrossed with the tamoxifen-inducible
Bak”~ Bax'®/E¢ mice. Following tamoxifen administration, Bak”
Bax®/EC mTmG*/* pups were exposed to high oxygen for 48
hours, returned to room air for 12 hours to initiate the hypoxic
response, and then retinas were explanted and immediately time-
lapse-imaged at 30-minute intervals for 5 hours (Supplemental
Figure 3, B and C). Time-lapse imaging showed that ECs in the
isolated clusters adopted a migratory phenotype consistent with
tip cell activity normally seen during sprouting angiogenesis (1).
Through this, the isolated ECs actively reestablished connections
with their neighbors, reassembling the network (Figure 3G
and Supplemental Videos 1-3, black arrows). Vessel sprouts
establishing new connections were also observed from already
intact vessels (Supplemental Videos 1 and 2, red arrows). In many
cases, migrating ECs extended multiple filopodial projections
suggesting de novo pathfinding similar to the sprouting
angiogenesis seen in control mice (Figure 3H, Supplemental
Video 3, red arrows). In other cases, ECs appeared to track along
predetermined paths (Supplemental Video 3, blue arrows). These
data show that isolated EC clusters protected from apoptosis are
active participants in the reestablishment of an intact vascular
network during revascularization of the ischemic retina.

During normal sprouting angiogenesis in the retina, new-
vessel growth is coupled to EC proliferation (47). Control and
Bak”/~ Bax"“*¢ retinas were stained for phospho-histone H3
(Ser10) to identify proliferating ECs 24 hours after return to
room air. In control retinas, EC proliferation accompanied
regrowth of the central retinal vasculature (Figure 4, A and B, and
Supplemental Figure 3D). In contrast, reassembling vessels in the
center of Bak”~ Bax"“/EC retinas contained few proliferating ECs
(Figure 4, A and B). EC proliferation in the peripheral vasculature
was similar between control and Bak”~ Bax®®/* mice, indicating
that there was not a general EC proliferation defect in the mutants
(Supplemental Figure 3E).

To determine whether EC number changed during the
process of regression and reassembly, we quantified EC number
in normal (normoxic), fragmented (48 hours high oxygen), and
reassembled (48 + 24 RA) Bak”~ BaxF“E¢ central retina vessels,
using EC nuclei markers FLI1 and ERG. FLI1 was downregulated
in ECs of fragmented vessels (Supplemental Figure 3F); therefore
ERG was used to quantify EC number under this condition.
We found that the number of ECs in the central retina of Bak”"
Bax®%/E¢ mice remained constant between normoxic, fragmented,
and reassembled vessels (Figure 4, C and D). Collectively, these
data show that blocking apoptosis prevents the loss of ECs from the
retina and that reassembly of these cells back into interconnected
vessels does not require the production of new ECs.

The extent of network fragmentation influences vessel reassem-
bly. The degree of network fragmentation in Bak”~ Bax"%*¢ mice
was proportional to the time spent in the high-oxygen environ-


https://www.jci.org
https://www.jci.org
https://www.jci.org/130/8
https://www.jci.org/articles/view/127668#sd
https://www.jci.org/articles/view/127668#sd
https://www.jci.org/articles/view/127668#sd
https://www.jci.org/articles/view/127668#sd
https://www.jci.org/articles/view/127668#sd
https://www.jci.org/articles/view/127668#sd
https://www.jci.org/articles/view/127668#sd
https://www.jci.org/articles/view/127668#sd
https://www.jci.org/articles/view/127668#sd
https://www.jci.org/articles/view/127668#sd
https://www.jci.org/articles/view/127668#sd
https://www.jci.org/articles/view/127668#sd
https://www.jci.org/articles/view/127668#sd
https://www.jci.org/articles/view/127668#sd
https://www.jci.org/articles/view/127668#sd

The Journal of Clinical Investigation RESEARCH ARTICLE

B
8 h high O
gh U,
perfused side branches
51 06278
52
c 2 e O
2% 4
s E
el
Q= 3
2 E 2
S 5
4l
I _ 2z 1
P et h : : : @ Control
Collagen IV Intravenous lectin Collagen IV Intravenous lectin O BakBaxcEe
(o _ )
Intravenous lectin 8 hhigh O,
Intravenous lectin  ICAM2 Collagen IV vessel regression
P Ny @ 1.0 0.0412
'(% 09l <0000 @ control
> O BakBaxcEe
@ 0.8
(@]
8 °
§ 0.7
2 = M
S <
by o 06~
3 0.5
[I"; oo I I
> >
% | e S
; S A
4
Central retina
Control 1.04 hypoxic area
3 02 450
© 0.8 S
g has ® @ control
= °
Zoe 20 O Bak*Bax=o°
S
©
0.4
g Y
o
£0.2;
I
0.0
PECAM1 Pimonidazole 24h  48h
High O,

Figure 2. Blocking apoptosis delays, but does not prevent, vessel regression. (A) Collagen IV and perfused lectin staining in control and Bak~/~ Baxt“/t
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A-D were exposed to high oxygen for 8 hours. All data are mean + SEM. Each circle represents 1 animal.
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Figure 3. Isolated ECs protected from apoptosis rapidly reassemble to
revascularize hypoxic retinas. (A and B) PECAM1 staining of control and
Bak™~- Baxt“/f retinas exposed to high oxygen for 48 hours followed by 24
hours in room air (48 + 24 RA). Scale bars: 500 um (A); 60 um (B). Arrows
indicate sprouting vessels. Boxed areas are enlarged in B (top, yellow box;
bottom, pink box). (C) Vessel area in 48 + 24 RA control (n = 11) and Bak™~
Baxt“/£¢ (n = 12) central retinas. Data for normoxic mice or mice exposed to
high oxygen for 48 hours from Figure 1D are included for comparison. Two-
way ANOVA using Tukey's multiple-comparisons test. (D) Central retinal
vasculature from control and Bak™ Baxt“/# mice exposed to 48 hours of high
oxygen or 48 + 24 RA stained for collagen IV (red) and PECAM1 (cyan). Scale
bars: 80 um. (E and F) Network fragmentation (n = 10) and vessel regression
(n=4)in 48 + 24 RA Bak™- Bax®“/* central retinas. Data for normoxic mice or
mice exposed to 48 hours of high oxygen from Figure 1, F and G, are included
for comparison. One-way ANOVA with Tukey’s multiple-comparisons test.
Quantitative data from control mice exposed to high oxygen are not shown
because there are no central retina capillaries remaining. (G) Static images
from live-imaging retinal explants showing vessels reassembling starting

12 hours after return to room air following 48 hours of exposure to high
oxygen. Four independent clusters are shown. Time stamp is hh:mm (time

0 =12 hours after return to room air). Arrows indicate where sprouts form
new connections. Scale bars: 50 um. (H) Sprouting clusters from a 48 + 12 RA
Bak™~ Bax®“/F retina. Scale bar: 50 um. Arrows indicate filopodial projections.
All data are mean + SEM. Each circle represents 1animal.

ment. Those mice exposed to high oxygen for 24 hours showed
less extensive vessel regression and network fragmentation than
those exposed for 48 hours (Figure 1, F and G, and Supplemental
Figure 4A). When mice exposed to high oxygen for 24 hours were
returned to room air for a further 24 hours to stimulate hypoxia-
driven vessel reassembly (24 + 24 RA), the vascular area, vessel
width, and network branch points were all closer to those of mice
raised in normoxia than was observed in the Bak”~ Bax®®*¢ mice
exposed to 48 + 24 RA (Supplemental Figure 4, B-D). This finding
suggests that the sooner tissue hypoxia manifests after flow inter-
ruption, the more efficiently apoptosis-resistant ECs can reassem-
ble a functional vascular network.

Vessel reassembly facilitated by the blocking of apoptosis reverses
retinal hypoxia, and associated pathological responses. To assess
whether reassembled vessels were functional, we investigated
vessel perfusion and retinal hypoxia in Bak”~ Bax"%/¢ and control
mice subjected to 48 + 24 RA. Lectin perfusion showed that most
reassembled vessels in Bak”~ Bax"®*C retinas were patent and
perfused 24 hours after return to room air (Figure 5A). Consistent
with this, there was significantly less hypoxia in the central retinas
of Bak”~ Bax®®*¢ mice compared with similarly treated controls
(Figure 5, B and C). These mice also displayed less retinal hypoxia
than Bak”~ Bax"“/C retinas still in the fragmented state immediately
following exposure to 48 hours of high oxygen alone (Figure 5, B
and C). Retinal hypoxia in the OIR model following return to room
air results in increased expression of VEGFA (36, 48). Accordingly,
VEGFA protein levels increased substantially in control mice 24
hours after return to room air, but this was significantly reduced
in Bak”’~ Bax"tC¢ retinas (Figure 5D). This was consistent with
there being less hypoxia as a result of reassembly of the vascular
network and restoration of the vascular supply. As neovascular
lesion formation is dependent on VEGFA (44, 45, 49), we assessed
whether the reduction in hypoxia-induced VEGFA brought
about by vessel reassembly would also translate to a reduction
in neovascular lesion formation. Neovascular lesions have a
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glomerular vessel structure, distinct from the normal branched
vessel network pattern. These lesions stained brightly for the
basement membrane protein collagen IV (Figure 5G). The strong
contrast in collagen IV signals between normal and neovascular
vessels enabled us to quantify neovascular lesions as bright,
globular collagen IV structures. Whereas control mice exposed
to high oxygen and returned to room air for 5 days developed
extensive neovascular lesion area, this was significantly reduced
in Bak”~ Baxt“/EC retinas (Figure 5, E-H). Additionally, Miiller cell
gliosis, an indicator of retinal stress, was significantly reduced in
Bak”~ Bax"®®¢ mice compared with the controls (Figure 5, I and J).
These findings demonstrate that reassembled vessel networks are
functional and prevent pathological consequences of prolonged
tissue hypoxia in the retina.

Reducing VEGFA levels does not prevent vessel reassembly or its
suppression of neovascular lesion formation. As elevated VEGFA
drives aberrant angiogenesis in ischemic retinas, we investigated
whether it was also necessary for the vessel reassembly that
occurred in the absence of EC apoptosis. To test this, Bak”
BaxP%E¢ mice were exposed to 48 + 24 RA to induce network
fragmentation and reassembly and were treated with either a
VEGFA-neutralizing antibody (50) or isotype control on return
to room air (Figure 6A). VEGFA neutralization did not appear
to prevent vessel reassembly, as no difference was observed in
central retinal vascular area between mice treated with anti-
VEGFA and those treated with isotype control antibody (Figure 6,
B and C). Supporting this, the hypoxic area in the central retina
was not different in Bak”~ Bax"“*¢ mice treated with anti-VEGFA
versus isotype control antibody (Figure 6D). We confirmed that
the systemically delivered antibodies were neutralizing VEGFA in
the retinal vessels by staining for ESM1 (Supplemental Figure 5,
A-C). The expression of ESM1is dependent on VEGFA (51). Vessel
reassembly proceeded in anti-VEGFA-treated mice even under
conditions of high VEGFA signaling inhibition, in which ESM1
expression was reduced by 94% (Supplemental Figure 5, A-E).
VEGFA inhibition under conditions that reduced neovascular
lesion area by 50% in control genotype mice did not interfere
with the ability of vessel reassembly to prevent neovascular
lesion formation 5 days after return to room air (Figure 6, E-G). In
contrast, vessel reassembly in Bak”~ Bax"“/* mice was effective at
reducing neovascular area by 88% (Figure 6G).

The mature retinal vasculature consists of 3 layers: superficial,
middle, and deep. Bak”~ Bax"“/£ mice had established more exten-
sive vessel networks in these layers than control mice 5 days after
return to room air, evident from the extent of vaso-obliterated
area repair (Figure 6, F and H) and the vessel area in these layers
(Supplemental Figure 5, F-H). None of this was affected when
VEGFA was neutralized in mice of either genotype (Figure 6H and
Supplemental Figure 5, F-H). Taken together, these data show that
vessel reassembly in the absence of EC apoptosis is not dependent
on abnormally high VEGFA levels or impeded when VEGFA levels
are reduced to a level sufficient to suppress aberrant neovascular-
ization or ESM1 expression.

Reducing ANG2 does not prevent vessel reassembly, but does
impair angiogenic expansion of reassembled vessels. Our data show
that vessel reassembly occurs in response to hypoxia by cells
that exhibit hallmark features of endothelial tip cells. ANG2 is
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highly expressed in tip cells (52-54) and is essential for sprouting
angiogenesis in the retina (53, 55, 56). ANG2 is upregulated in ECs
by hypoxia (57-60), including in the OIR model (57). Given this,
we sought to determine whether ANG2 was necessary for vessel
reassembly. To investigate ANG2 expression in reassembling
vessels, control and Bak”~ Bax®® ¢ mice were exposed to high
oxygen for 48 hours, returned to room air for 12 or 24 hours,
and then stained for ANG2. As expected, ANG2 expression in
control mice was strongly upregulated in ECs along the sprout
front adjacent to the avascular central retina at both time points
(Figure 7A). As previously reported for this antibody (61, 62),
ANG2 was expressed preferentially in ECs located at the sprout
front, consistent with tip cell identity (Supplemental Figure 6A).
In Bak”~ Baxt“E¢ mice we found strong ANG2 expression in the
reassembling endothelium in the central retina 12 hours after
return to room air (Figure 7B). By 24 hours, when most reassembly
was complete, only a few patches of ECs with strong ANG2
expression remained (Figure 7B, yellow arrows).

To test whether ANG2 was necessary for vessel reassembly,
Bak”~ Bax®*/F¢ mice were exposed to 48 + 24 RA to induce network
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fragmentation and reassembly and treated with either an ANG2-
neutralizing antibody (63) or an isotype control antibody on return
to room air (Figure 7C). No difference was observed in the central
retina vessel area or network fragmentation between treatment
groups in the Bak”~ Bax"“E¢ mice, suggesting that ANG2 inhibition
did not inhibit vessel reassembly (Figure 7, D-F). ANG2 inhibition
did, however, reduce endothelial tip cell activity in the retina.
WT mice treated with ANG2-neutralizing antibody following
return to room air showed a 65% reduction in tip cells based on
the morphological criteria of filopodial clusters (Supplemental
Figure 6, B and C), consistent with the known role of ANG2 in
promoting tip cell activity in the retina (53). Consistent with this,
ANG2 inhibition prevented the formation of new vessel networks
from the reassembled vessels by sprouting angiogenesis. Whereas
extensive superficial- and mid-layer vasculature was present in
ANG2-inhibited Bak”~ Baxt/EC retinas 5 days after return to room
air as a result of vessel reassembly (Figure 7, G and H), these
animals contained less deep-layer vasculature compared with
isotype control-treated mice (Figure 7, G-I). Deep-layer vessels
form from vessel sprouts that emerge from the superficial layer.
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We observed strong ANG2 expression in these sprouts in the
periphery of Bak”~ Bax"“/EC retinas 24 hours after return to room
air (Figure 7B, pink arrows), and formation of these vessels during
normal retinal development is impaired in Ang2 mutants (55, 56).
Taken together, these data suggest that ANG2 is not required for
the initial process of vessel reassembly, but is required for further
expansion of the reassembled vessels by sprouting angiogenesis.

Discussion

While blocking apoptosis has previously been shown to prevent
neovascularization in the OIR model (23), the way it did so was
unknown. We show that protecting against BAK/BAX-dependent
apoptosis did not prevent the initial loss of perfusion or breakdown
of the vasculature through vessel regression that leads to areas of
the retina becoming ischemic. Rather, it allowed those ECs that
would ordinarily die during the process of vessel regression to
survive and persist. These did not persist as intact or functional
vessels, butinstead asisolated clusters of cells scattered throughout
the ischemic zones. As the tissue surrounding these isolated ECs
became hypoxic, they underwent a sprouting angiogenic response.
Through this, they reestablished connections with each other
and neighboring vessels, reassembling into a functional network.
These reassembled vessels rapidly restored oxygen supply to the
ischemic tissue, thereby diminishing hypoxia-induced pathological
responses (Supplemental Figure 6D). Our data show that this
mechanism replaces vessels sooner than normal angiogenesis
would, which must grow a new network (including replacement
ECs lost to apoptosis during vaso-obliteration) from vessels
peripheral to the ischemic lesion (Supplemental Figure 6D).

We found that ischemia in the OIR model was caused by
EC apoptosis-independent vessel closure, predominantly in
arterial side-branch vessels. Vessel closure in the OIR model
has been shown to depend on DLL4/Notch signaling through
the regulation of vasoactive gene expression (41). Arterial side-
branch closure led to the loss of blood flow to downstream
capillaries, suggesting that loss of blood flow shear constitutes
the major initiating event in vaso-obliteration. Previous studies
have suggested that vessel closure occurs before apoptosis (41,
42). When apoptosis was blocked, capillaries deprived of blood
flow still initiated a vessel regression response in which vessels
disassembled and ECs retracted into isolated clusters resulting in
network fragmentation. The vessel regression seen in the absence
of apoptosis likely involves a process of cell migration similar
to that which occurs in normal angiogenic vessel pruning. That
process also occurs in response to blood flow changes (25-28) and
is independent of EC apoptosis (24).

When protected from apoptosis, ECs in the fragmented,
nonperfused vessels retained the capacity to initiate a sprouting
angiogenesis phenotype. This occurred in response to hypoxia.
These cells displayed behavioral and morphological features
typical of endothelial tip cells that guide the growth of new vessels
during sprouting angiogenesis (64). This process is responsible
for the vascularization of the retina in response to physiologic
hypoxia (1, 65). Through this behavior, the isolated cells were
able to reestablish connections with neighboring vessels and
reassemble into a functional network. In some instances, ECs
appeared to migrate along predetermined paths. Empty vascular
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basement membranes left behind during vessel regression can
act as a scaffold for vessel regrowth (66, 67). It is likely that this
was occurring during vessel reassembly, as the PECAM1/collagen
IV ratio returned to normal during vessel reassembly, suggesting
that it involves, at least to some extent, recanalization of empty
basement membranes.

Unlike normal sprouting angiogenesis, in which EC
proliferation is coupled to new-vessel growth (47), the sprouting
and network reassembly we observed in the absence of apoptosis
proceeded largely without the need for EC proliferation. While
the exact reasons for this lack of proliferation are unclear, the
unchanging number of ECs throughout the process of network
fragmentation and reassembly possibly suggests some form of
negative feedback mechanism on proliferation. Additionally,
many of the reassembling ECs showed morphological and
molecular features consistent with tip cell activity/identity, a state
known to have less proliferative activity than other EC types (64).
Nonetheless, the formation of extensive deeper-layer vasculature
suggests that reassembled vessels retain the capacity for further
network growth that likely does require EC proliferation. Deep-
layer retinal vessels grow from vessel sprouts originating from the
superficial vascular layer and have not yet formed when mice start
the OIR procedure. These vessels therefore do not reassemble
from existing EC clusters in the apoptosis-resistant mutants in the
same way the superficial layer does. The presence of deep-layer
vasculature in Bak”~ Bax"%/*¢ mice 5 days after return to room air
therefore suggests that reassembled superficial layer vessels are
competent to undergo further sprouting angiogenesis to give rise
to the new vessel networks in the deeper layers. These vessels are
important for normal retina function, as defects in their formation
are associated with diseases that cause vision loss (68).

Vessel reassembly occurred in response to hypoxia, prompting
us to investigate whether it was dependent on the hypoxia-induced,
proangiogenic growth factors VEGFA and ANG2. Both VEGFA and
ANG2 are upregulated in the OIR model following the onset of
hypoxia (36, 48, 57) and are required for pathological neovascular
lesion formation (44, 45, 49, 69). Our data show that reducing
VEGFA to levels that suppress pathological angiogenesis did not
interfere with the vessel reassembly that occurs in the absence of
EC apoptosis. While these findings do not necessarily exclude arole
for low-level VEGFA in the reassembly process, they do show that
it can proceed at levels of VEGFA that are limiting for pathological
angiogenesis, or reduce ESM1 expression by 94%. While the
effects of VEGFA-neutralizing antibodies on neovascularization
and ESM1 expression that we observe suggest direct inhibition
in the retina based on other experimental evidence (44, 45, 49,
51), we cannot rule out systemic effects following intraperitoneal
administration of the neutralizing antibodies.

ANG?2 is a proangiogenic growth factor expressed in endothelial
tip cells (52-54). It is essential for sprouting angiogenesis in the
retina (53, 55, 56). Despite the fact that ANG2 was upregulated
in the ECs of reassembling vessels, neutralization of ANG2 did
not prevent vessel reassembly. ANG2 was, however, required for
reassembled vessels to undergo subsequent angiogenic expansion
to form deep-layer vasculature. The requirement for ANG2 in the
formation of deep-layer vessels has been previously demonstrated
in the context of normal, developmental retinal angiogenesis (55,
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Figure 5. Reassembled vessels in Bak™/- Bax"/% retinas are functional
and limit neovascularization and retinal injury. (A) 48 + 24 RA con-

trol and Bak™”~ Baxt“/f¢ retinas perfused i.v. with lectin and stained for
PECAMT. (B) Hypoxia visualized by pimonidazole (red) staining (costained
with PECAM1, cyan) in control and Bak- Baxt“/é retinas exposed to high
oxygen for 48 hours followed by 24 hours in room air (48 + 24 RA). Scale
bars: 500 pum. (C) Central retina hypoxia in P8 normoxic mice (control, n =
3; Bak™~ Baxt“/¥¢, n = 3) following 48 hours in high oxygen (control, n = 6;
Bak™- BaxF“¢, n = 5) or 48 + 24 RA (control, n = 6; Bak™~ Bax*“/*¢, n = 4).
Two-way ANOVA using Tukey's multiple-comparisons test. (D) Quantifi-
cation of VEGFA protein in whole retina extracts from 48 + 24 RA control
(n = 4) and Bak™- Baxt“/t¢ (n = 4) mice and age-matched normoxic controls
(control, n = 4; Bak™- Baxt“/f¢, n = 4). Two-way ANOVA using Tukey's mul-
tiple-comparisons test. (E) Experimental overview of OIR procedure used
in F-]. (F-H) Representative examples and quantification of neovascular
area in P15 control (n = 8) and Bak~- Baxt“/t¢ (n = 5) retinas stained for
collagen IV and PECAMT. Yellow lines outline neovascular lesions (F);
arrowheads indicate glomerular-like lesions (G). Scale bars: 500 um (F);
50 um (G). Student’s 2-tailed ¢ test. (I and ) Representative images and
quantification of Miiller cell gliosis visualized by GFAP (gray) staining
comparing mice subjected to OIR (control, n = 6; Bak™/~- Baxt“/%, n = 6)
and age-matched controls raised in room air (normoxia; control, n = 2;
Bak™- Baxt“/f¢, n = 2). Isolectin B4 labels ECs (magenta). Scale bars: 100
pm. Two-way ANOVA with Tukey’s multiple-comparisons test. All data
are mean + SEM. Each circle represents 1animal.

56). While we cannot rule out the possibility that some level of
ANG2 activity is required for vessel reassembly, our results suggest
that the threshold is lower than that needed for normal sprouting
angiogenesis. While the effects of ANG2 neutralization on tip cell
activity, sprouting angiogenesis, and deep-layer vessel formation
match previous genetic and inhibitor-based studies in vivo (53,
55, 56) and in vitro (70, 71) and suggest direct neutralization of
ANG2 in the retina, we cannot rule out systemic effects following
intraperitoneal administration of the neutralizing antibodies. We
also cannot rule out the possibility that vessel reassembly occurs
before the full effect of ANG2- or VEGFA-neutralizing antibodies
manifests. However, vessel reassembly became less efficient
following longer exposure to high oxygen, and VEGFA and ANG2
neutralization still did not prevent reassembly even following
longer (3 days) exposure to high oxygen.

Sprouting angiogenesis and tip cell activity are regulated by
many signaling inputs in addition to VEGFA and ANG2. These
include BMPs, FGFs, Notch, cell adhesion, and direct hypoxia
sensing, among others (72), any of which may be essential
during the vessel reassembly process. In addition to forming new
vessel sprouts indicative of tip cell activity, vessel reassembly
also appeared to involve recanalization of preexisting basement
membranes. This process may not be as dependent on factors
involved in normal sprouting angiogenesis and may point to the
requirement of other pathways, the identity of which will require
further investigation.

The reassembly of vessel fragments we observed bears
similarities to vessel formation in other contexts. During
vasculogenesis, angioblasts coalesce into endothelial cords before
establishing lumenized vessels (2); isolated clusters of lymphatic
ECs incorporate into growing lymphatic vessel networks (73); and
isolated vessel segments in the rat mesentery reconnect during
network growth (74). We showed that isolated ECs protected
from apoptosis driven by BAK and BAX can respond to hypoxic
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stimuli to reassemble themselves into a functional vessel network,
resulting in rapid network repair and tissue reoxygenation.
This had the effect of reducing hypoxia, pathological neo-
vascularization, and reactive retinal gliosis. Manipulation of
other pathways, such as ANG1 (44) and ATM signaling (75), has
also been shown to accelerate the repair of the retinal network
and reduce neovascularization in the OIR model. In these cases,
vaso-obliteration proceeded normally, and enhanced centripetal
growth of the peripheral vascular network accounted for the vessel
repair and took longer than the reassembly process we describe
(44, 75). Blocking apoptosis in the OIR model therefore enabled
a fundamentally different and faster approach for restoring blood
supply to the ischemic retina.

Network reassembly became less efficient the longer ECs
were exposed to high oxygen and therefore in the fragmented,
flow-deprived state. While this reduced efficiency may simply
reflect the fact that more fragmentation had occurred at these later
time points, taking longer to repair, other factors may contribute
to hinder the process. By 48 hours, ECs had downregulated the
transcription factor FLI1 and may downregulate other genes
that may affect their responsiveness to angiogenic stimuli.
Changes to the neurovascular unit over time likely also affect
reassembly. Astrocytes promote retinal angiogenesis both in
normal development (37) and in vessel regrowth in the OIR model
(44, 76). The astrocyte network deteriorates rapidly beyond 24
hours of exposure to high oxygen (77). This may explain why
revascularization in our model was less efficient, but still effective,
beyond 24 hours of high oxygen exposure.

Current treatments for neovascular disease in the retina
revolve around reducing the angiogenic stimulus. This is done
either by decreasing the metabolic demand of the retina or by
directly inhibiting VEGFA (8-12). Our findings show that in
the OIR model for retinopathy of prematurity, preventing EC
apoptosis can accelerate revascularization of the retina and reduce
the hypoxic stimulus that drives abnormal VEGFA expression.
Our data show that protecting ECs from apoptosis in this model
enables them to persist within ischemic tissue without the need
for ongoing blood flow support and reestablish functional vessels
sooner than normal angiogenic growth can achieve. Furthermore,
like VEGFA inhibition, blocking apoptosis in the OIR model was
effective at preventing subsequent neovascular response. These
findings may also have implications for restoring blood flow in
other ischemic retinopathies and diseases such as stroke and
myocardial infarction.

Methods

Mice. Conditional Bax mice (78), Bak-null mice (79), Tie2-Cre mice
(80), Cdh5(PAC)-CreERT2 mice (32), caspase-8-null mice (81), Mlkl-
null mice (82), and ROSA265m#ACTE-tdTomato, EGEP)Luo (13 Ty G) mice (46)
have been previously described. Conditional Vegfr2 mice crossed
with Tie2-CreERT2 have been described previously (39) and show
80% reduction of endothelial VEGFR2 protein along with loss of ECs
from nonretinal organs following tamoxifen administration (39, 83).
Animals were maintained on an inbred C57BL/6 background. The day
of birth was termed PO. Mice of both sexes were used. Bak”~ Bax™=</E¢
mice were injected with 50 pg tamoxifen (MP Biomedicals; dissolved
in sterile corn oil plus 5% ethanol) by intragastric injection at P2 and
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Figure 6. Vessel reassembly is insensitive to VEGFA neutralization. (A) Experimental overview of mice analyzed in B-D. (B and C) Representative

images and quantification of central retinal vasculature in mice subjected to the time course shown in A and treated with isotype control (control, n = 4;
Bak™~ Baxt“/¥¢, n = 8) or anti-VEGFA (control, n = 3; Bak™~ Baxt“/#¢, n = 8). Stained for PECAM1. Scale bars: 500 um. Two-way ANOVA with Tukey's multi-
ple-comparisons test. (D) Quantification of central retina hypoxic area in Bak~/~ Baxt“/* mice subjected to the time course shown in A and treated with
isotype control (n = 3) or anti-VEGFA (n = 3). Student’s 2-tailed t test. (E) Experimental overview of mice analyzed in F-H. (F) Representative examples

of neovascularization (yellow outline) in control and Bak~~ Baxt“/%¢ retinas treated with anti-VEGFA or isotype control antibodies. Scale bars: 500 um. (G)
Quantification of neovascular area in retinas from control (isotype, n = 5; anti-VEGFA, n = 4) and Bak™~ Bax*“/( mice (isotype, n = 6; anti-VEGFA, n = 7).
Two-way ANOVA with Tukey's multiple-comparisons test. (H) Quantification of vaso-obliterated area in retinas from control (isotype, n = 5; anti-VEGFA,
n = 4) and Bak”~ Baxt“/* mice (isotype, n = 6; anti-VEGFA, n = 7). Two-way ANOVA with Tukey's multiple-comparisons test. All data are mean + SEM. Each
circle represents 1animal.
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P3. For conditional Vegfr2 mice, tamoxifen (MilliporeSigma) was
dissolved in ethanol and diluted in sterile corn oil to 1 pug/pL, mice
were injected i.p. with 50 pg at P7, P8, and P9, and eyes were dissected
for analysis at P10. Control genotypes for experiments involving Bak”~
Bax®%/E¢ and Bak”~ Bax™/"E¢ mice were Bak”~ Bax'V* Cre*, Bak”~ Bax/V*
Cre’, and Bak” Bax"' Cre .

Oxygen-induced retinopathy. Nursing dams with P7 pups were
housed in a Perspex chamber (BioSpherix) and exposed continuously
t074% + 1% oxygen in air maintained by a ProOx110 oxygen controller
(BioSpherix). Duration of oxygen exposure and subsequent recovery
time in room air is indicated in each figure. Pups were fostered to
BALB/c females following exposure to 3 days of high oxygen to prevent
oxygen toxicity in dams.

VEGFA and ANG2 neutralization experiments. Mouse anti-mouse/
human VEGFA neutralizing antibody B20-4.1.1 (50) (Genentech) and
control mouse anti-human CD8a antibody OKT8 (WEHI Antibody
Facility) were administered to mice by i.p. injection at the time points
indicated either at 5 mg/kg or at the dose stated in the figure legend.
Human anti-mouse/human ANG2 antibody ABA (63) (provided by
Gou Young Koh, KAIST, Daejeon, South Korea) and control human
anti-respiratory syncytial virus antibody palivizumab (provided by
Steven A. Stacker, Peter MacCallum Cancer Centre, Melbourne, Vic-
toria, Australia) were administered to mice by i.p. injection at 20 mg/
kg at the time points indicated.

Immunohistochemical staining. For whole-mount immunohisto-
chemistry, eyes were fixed for 2 hours in 4% paraformaldehyde at
4°C before dissection and blocking of retinas for 1 hour at room
temperature in Dulbecco’s phosphate-buffered saline (DPBS) with
1% Triton X-100 and 2% donkey or goat serum. Retinas were stained
with primary antibodies prepared in blocking solution overnight at
4°C, washed in DPBS containing 0.01% Triton X-100, then stained
overnight with secondary antibodies prepared in blocking solution.
Primary antibodies were rat anti-PECAM1/CD31 (BD Pharmingen,
553370, clone MECI3.3), goat anti-PECAM1/CD31 (R&D Systems,
AF3628), goat anti-collagen IV (Merck, AB769), rabbit anti-cleaved
(active) caspase-3 (Cell Signaling, 9664, clone 5AE1), rat anti-ICAM2/
CD102 [BD Pharmingen, 553326, clone 3C4(mIC2/4)], rat anti-
VE cadherin (BD Pharmingen, 555289, clone 11D4.1), rabbit anti-
pimonidazole (Hypoxyprobe, PAb2627AP), rabbit anti-NG2 (Merck,
AB5320), rabbit anti-ERG (Abcam, ab110639, clone EPR3863), rabbit
anti-FLI1 (Abcam, ab15289), rabbit anti-GFAP (DAKO, Z0334),
human anti-ANG2 (4H10) (63), rabbit anti-phospho-histone H3
(Ser10) conjugated to AF488 (Merck, 06-570-AF488), and goat
anti-ESM1 (R&D Systems, AF1999). Secondary antibodies were
donkey anti-rabbit-Cy3 (711-165-152), donkey anti-rabbit-AF647
(711-605-152), donkey anti-rat-DL488 (712-485-153), donkey anti-
rat-Cy3 (712-165-150), donkey anti-rat-AF647 (712-605-150),
donkey anti-goat-DL405 (705-475-147), donkey anti-goat-Cy3
(705-165-147), and streptavidin-AF488 (016-540-084) (all from
Jackson ImmunoResearch Laboratories). For isolectin B4 (Vector
Laboratories, B-1205) staining, retinas were blocked in 1% BSA, 0.3%
Triton X-100 in DPBS, then incubated with isolectin B4 in 0.4%
Triton X-100 in HBSS. Retinas were mounted with Prolong Diamond
(Invitrogen, P36961). For hypoxia detection, pups were injected i.p.
with 60 mg/kg pimonidazole (Hypoxyprobe) either immediately
after exiting the oxygen chamber (30 minutes labeling duration)
or 24 hours after exiting the chamber (2 hours labeling duration).
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Pimonidazole was detected using rabbit anti-pimonidazole antibody
and staining performed as above. For iv. lectin perfusion, P7 pups
were anesthetized using Xylazil-20 (20 mg/kg; Troy Laboratories
Pty. Ltd.) and ketamine (100 mg/kg; Hospira Australia Pty. Ltd.)
via i.p. injection; then 30 pL of DyLight488-conjugated Lycopersicon
esculentum lectin (Vector Laboratories, DL-1174) was injected retro-
orbitally and allowed to circulate for 2 minutes before retinas were
fixed, dissected, and stained as above. In mice subjected to 48 + 24 RA,
L. esculentum lectin was injected intracardially, via the left ventricle.
For cryosectioning, P18 retinas were fixed for 24 hours, equilibrated
in 30% sucrose in DPBS for at least 1 hour at room temperature, and
frozen in OCT embedding compound (Scigen). Twenty-micrometer
cryosections were adhered to Polysine slides (Thermo Scientific),
washed in DPBS, then blocked and stained as for whole-mount retinas.

Imaging and image analysis. Retinas were imaged with a Leica TCS
SP8 confocal microscope using x10/0.4 NA, x20/0.75 NA, or x40/1.30
NA objectives and Leica Application Suite software. All image analysis
was performed in the Fiji distribution of Image] software (NIH) (84).
Apoptotic ECs (defined as cleaved [active] caspase-3*/PECAMI1*
cells enclosed by collagen IV signal) were quantified manually from
confocal Z-stack images from the central retina at P8 and normalized
to central retina area. Central retina vessel area was calculated based
on PECAMI signal from maximum-intensity projection images
following application of a median filter (2 pixels) and a “despeckle”
filter before manual adjustment of threshold and measurement of
area. Vessel area was normalized to total area of the central retina.
Vessel regression was determined from equivalent areas as a ratio of
PECAMI* vessel segment length to collagen IV* vessel segment length
in a semiautomated fashion. Binary masks of both PECAM1 and
collagen IV channel were made manually by various morphological
filters and thresholding signal. Collagen IV PECAMI vessel segment
mask (i.e., regressing vessels) was generated by subtraction of
PECAMI mask from collagen IV mask. Collagen IV* PECAM1™ mask
and collagen IV mask were then skeletonized, and length of vessels
within each mask was measured. Collagen IV* PECAM1I /collagen
IV ratio was generated automatically based on vessel length. Data
are represented as PECAM1I/collagen IV ratio. ICAM2/collagen IV
ratio was calculated in the same way, replacing PECAM1 with ICAM2
signal. Arterial side branches were counted as perfused if lectin signal
overlapped continuously with ICAM2. Number of perfused arterial
side branches within the central retina was counted and normalized
to artery length. Nonperfused side branches were further categorized
as “attached,” “disrupted,” or “detached” based on ICAM2 signal.
“Attached” vessels were not perfused but had normal ICAM2 signal
(identical appearance to perfused side branches). “Disrupted” side
branches had abnormal ICAM2 morphology compared with normal
vessels, suggesting they were in the process of closing their lumen
and detaching from the artery. “Detached” side branches did not have
continuous ICAM2 signal between side branch and major artery but
did have continuous collagen IV signal. EC number was counted within
equivalent regions of the same size and normalized to retina area. EC
nuclei were counted manually based on ERG or FLI1 nuclei in cells
positive for vascular markers (isolectin B4 or PECAM1). Number of
FLI1 particles (nuclei) was counted after application of a median filter
(2 pixels), removal of noise with “despeckle” function, and analysis of
particles greater than 20 square pixels. Particles were then manually
checked through confocal Z-stacks to ensure all ECs were counted. EC
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Figure 7. ANG2 is not required for vessel reassembly but is required for
expansion of reassembled network. (A and B) Representative images

of ANG2 (magenta, gray) expression in control and Bak™- Baxt“/t retinas
exposed to high oxygen for 48 hours followed by return to room air for 12
hours (+ 12 RA) or 24 hours (+ 24 RA). Costained with PECAM1 (cyan). Pink
arrows indicate ANG2* downward sprouts; yellow arrows indicate patches
of ANG2* vessels. Scale bars: 100 um. (C) Experimental overview of mice
analyzed in D-F. (D and E) Representative images and quantification of
central retinal vasculature in Bak™- Baxt“/f® mice subjected to the time
course shown in C and treated with isotype control (n = 3) or anti-ANG2
(n = 4). Stained for PECAM1. Scale bars: 500 pm. Student’s 2-tailed t test.
(F) Quantification of network fragmentation in the central retina of Bak™/-
Baxf/f mice subjected to the time course shown in C and treated with
isotype control (n = 3) or anti-ANG2 (n = 4). Data for Bak™- Bax®/t

mice exposed to 48 hours of high oxygen from Figure 1G are shown for
comparison. Student’s 2-tailed t test. (G-1) Representative images and
quantification of vascular area in separate layers from the same field of
view of the central retinas of control (isotype control, nn = 3; anti-ANG2,

n = 4) and Bak~~ Baxt/* mice (isotype control, n = 4; anti-ANG2, n = 4).
Scale bars: 100 pm. Two-way ANOVA with Tukey’s multiple-comparisons
test. All data are mean + SEM. Each circle represents 1animal.

proliferation was determined by manual counting of phospho-histone
H3 (Ser10)* FLI1* nuclei and normalized to total EC number in each
region of the retina. ECs were then assigned as peripheral or central
region based on demarcation described above. Network fragmentation,
vessel branch points, and vessel width were quantified from PECAM1
images of central retina vasculature. A median filter (2 pixels) was first
applied to the PECAMI images, which were then segmented using
the Trainable Weka Segmentation Plugin in Fiji (85). Segmented
images were then skeletonized. The number of separate, independent
network skeletons was used as a measure of network fragmentation.
The number of skeletons and the number of vessel branch points were
both normalized to central retina area. Vessel width was calculated as
total vessel area divided by total vessel length calculated from Weka-
segmented images. Hypoxic area in the central retina was quantified
from pimonidazole images. A 20-pixel median filter was applied to
the images and a signal intensity threshold used to distinguish hypoxic
signal from background. Hypoxic area was normalized to total central
retina area. Neovascular tufts were quantified based on maximum-
intensity projection images of collagen IV signals, with neovascular
lesions defined as bright, globular collagen IV* structures. These
were segmented manually in Adobe Photoshop CC 2015 and the area
calculated in Fiji. Neovascular area per retina was normalized to total
retina area. Where necessary, a despeckle filter was applied to select
channels in images displayed in figures for clarity.

Retina live imaging. Bak”~ Bax=°/£¢ mTmG mice were injected with
tamoxifen as described above by intragastric injection at P2 and P3.
Dam and pups were exposed to high oxygen for 48 hours followed
by 12 hours in room air. Retinas were then dissected immediately
in cold DMEM, and 5 radial incisions were made; then retinas were
flat-mounted with the internal limiting membrane face-down on a
disc of 1% low-melting-point agarose gel dissolved in DMEM contain-
ing 10% FCS, and set in a 35-mm culture dish with coverglass bottom
(Eppendorf, 0030740017). Nitex 50-pm filter mesh (Sefar, 03-50/31)
dipped in molten 1% agarose/DMEM/10% FCS mixture was laid on
top of the retina and allowed to set briefly to minimize retina move-
ment during imaging. The dish was then fixed into a custom 3D
printed stage insert with inbuilt water reservoirs to maintain humidity.
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Retinas were live-imaged with an inverted Leica SP8 confocal micro-
scope using a HyD detector and a x10/0.4 NA objective. Retinas were
maintained at 37°C and 5% humidified CO,. Images were acquired
every 30 minutes for 5 hours. After acquisition, a mean filter (1 pixel)
was applied to the images using Fiji software.

VEGFA ELISA. VEGFA levels in whole retina lysates were
quantified using a mouse VEGF Quantikine ELISA kit (R&D Systems,
MMVO0O) per the manufacturer’s instructions. Briefly, freshly
dissected whole retinas were snap-frozen in dry ice, thawed in 50 uL
of DPBS, and homogenized by manual trituration 20 times. Retina
homogenates were subject to 2 freeze/thaw cycles, then centrifuged at
5000 g for 5 minutes. An equal volume of lysate was then assayed per
retina. VEGFA concentrations were calculated from a standard curve
generated by 4-parameter logistic regression analysis in R version
3.4.4 using the drc package (86).

Statistics. All data are shown as mean * SEM. Statistical analyses
were performed for all quantitative data using Prism 7.0 (GraphPad)
or in R version 3.4.4 where specified. P values below 0.05 were con-
sidered significant.

Study approval. All experiments involving animals were per-
formed with procedures approved by The Walter and Eliza Hall Insti-
tute of Medical Research Animal Ethics Committee or with University
of Nottingham Animal Welfare and Ethical Review Board approval.
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