Supplementary Figure legends

Supplementary Figure 1. Characterization of polarized human Th17 and Th1 cells. (A) Intracellular cytokine staining was performed for IL-17 by flow cytometry of HD (n = 6) and MS patients (n = 7). **(B)** Intracellular cytokine staining was performed for Th17 and Th1 cells by flow cytometry. **(C)** Quantifiaction of IL17-producing and IL-17/IFNγ producing cells. **(D)** mRNA analysis of the transcription factors *Tbx21, Rorc, Gata3 and Foxp3* was performed in Th17 (n = 6) and Th1 cells (n = 6); normalized to β-actin. Error bars represent mean ± SEM. *, p < 0.05; n.s. = not significant, n.d. = not detectable, unpaired Student's t test [A], Mann-Whitney test [C].

Supplementary Figure 2. No impact of glutaminase inhibition or culturing conditions on T cell differentiation and survival. (A) Intracellular cytokine staining was performed for IFN γ , IL-17, FoxP3 and Tbet on Th17 and Th1 cells ± BPTES (each condition n=3) by flow cytometry. (B) Live-dead staining was performed by flow cytometry for indicated culture conditions showing no significant differences. Error bars represent mean ± SEM. *, p < 0.05; n.s. = not significant, one-way ANOVA with post-hoc Tukey test [A, B].

Supplementary Figure 3. Th17 cells do not express classical neurotoxic molecules. (A) Dot plot representative of FasL and Perforin expression by Th17-differentiated cells after 4 hours TCR stimulation measured by flow cytometry. (B) Intracellular cytokine staining was performed for CD4, IFN γ and IL-17 on Th17 and Th1 cells. (C) mRNA analysis of the transcription factors *Tbet* and *Ror* γt was performed in Th17 cells (n = 6) in comparison to Th1 cells (n = 6). Bars indicate mean ± SEM. n.d. = not detectable, unpaired Student's t test [B].

Supplementary Figure 4. Expression of IL-17 and VAMP4 on murine Th17 cells. (A) Immunocytochemical staining of CD4 and IL-17 on naïve (upper lane) and Th17-differentiated (lower lane) cells (scale bar = 5 μ m). Co-staining was performed with DAPI. (B) Polarized Th17 cells from IL-

17-EGFP mice were sorted into IL-17 producing (GFP+) and non-producing (GFP-) Th17 cells and western blotting stainings were performed for VAMP4 and GAPDH (one representative example out of three is shown).

Supplementary Figure 5. Inflammatory cytokine production correlates with glutamate release. (A) Proliferation of differentiated Th17 cells over 72 hours was assessed by [3H]-thymidine labeling and by CFSE-proliferation assay (n = 9). (B) Cytokine production (pg/ml) by Th17-skewed cells secreted into the supernatant after 4 hours TCR stimulation measured by cytokine bead array (n = 3). (C) Correlation of proinflammatory cytokines IL-17 and TNF α (%) with glutamate secretion (in μ M, n = 10-11). Error bars represent mean ± SEM. (D) Immunohistochemical staining of Kv1.3 in healthy CNS tissue (upper row, scale bar = 50 μ m) and in infiltrated EAE lesions (lower row, scale bar = 15 μ m). Co-staining with NeuN and CD4 was performed. (E) Glutamate secretion levels of primary cortical neuronal cultures after 4-aminopyridine stimulation and MgTX after 24 hours (n = 6 per group). Bars indicate mean ± SEM. *, p < 0.05; ns, not significant, one-way ANOVA with post-hoc Tukey test [A, E], unpaired Student's t test [B], Spearman's rank correlation test [C].

Supplementary Figure 6. Transfection efficiency of primary T lymphocytes. (A) Murine Th17 cells were transfected with iGluSnFR. Live dead staining was performed and the transfection efficiency was evaluated via GFP by flow cytometry.

Supplementary Figure 7. Stimulation of CD29 and VCAM1 does not alter T cell functionality. (A) Proliferation of differentiated Th17 cells \pm CD29 stimulating-Ab or \pm VCAM1 coating over 72 hours was assessed by CFSE-proliferation assay (n = 4). (B) Cytokine IL-17 production by Th17-skewed cells after 4 hours TCR stimulation measured by flow cytometry (n = 4). Bars indicate mean \pm SEM. ns = not significant, one-way ANOVA with post-hoc Tukey test [A, B].

Supplementary Video legends

Supplementary Video 1. Effect of MgTX in TN-XXL Rag^{-/-} control conditions. Intravital two-photon microscopy in the brain stem of living B6.Thy1-TN-XXLxRag2 γ c^{-/-} anaesthetized mice. Somata and axons are shown (TN-XXL = YFP, CFP; yellow, blue fluorescent proteins). Margatoxin (5 μ M) was puffed locally during imaging of control mice.

Supplementary Video 2. **K**_v**1.3 blockade on Th17 cells reduces Ca²⁺ elevations** *in vivo* in EAE. Passive EAE in B6.Thy1-TN-XXLxRag2 γ c^{-/-} mice was induced by transfer of 1x10⁷ CD4⁺Th17 cells (B6.RFPx2D2) intravenously. At the peak of disease, intravital two-photon microscopy was performed in the brain stem of living anaesthetized mice. Immune cells (RFP, red fluorescent protein) infiltrate the upper brainstem region and show close proximity with somata and axons (TN-XXL = YFP, CFP; yellow, blue fluorescent proteins). Neuronal free Ca²⁺ levels were assessed by FRET measurements (525 nm/475 nm ratio, false color coded representation). Margatoxin (5 μ M) was puffed locally during imaging of EAE mice (for better visualization: red puff at timepoint 35).

Supplementary Tables

Supplementary Table 1. Clinical and demographic information for patients and controls for CSF samples.

	NIND	RRMS	p-value
n	14	16	
Age	49 (34; 55)	37 (27; 45.75)	
Sex	2M 12F	5M 11F	0.9998
Glutamate	12.41 ± 1.581	11.35 ± 1.555	0.6106
Glutamine	612.8 ± 26.72	822.9 ± 83.58	0.0318

Human CSF samples were isolated from RRMS patientes (n = 16) and non-inflammatory neurological disease patients (n= 14). The median (minimum, maximum) of the age and sex is shown. The glutamate and the glutamine levels (mean μ M, ±SEM) were assessed for each group.

Supplementary Table 2. Clinical and demographic information for patients and controls for CD4⁺ cells.

	Healthy	MS	p-value
n	17	32	
Age	29 (26; 33)	36.5 (30.25; 48.50)	
Sex	5M 12F	12M 20F	
EDSS	N.A.	1 (0; 2)	
Disease Duration (yr)	N.A.	2 (1; 7)	
Glutamate	14.57 ± 1.923	21.42 ± 2.713	0.0924
IL-17 %	1.034 ± 0.1541	0.8284 ± 0.2822	0.5836

Human CD4⁺ cells (>98%) were isolated from PBMCs of healthy donors (n = 17) and MS patients (n=

32). The median (minimum, maximum) of the age, sex, Expanded Disability Status Scale (EDSS) score

and disease duration is shown. The glutamate secretion levels (mean μ M, ±SEM) and the IL-17 production (mean %, ±SEM) were assessed for each group.

Supplementary Table 3. Clinical and demographic information for patients and controls for Th1 and

Th17 cells.

	Healthy	MS	p-value
n	8	15	
Age	30 (26; 36)	32 (21; 53)	
Sex	4M 4F	6M 9F	0.90
EDSS	N.A.	0 (0; 3.5)	
Disease Duration (yr)	N.A.	3 (1; 7)	

Human CD4⁺IL-17⁺ cells were isolated from PBMCs of healthy donors (n = 8) and MS patients (n= 15). The median (minimum, maximum) of the age, sex, Expanded Disability Status Scale (EDSS) score and disease duration is shown. The glutamate secretion levels (mean μ M, ±SEM) and the IL-17 production (mean %, ±SEM) were assessed for each group.

Supplementary Table 4. qPCR primer information.

Official gene name	Primer name	Primer sequence
Homo sapiens actin, beta (AKTB)	Hs-ßACTIN-F	TTAGTTGCGTTACACCCTTTC
	Hs-ßACTIN-R	ACCTTCACCGTTCCAGTT
Homo sapiens	Hs-GAPDH-F	TATGACAACAGCCTCAAG
glyceraldehyde-3-phosphate	Hs-GAPDH-R	TTCCACGATACCAAAGTT
dehydrogenase (GAPDH)		
Homo sapiens	Hs-RPS13-F	GAAAGGATAAGGATGCTAAA
RPS13		
	HS-KPS13-R	AGAGGCTGTAGATGATTC

Homo sapiens	Hs-GLUTAMINASE-	TGTCTTCAGTCCTGTGTA
Glutaminase	F	
	Hs-GLUTAMINASE-	TGTGGTTTATCATCTTCATTC
	R	
Homo sapiens	Hs-KCNA3-F	TGAGTAAGTCGGAGTATA
Kv1.3 (KCNA3)	Hs-KCNA3-R	AAGAGTTGGGATTATTGT
Homo sapiens	Hs-ATPASED2-F	ACTACTGATTATGGTAAC
ATPase D2	Hs- ATPASED2-R	ATATAGGTGAGAAATGTG
Homo sapiens	Hs-Rorc-F	CTCCATCTTTGACTTCTC
Rorc	Hs-Rorc-R	GCTGTTCTACTTTCCTTT
Homo sapiens	Hs-Gata3-F	AAATACTGAGAGAGGGAGAGA
Gata3	Hs-Gata3-R	GGTAGCGAAGAGCAGAGA
Homo sapiens	Hs-Foxp3-F	GGCACAATGTCTCCTCCAGAGA
Foxp3	Hs-Foxp3-R	CAGATGAAGCCTTGGTCAGTGC
Homo sapiens	Hs-Tbx21-F	AATGTGACCCAGATGATT
Tbx21	Hs-Tbx21-R	AAAGTAAAGATATGCGTGTT
Mus musculus actin, beta (Actb)	Mm-ß-ACTIN-F	AATCTTCCGCCTTAATACT
	Mm-ß-ACTIN-R	AGCCTTCATACATCAAGT
Mus musculus	Mm-GAPDN-F	CAGCAACTCCCACTCTTC
dehydrogenase (GAPDH)	Mm-GAPDN-R	TGTAGCCGTATTCATTGTCAT
Mus musculus Rps29-like protein	Mm-RSP29-F	CAAATACGGGCTGAACAT
	Mm-RSP29-R	GTCGCTTAGTCCAACTTAA

Mus musculus Glutaminase	Mm-	TGTGCTCTATTGAAGTGA
	GLUTAMINASE-F	
	Mm-	CTCAGTGTATTCCGAACT
	GLUTAMINASE-R	
Mus musculus ATPase	Mm-ATPASE-F	CCCATTCTTGAGTTTGAG
	Mm-ATPASE-R	CTGTCTTCTTTGCTTAGTT
Mus musculus Kv1.3 (KCNA3)	Mm-KCNA3-F	GCACCACGAACAATAACC
	Mm-KCNA3-R	AATCAAGGGCATACACAGA
Mus musculus VCAM-1	Mm-VCAM1-F	AGACTACACTGATGAAGAA
	Mm-VCAM1-R	GAGGCAAACAAGAGATTT
Mus musculus VGlut2 (Slc17a6)	Mm-SLC17A6-F	GCTTCTGGTGTCTTATGA
	Mm-SLC17A6-R	CAATGCTCTCCTCTATGTA
Mus musculus VGlut1 (Slc17a7)	Mm-SLC17A7-F	AGTTCTGTCTTCTATGTCTAT
	Mm-SLC17A7-R	TGGCATCCTCAATGTATT
Mus musculus VGlut3 (Slc17a8)	Mm-SLC17A8-F	ATAGAGACAAGCATAGGAGAAG
	Mm-SLC17A8-R	GCATAGACAGGCAAGGAT
Mus musculus Aspartate aminotransferase	Mm-GOT2-F	AGCAGACCACATTACAGAA
(GOT2)	Mm-GOT2-R	GGACACGACACTACATCTT
Mus musculus Vesicle-associated	Mm-VAMP2-F	CGCAAATACTGGTGGAAA
membrane protein 2	Mm-VAMP2-R	ATGATGATGATGAGGATGATG
Mus musculus Vesicle-associated	Mm-VAMP3-F	AAGTATTGGTGGAAGAAC
membrane protein 3	Mm-VAMP3-R	CGATGATGATGATGACAA
Mus musculus Vesicle-associated	Mm-VAMP4-F	AGGAACTGGACTACTAATC
membrane protein 4	Mm-VAMP4-R	ATGCTCTTACTATCACTCA
Mus musculus Synaptosomal-associated	Mm-SNAP23-F	CGTCTCTTCATCTCTTCATT
protein 23	Mm-SNAP23-R	AACCAACCAACCAATACC
Mus musculus RORgt	Mm-RORgt-F	GGATAGAGATAGGATGAC
	Mm-RORgt-R	GAAAGGACTGTTATTAGC
Mus musculus Tbet	Mm-Tbet-F	GTGGAGGTGAATGATGGA
	Mm-Tbet-R	ATCTCTGCGTTCTGGTAG

The primers listed were designed using Beacon Designer Software for designing primers especially for qRT-PCR experiments.

Supp 1

Th17

Supp 3

B Th17 cells from IL-17-GFP mice GFP- GFP+ VAMP4 GAPDH

Ε

В

Supp 5

mock transfection

GFP-transfected primary T cells

