

Supplemental Figure 1. Detection of antigen-specific CD8+ ${ }^{+}$cell populations using combinatorial Tmr staining. (A) Schematic of the semi-combinatorial pooled antigen Tmr staining. (B) Total events were manually gated on singlet live cells that were CD45 ${ }^{+}$CD14-CD19-CD3 ${ }^{+}$CD4-CD8 ${ }^{+}$to identify CD8 ${ }^{+}$T cells. (C) Each of the three Tmr labels for HLA-A2 negative controls and positive samples were gated within total CD8 ${ }^{+}$T cells. (D) Boolean gating was applied to identify cells that were labelled with two of the three metal isotopes, but not the third. Tmr ${ }^{+}$limit of detection was 0.02% of total CD8+ T cells determined by a spike-in clone and all samples included $>10,000$ total CD8 ${ }^{+}$T cells. Representative examples from an HLA-A2 negative or positive individual in which virus- (orange), islet- (green), or insulin-specific (purple) CD8 ${ }^{+}$T cells were identified and overlaid on total CD8 T cells (gray). Tmr, tetramer.

Virus-specific

Islet-specific

B

Supplemental Figure 2. Reproducible detection and phenotyping of antigen-specific CD8 ${ }^{+}$ T cell populations. Five T1D subjects (Supplemental Table 3) with multiple aliquots of cryopreserved PBMC were thawed, stained, and acquired using a 35-parameter mass cytometry panel on three separate days (runs) per subject, with replicates performed on selected days. Total and antigen-specific CD8 ${ }^{+}$T cells were gated as in Supplemental Figure 1. (A) Frequency of antigen-specific CD8 ${ }^{+}$T cells; mean \% coefficient of variation (CV) for virus-, islet-, and insulinspecific CD8+ T cells of $27 \pm 4 \%, 19 \pm 7 \%$, and 59 ± 23, respectively. Black horizontal lines with error bars represent geometric mean \pm geometric SD. (B) \%CV of the mean hyperbolic arcsinetransformed intensity of each of 24 markers on CD8+ T cells across all replicates for each of the five subjects. CV, coefficient of variation.

Supplemental Figure 3. Details of DISCOV-R (DIStribution analysis across Clusters of a parent population OVerlaid with a Rare subpopulation). DISCOV-R was applied to two representative subjects (orange or pink) that were assayed with a 35-parameter CyTOF panel to identify and phenotype antigen-specific (Tmr+) CD8+ T cells. (A) The parent population (CD8+ T cells) is clustered for each individual using Phenograph and visualized on a 2D tSNE (clusters represented as colors). (B) Z-score normalized average expression (compared to total CD8 ${ }^{+} \mathrm{T}$ cells) of all phenotyping markers for all clusters from individual samples. (C) Hierarchical clustering of average z-score normalized expression of all clusters from all individual samples to align clusters across samples (three, indicated by color in bar at top of graph). (D) Islet-specific (Tmr^{+}) $\mathrm{CD8}^{+} \mathrm{T}$ cell events are overlaid onto the aligned clusters to assess their distribution. Tmr, tetramer.

Cluster $\square 1$

- Islet
T1D-01
27 Tmr+ cells

tSNE 1

T1D-02
199 Tmr+ cells

tSNE 1

T1D-03
9 Tmr+ cells

tSNE 1

T1D-04
48 Tmr+ cells

A Insulin
T1D-01
7 Tmr+ cells

tSNE 1

T1D-02
4 Tmr+ cells

tSNE 1

T1D-03
2 Tmr+ cells

tSNE 1

T1D-04
22 Tmr+ cells

tSNE 1

- Virus

T1D-01
11 Tmr+ cells

tSNE 1

T1D-02
31 Tmr+ cells

tSNE 1

T1D-03
27 Tmr+ cells

T1D-04
38 Tmr+ cells

T1D-06
0 Tmr+ cells

ISNE 1
T1D-08 30 Tmr+ cells

Δ Insulin
T1D-05
0 Tmr + cells

T1D-06
2 Tmr+ cells

T1D-07
0 Tmr+ cells

tSNE 1
T1D-08
5 Tmr+ cells

tSNE 1

- Virus

T1D-05
5 Tmr + cells

T1D-06
6 Tmr+ cells

T1D-07
3 Tmr+ cells

tSNE 1

T1D-08
717 Tmr+ cells

tSNE 1

- Islet

T1D-13
89 Tmr+ cells

ISNE 1

T1D-14
3 Tmr+ cells

T1D-15
26 Tmr+ cells

T1D-16
10 Tmr+ cells

ISNE 1
© Insulin
T1D-13
1 Tmr+ cells

tSNE 1

T1D-14
2 Tmr+ cells

T1D-15
5 Tmr+ cells

T1D-16
2 Tmr+ cells

tSNE 1

- Virus

T1D-13
66 Tmr+ cells

tSNE 1

T1D-14
178 Tmr+ cells

tSNE 1

T1D-15
15 Tmr+ cells

tSNE 1

T1D-16
17 Tmr+ cells

tSNE 1

- Islet

T1D-17
2 Tmr+ cells

ISNE 1
T1D-18
138 Tmr+ cells

tSNE 1

T1D-19
13 Tmr+ cells

tSNE 1
T1D-20
2 Tmr+ cells

ISNE 1
Δ Insulin
T1D-17
1 Tmr+ cells

tSNE 1

T1D-18
2 Tmr+ cells

tSNE 1

T1D-19
2 Tmr+ cells

tSNE 1

T1D-20
1 Tmr+ cells

ISNE 1

- Virus

T1D-17
9 Tmr+ cells

tSNE 1

T1D-18
25 Tmr+ cells

T1D-19
13 Tmr+ cells

tSNE 1

T1D-20
21 Tmr+ cells

tSNE 1

- Islet

T1D-21
13 Tmr+ cells

tSNE 1

T1D-22
147 Tmr+ cells

tSNE 1

T1D-23
40 Tmr+ cells

tSNE 1
© Insulin
T1D-21
1 Tmr+ cells

tSNE 1

T1D-22
1 Tmr+ cells

tSNE 1

T1D-23
1 Tmr+ cells

tSNE 1

T1D-24
8 Tmr+ cells

tSNE 1

- Virus

T1D-21
144 Tmr+ cells

tSNE 1

T1D-22
35 Tmr+ cells

tSNE 1

T1D-23
25 Tmr+ cells

tSNE 1

T1D-24
287 Tmr+ cells

tSNE 1

T1D-28
1 Tmr+ cells

tSNE 1

T1D-28
53 Tmr+ cells

tSNE 1

tSNE 1
T1D-30
1 Tmr+ cells

tSNE 1
T1D-31
72 Tmr + cells

T1D-32
43 Tmr+ cells

tSNE 1
Δ Insulin
T1D-29
4 Tmr+ cells

tSNE 1
T1D-30
0 Tmr+ cells

tSNE 1

T1D-31
1 Tmr+ cells

T1D-32
5 Tmr+ cells

tSNE 1

- Virus

T1D-29
23 Tmr+ cells

tSNE 1

T1D-30
95 Tmr+ cells

tSNE 1

T1D-31
19 Tmr+ cells

T1D-32
49 Tmr+ cells

- Islet

T1D-33
5 Tmr+ cells

T1D-34
30 Tmr+ cells

tSNE 1

T1D-35
13 Tmr+ cells

tSNE 1

T1D-36

27 Tmr+ cells

tSNE 1
© Insulin
T1D-33
3 Tmr+ cells

T1D-34
1 Tmr+ cells

tSNE 1

T1D-35
2 Tmr+ cells

tSNE 1

T1D-36
3 Tmr+ cells

tSNE 1

- Virus

T1D-33
429 Tmr+ cells

T1D-34
21 Tmr+ cells

tSNE 1

T1D-35
17 Tmr+ cells

tSNE 1

T1D-36
10 Tmr+ cells

tSNE 1

ISNE 1
T1D-38
3 Tmr+ cells

tSNE 1
T1D-39
298 Tmr+ cells

T1D-40
70 Tmr+ cells

tSNE 1

A Insulin
T1D-37
3 Tmr+ cells

tSNE 1

T1D-38
3 Tmr+ cells

tSNE 1

T1D-39
6 Tmr+ cells

T1D-40
11 Tmr+ cells

tSNE 1

- Virus

T1D-37
10 Tmr+ cells

tSNE 1

T1D-38
58 Tmr+ cells

tSNE 1

T1D-39
28 Tmr + cells

T1D-40
9 Tmr+ cells

tSNE 1

Cluster \quad Islet
T1D-41
128 Tmr+ cells

tSNE 1

T1D-42
19 Tmr+ cells

tSNE 1

T1D-44
117 Tmr+ cells

T1D-43
293 Tmr+ cells

tSNE 1
Δ Insulin
T1D-41
16 Tmr+ cells

tSNE 1

T1D-42
3 Tmr+ cells

tSNE 1

T1D-43
12 Tmr+ cells

tSNE 1

T1D-44
9 Tmr+ cells

tSNE 1

tSNE 1

T1D-44
19 Tmr+ cells
123 \qquad 456789 \square 101112

tSNE 1

T1D-46
198 Tmr+ cells

tSNE 1
Δ Insulin
T1D-45
23 Tmr+ cells

tSNE 1

T1D-46
19 Tmr+ cells

- Virus

T1D-45
32 Tmr+ cells

tSNE 1

T1D-46
54 Tmr+ cells

Supplemental Figure 4. Distribution of antigen-specific CD8 ${ }^{+}$T cells across aligned clusters for individual T1D samples. The DISCOV-R analysis method was applied to total CD8+ and antigen-specific T cells from T1D subjects ($n=46$) that were assayed with our Tmr-CyTOF panel. Shown are overlays of antigen-specific CD8 ${ }^{+}$T cells (squares, islet-specific; triangles, insulin-specific; circles, virus-specific) on the CD8+ T cell landscape for each subject, colored by aligned cluster. Clusters 1, 11, and 12 were dominant among islet-specific cells. Tmr ${ }^{+}$, tetramer positive.

Supplemental Figure 5. Twelve CD8+ ${ }^{+}$cell phenotypes of T1D subjects. A heatmap of mean absolute arcsinh-transformed expression of 24 markers for the twelve aligned clusters determined in Figure 1 and total CD8 ${ }^{+}$T cells from all T1D subjects ($n=46$). Arrows indicate clusters which were consistently dominant among cells of a particular antigen specificity (orange, virus; purple, insulin; green, islet).

Supplemental Figure 6. Antigen-specific CD8+ ${ }^{+}$cells from T1D subjects comprise multiple distinct phenotypes. The DISCOV-R analysis method was applied to total CD8 ${ }^{+}$and antigenspecific T cells from T1D subjects ($n=46$) assayed with our Tmr-CyTOF panel. Twelve aligned clusters common across all samples were defined by hierarchical metaclustering. (A-C) Clusters comprising more than 20% of cells for an individual are indicated in black for (A) total CD8+ T cells ($n=46$), and subjects with at least $5 \mathrm{Tmr}^{+}$cells among (B) insulin-specific cells ($\mathrm{n}=15$) and (C) virus-specific cells ($n=43$). Arrows indicate clusters predominant in at least 25% of samples; the detached bottom row indicates the mean frequency of cells within a cluster for all individuals on a scale from 0% (white) to $20 \%+$ (black). (D-F) The percent of each of the twelve clusters were assessed for (D) total CD8+ T cells ($\mathrm{n}=46$), and subjects with at least $5 \mathrm{Tmr}^{+}$cells among (E) insulin-specific cells ($n=15$) and (F) virus-specific cells ($n=43$). The 3 clusters that are most dominant among islet-specific cells across subjects (clusters 1, 11, and 12) have heavy outline and are stacked at the bottom. Tmr, tetramer.

Supplemental Figure 7. The number of predominant phenotypes of islet-specific CD8 ${ }^{+}$T cells does not correlate with the number of positive islet antigen specificities. A subset of the T1D subjects ($\mathrm{n}=27$) that were analyzed by the DISCOV-R method were also assayed by flow cytometry for frequency of CD8+ ${ }^{+}$cells specific for individual epitopes (PPI, GAD, and IGRP) separately. The number predominantly occupied clusters (phenotypes comprising $>20 \%$ of islet-specific cells) determined by DISCOV-R plotted against the number of positive ($>0.02 \%$) islet antigen specificities determined by flow cytometry. Jitter was added to visualize stacked points. Statistical significance was determined by Spearman correlation.

Supplemental Figure 8. Antigen-specific CD8+ T cell frequency and islet-specific cell phenotype do not differ between healthy controls and T1D subjects. Healthy controls ($n=20$) were assayed with our Tmr-CyTOF panel and included in the DISCOV-R analysis as in Figure 1. (A) Frequencies of antigen-specific (Tmr ${ }^{+}$) within total CD8 ${ }^{+}$T cells among healthy controls ($\mathrm{n}=20$) and T1D subjects ($\mathrm{n}=46$) was compared using a two-way ANOVA with Sidak test for multiple comparisons. (B-D) Clusters comprising more than 20% of cells for an individual are indicated in black for (B) total CD8+ T cells ($n=20$), and individuals with at least 5 Tmr ${ }^{+}$cells among (C) islet-specific cells ($n=13$) and (D) virus-specific cells ($n=13$). Arrows indicate clusters predominant in at least 25% of samples; the detached bottom row indicates the mean frequency of cells within a cluster for all individuals on a scale from 0% (white) to $20 \%+$ (black). (E-G) The percent of each of the twelve clusters were assessed for (E) total CD8+ T cells ($n=20$), and subjects with at least $5 \mathrm{Tmr}^{+}$cells among (F) insulinspecific cells ($n=13$) and (G) virus-specific cells ($n=13$). The 3 clusters that are most dominant among islet-specific cells across subjects (clusters 1, 11, and 12) have heavy outline and are stacked at the bottom. Tmr, tetramer.

Supplemental Figure 9. Virus- and insulin-specific CD8 ${ }^{+}$T cell frequencies and phenotypes do not differ by rate of disease progression. Frequency of (A) virus- or (B) insulin-specific cells among CD8 ${ }^{+}$T cells was assessed for rapid ($\mathrm{n}=14$) and slow ($\mathrm{n}=23$) T1D progressors using a Mann-Whitney test. Frequency the three common isletspecific clusters was assessed for rapid and slow T1D progressors with five or more Tmr ${ }^{+}$events using a two-way ANOVA with Sidak test for multiple comparisons among (C) virus- ($\mathrm{n}=12$ rapid, $\mathrm{n}=22$ slow) or (D) insulin-specific ($\mathrm{n}=4$ rapid, $\mathrm{n}=3$ slow) CD8+ T cells. Black horizontal lines with error bars represent mean \pm SD. Tmr, tetramer; TM, transitional memory.

Supplemental Figure 10. Frequency of manually-gated islet-specific phenotypes is associated with rate of disease progression. T1D samples were manually gated for a small number of selected markers that distinguished clusters 1 (CXCR3+HELIOS-EOMES ${ }^{+}$), 11 (CXCR3 ${ }^{+} \mathrm{HELIOS}^{+}$), and 12 (CXCR3 ${ }^{+}$HELIOS-EOMES ${ }^{-}$). (A) Representative gating strategy for one individual (T1D-41). (B) Frequency of islet-specific CD8+ T cells among the three manually gated populations for rapid ($n=11$) and slow ($n=20$) T1D progressors with 5 or more Tmr+ events. Statistical comparisons were made using a two-way ANOVA with Sidak test for multiple comparisons. Black horizontal lines with error bars represent mean \pm SD. Tmr, tetramer; *, $\mathrm{p}<0.05$.

Supplemental Figure 11. Differential phenotypes of islet-specific and total CD8+ \mathbf{T} cells in rapid and slow progressors remain after accounting for age. Lines show best-fit models for rapid and slow progression groups, using a common slope for ($\mathbf{A} \& B$) islet-specific and (C \& D) total CD8+ T cells. Significance values shown are for differences between groups in a (A \& C) linear or (B \& D) logistic model with age at draw as a covariate. Interaction terms for age x group were not significant for all but islet-specific cells in cluster 11 and were not included in any of the final models.

Supplemental Figure 12. Islet-specific CD8+ T cells with abundant cluster 11 or 12 phenotype are hyperproliferative but produce limited levels of cytokines, IL-2 and IFN- $\boldsymbol{\gamma}$. PBMC from T1D subjects ($\mathrm{n}=11$) with varying frequencies of cluster 11 or 12 among their islet-specific cells were stimulated with anti-CD3 plus anti-CD28. Cells were assayed by flow cytometry to identify islet-specific (Tmr^{+}) CD8+ T cells (Supplemental Figure 13). Frequency of proliferated cells among islet Tmr^{+}cells after 5 days of stimulation, plotted against frequency of (A) cluster 11 or (B) cluster 12 determined by mass cytometry for each individual ($\mathrm{n}=11$). Frequency of IL-2 and IFN- γ positive cells among islet Tmr ${ }^{+}$cells after 6 hours of stimulation, plotted against frequency of (C) cluster 11 or (D) cluster 12 determined by mass cytometry for each individual ($\mathrm{n}=10$); no substantial cytokine production ($<1 \%$) was observed in the absence of stimulation. Statistical significance was determined by Spearman correlation. Tmr, tetramer; TM, transitional memory.

Supplemental Figure 13. Gating strategy to identify islet-specific CD8+ ${ }^{+}$cells using flow cytometry panels. Cells from one representative individual (T1D-34) after stimulation with anti-CD3 plus anti-CD28 were gated for singlet live CD14-CD19-CD56-CD3 ${ }^{+}$CD4-CD8+ (CD8+ ${ }^{+}$cells) that were positive for pooled islet Tmr using the (A) proliferation panel or (B) cytokine panel. Tmr ${ }^{+}$gating was guided by HLA-A2 negative and PPI-specific CD8 ${ }^{+}$T cell clone-spiked control samples. The same gates were applied to stimulated and unstimulated samples from the same subject. Tmr, tetramer; CTV, cell trace violet.

Supplemental Table 1. Antigen-specific CD8 ${ }^{+}$T cell mass cytometry phenotyping panel.

Mass	Target	Clone	Supplier	Cocktail
89	CD45	HI30	Fluidigm	Surface
141	CD45RO	UCHL1	Biolegend*	Surface
142	CD57	HCD57	Fluidigm	Surface
143	CD45RA	H1100	Fluidigm	Surface
144	CD38	HIT2	Fluidigm	Surface
145	CD8	RPA-T8	Biolegend*	Surface
146	CD4	RPA-T4	Biolegend*	Surface
147	KLRG1	14C2A07	Biolegend*	Surface
148	CD14	RMO52	Fluidigm	Surface
149	CD127	A019D5	Fluidigm	Surface
151	Helios	22F6	Biolegend*	Intracellular
152	CD160	BY55	Biolegend*	Surface
153	Tim3	F382E2	Fluidigm	Surface
154	CD3	UCHT1	Fluidigm	Surface
155	TIGIT	MBSA43	eBioscience*	Surface
156	CD25	M-A251	Biolegend*	Surface
158	CD27	L128	Fluidigm	Surface
159	CD161	HP3G10	Fluidigm	Surface
160	Tbet	4B10	Fluidigm	Intracellular
162	Eomes	WD1928	eBioscience*	Intracellular
163	CXCR3	G025H7	Fluidigm	Surface
164	CD95	DX2	Fluidigm	Surface
165	CD19	HIB19	Fluidigm	Surface
166	NKG2D	ON72	Fluidigm	Surface
167	CCR7	G043H7	Fluidigm	Surface
168	Tmr	--	--	Tetramer
169	Tmr	--	--	Tetramer
170	CD122	Tu27	Fluidigm	Surface
171	Granzyme B	GB11	Fluidigm	Intracellular
173	2B4	C1.7	Biolegend*	Surface
174	Tmr	--	--	Tetramer
175	PD1	EH12.2H7	Fluidigm	Surface
176	CD56	NCAM16.2	Fluidigm	Surface
191/193	Iridium (cell size)	--	Fluidigm	Iridium
194-198	Cisplatin (viability)	--	Enzo Life Sciences	Cisplatin

[^0]
Supplemental Table 2. HLA-A*0201 tetramers.

Specificity Pool	Origin	Position/ Protein	Peptide Sequence	Metal Isotope Labels		
				Er168	Er169	Yb174
Islet	PPI	15-24	ALWGPEPAAA	X		X
	GAD65	114-123	VMNILLQYVV	X		X
	IGRP	265-273	VLFGLGFAI	X		X
	pplAPP	5-13	KLQFLIVL	X		X
Insulin	Insulin	B 10-18	HLVEALYLV		X	X
Virus	CMV	pp65	NLVPMVATV	X	X	
	EBV	LMP2	CLGGLLTMV	X	X	

Abbreviations: PPI, preproinsulin; GAD, glutamic acid decarboxylase; IGRP, islet-specific glucose-6phosphatase catalytic subunit-related protein; ppIAPP, prepro-islet amyloid polypeptide; CMV, cytomegalovirus; EBV, Epstein-Barr virus.

Supplemental Table 3. Individual subject demographics.

${ }^{\text {a }}$ Rapid progressors are less than 5 years from diagnosis and have undetectable C-peptide ($<0.05 \mathrm{ng} / \mathrm{mL}$); slow progressors are 5 or more years from diagnosis but retain detectable C-peptide ($>0.1 \mathrm{ng} / \mathrm{mL}$).
${ }^{\mathrm{b}}<5$ years from diagnosis and have detectable C-peptide (>0.1 ng/mL); ≥ 5 years from diagnosis and have undetectable C-peptide ($<0.05 \mathrm{ng} / \mathrm{mL}$).
${ }^{\text {c }}$ Sample was used in reproducibility testing.
${ }^{d}$ A second sample from a later time point was also assayed.
${ }^{e}$ Sample was tested in functional studies.
Nat Amer, Native American.

[^0]: *Unlabeled purified antibodies were conjugated to metal isotopes using Maxpar X8 Antibody Labeling Kits (Fluidigm) as per manufacturer's instructions.

