Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

B cell maturation antigen–specific CAR T cells are clinically active in multiple myeloma
Adam D. Cohen, … , Carl H. June, Michael C. Milone
Adam D. Cohen, … , Carl H. June, Michael C. Milone
Published March 21, 2019
Citation Information: J Clin Invest. 2019;129(6):2210-2221. https://doi.org/10.1172/JCI126397.
View: Text | PDF
Clinical Medicine Clinical trials Oncology

B cell maturation antigen–specific CAR T cells are clinically active in multiple myeloma

  • Text
  • PDF
Abstract

BACKGROUND. CAR T cells are a promising therapy for hematologic malignancies. B cell maturation antigen (BCMA) is a rational target in multiple myeloma (MM). METHODS. We conducted a phase I study of autologous T cells lentivirally transduced with a fully human, BCMA-specific CAR containing CD3ζ and 4-1BB signaling domains (CART-BCMA), in subjects with relapsed/refractory MM. Twenty-five subjects were treated in 3 cohorts as follows: cohort 1, 1 × 108 to 5 × 108 CART-BCMA cells alone; cohort 2, cyclophosphamide (Cy) 1.5 g/m2 plus 1 × 107 to 5 × 107 CART-BCMA cells; cohort 3, Cy 1.5 g/m2 plus 1 × 108 to 5 × 108 CART-BCMA cells. No prespecified BCMA expression level was required. RESULTS. CART-BCMA cells were manufactured and expanded in all subjects. Toxicities included cytokine release syndrome and neurotoxicity, which were grade 3–4 in 8 (32%) and 3 (12%) subjects, respectively, and reversible. One subject died at day 24 from candidemia and progressive myeloma, following treatment for severe cytokine release syndrome and encephalopathy. Responses (based on treated subjects) were seen in 4 of 9 (44%) in cohort 1, 1 of 5 (20%) in cohort 2, and 7 of 11 (64%) in cohort 3, including 5 partial, 5 very good partial, and 2 complete responses, 3 of which were ongoing at 11, 14, and 32 months. Decreased BCMA expression on residual MM cells was noted in responders; expression increased at progression in most. Responses and CART-BCMA expansion were associated with CD4/CD8 T cell ratio and frequency of CD45RO–CD27+CD8+ T cells in the premanufacturing leukapheresis product. CONCLUSION. CART-BCMA infusions with or without lymphodepleting chemotherapy are clinically active in heavily pretreated patients with MM. TRIAL REGISTRATION. NCT02546167. FUNDING. University of Pennsylvania-Novartis Alliance and NIH.

Authors

Adam D. Cohen, Alfred L. Garfall, Edward A. Stadtmauer, J. Joseph Melenhorst, Simon F. Lacey, Eric Lancaster, Dan T. Vogl, Brendan M. Weiss, Karen Dengel, Annemarie Nelson, Gabriela Plesa, Fang Chen, Megan M. Davis, Wei-Ting Hwang, Regina M. Young, Jennifer L. Brogdon, Randi Isaacs, Iulian Pruteanu-Malinici, Don L. Siegel, Bruce L. Levine, Carl H. June, Michael C. Milone

×

Usage data is cumulative from February 2022 through February 2023.

Usage JCI PMC
Text version 9,247 1,281
PDF 1,033 477
Figure 1,291 89
Table 276 0
Supplemental data 527 100
Citation downloads 171 0
Totals 12,545 1,947
Total Views 14,492
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts