

Fig. S1, related to Fig. 1:

- A) Blood counts of Nipa^{+/+} and Nipa^{-/-} mice younger and older than 12 months.
 n(Nipa^{+/+})=32, n(Nipa^{-/-})=30.
- B) Percentages of lymphocytes, monocytes and granulocytes within leukocytes of Nipa^{+/+} and Nipa^{-/-} mice younger and older than 12 months. n(Nipa^{+/+})=32, n(Nipa^{-/-})=30.
- C) Representative flow cytometry gating strategy of hematopoietic lineages in PB of 17-27-month-old *Nipa*^{+/+} and *Nipa*^{-/-} mice.
- D) Hematopoietic lineages determined by flow cytometry in PB of 17-27 months old *Nipa*^{+/+} and *Nipa*^{-/-} mice. n(*Nipa*^{+/+})≥6, n(*Nipa*^{-/-})≥5.
- E) Hematopoietic lineages determined by flow cytometry in spleen cells of 17-27 months old Nipa^{+/+} and Nipa^{-/-} mice. n(Nipa^{+/+})=12, n(Nipa^{-/-})=13.
- F) Hematopoietic lineages determined by flow cytometry in BMCs of 17-27 months old Nipa^{+/+} and Nipa^{-/-} mice. n(Nipa^{+/+})=9, n(Nipa^{-/-})≥7.

A p-value less than 0.05 was considered significant. *p<0.05; **p<0.01. An unpaired two-tailed Student's t-test was used for statistical analyses. Data are represented as mean \pm SD.

Fig. S2, related to Fig. 2:

- A) Scheme of competitive BM Tx assay. CD45.2⁺ Nipa^{+/+} and Nipa^{-/-} BMCs were mixed with CD45.1⁺ wt BMCs (test:support = 1:3) and transplanted into lethally irradiated CD45.2 positive recipient mice.
- B) Scheme of serial LSK Tx assay. Briefly, 2000 CD45.2⁺ Nipa^{+/+} and Nipa^{-/-} LSKs were mixed with 300000 CD45.1⁺ wt BMCs and transplanted into lethally irradiated CD45.1/CD45.2 double positive recipient mice. LSKs were isolated after 17 weeks for the second and after another 17 weeks for the third serial Tx.
- C) Representative flow cytometry profile of PB chimerism of transplanted recipient mice of serial LSK Tx.
- D) Percentage of donor-derived spleen cells analyzed by flow cytometry at the end of the first and second serial LSK Tx assay. 1st Tx: n(*Nipa*^{+/+})=6, n(*Nipa*^{-/-})=6. 2nd Tx: n(*Nipa*^{+/+})=4, n(*Nipa*^{-/-})=5.
- E) Percentage of donor-derived LT-HSCs analyzed by flow cytometry at the end of first and second serial LSK Tx assay. 1st Tx: n(*Nipa*^{+/+})=4, n(*Nipa*^{-/-})=2. 2nd Tx: n(*Nipa*^{+/+})=7, n(*Nipa*^{-/-})=9.
- F) Relative compositions of B- (B220+), T- (Thy1.2+), myeloid (B220-/Thy1.2-) cell (left) and immature (CD11b+/Gr-1^{intermediate}) and mature (CD11b+/Gr-1^{high}) granulocyte as well as monocyte (CD11b+/Gr-1-) (right) chimerism in PB cells of recipient mice at the end of serial LSK Tx analyzed by flow cytometry. 1st Tx: n(*Nipa*^{+/+})=8, n(*Nipa*^{-/-})=8. 2nd Tx: n(*Nipa*^{+/+})=8, n(*Nipa*^{-/-})=12. 3rd Tx: n(*Nipa*^{+/+})=5, n(*Nipa*^{-/-})=2.

A p-value less than 0.05 was considered significant. *p<0.05; **p<0.01; ***p<0.001. An unpaired two-tailed Student's t-test was used for statistical analyses. Data are represented as mean +SD.

Fig. S3, related to Fig. 2:

A) Representative H&E staining of BM sections of 8 months old Nipa^{+/+} and Nipa^{-/-} mice after 5-FU treatment day -10 and -3. 10x magnification. Scale bar represents 100 μm.

- B) Cell cycle analysis of *Nipa^{+/+}* and *Nipa^{-/-}* LSKs after 5-FU activation day -5, measured by labeling with BrdU and PI. Representative flow cytometry profile on the right. n(*Nipa^{+/+}*)=4, n(*Nipa^{-/-}*)=4.
- C) Absolut number of LSK cells harvested from Nipa^{+/+} and Nipa^{-/-} mice after 5-FU administration (i.p.) at indicated time points (days). Wildtype LSKs are set to 100%. n(Nipa^{+/+})=4, n(Nipa^{-/-})=4.
- D) Representative flow cytometry profile of LSK cells isolated from Nipa^{+/+} and Nipa^{-/-} mice 24 hours after 5-FU administration (i.p.) and labeling with cell trace violet. Analysis was done at day 0, 2 and 3 of *ex vivo* culture. n(Nipa^{+/+})=4, n(Nipa^{-/-})=4.
- E) Percentages of apoptotic cells (Annexin V+) within the LSK population isolated from Nipa^{+/+} and Nipa^{-/-} mice after 5-FU administration (i.p., day -1) and culture *ex vivo* for 4 days. Representative flow cytometrie profile on the right. n(Nipa^{+/+})=4, n(Nipa^{-/-})=4.

A p-value less than 0.05 was considered significant. *p<0.05. An unpaired two-tailed Student's t-test was used for statistical analyses. Data are represented as mean +SD.

Fig S4, related to Fig. 2:

- A) Cell cycle image cytometry analysis of EdU/ FxCycleViolet staining of BMCs, LK and LSK cells of 21-27 month old *Nipa^{+/+}* and *Nipa^{-/-}* mice. Representative ScanR microscopy (left) and quantitative analysis of EdU+ cells (right). n(*Nipa^{+/+}*)=8, n(*Nipa^{-/-}*)=5.
- B) Image cytometry analysis of Ki67 staining of BMCs, LK and LSK cells of 21-27 month old Nipa^{+/+} and Nipa^{-/-} mice. n(Nipa^{+/+})=8, n(Nipa^{-/-})=5.

A p-value less than 0.05 was considered significant. An unpaired two-tailed Student's ttest was used for statistical analyses. Data are represented as mean +SD.

Fig. S5, related to Fig. 3:

- A) Immunofluorescence for γ-H2AX foci in aged (11-18 months) Nipa^{+/+} and Nipa^{-/-} lineage positive cells. n(Nipa^{+/+})=326, n(Nipa^{-/-})=358.
- B) Immunofluorescence for γ-H2AX foci in 8 months old Nipa^{+/+} and Nipa^{-/-} HSCs 3 hours after 4 Gy IR. n(Nipa^{+/+})=105, n(Nipa^{-/-})=280.
- C) Immunofluorescence for γ-H2AX foci in 8 months old Nipa^{+/+} and Nipa^{-/-} lineage positive cells 11 hours after 4 Gy IR. n(Nipa^{+/+})=228, n(Nipa^{-/-})=218.
- D) Representative flow cytometry profiles for Annexin V/ 7-AAD staining of LSKs and LKs from *Nipa*^{+/+} and *Nipa*^{-/-} mice older than 20 months.
- E) Percentages of early apoptotic cells (Annexin V+/7-AAD-) within hematopoietic subpopulations in aged (>20 months) Nipa^{+/+} and Nipa^{-/-} hematopoietic cells isolated from spleen. n(Nipa^{+/+})=8, n(Nipa^{-/-})=8.
- F) Percentages of early apoptotic cells within donor-derived Nipa^{+/+} and Nipa^{-/-} BMCs of recipient mice at the end of 2nd serial LSK Tx. n(Nipa^{+/+})=4, n(Nipa^{-/-})=4.
- G) Scheme of microarray experimental strategy.
- H) Heat map of expression levels of apoptosis related genes between aged (>20 months) 4 Gy irradiated Nipa^{+/+} and Nipa^{-/-} HSCs analyzed by microarray. Color scale represents row Z-score mRNA intensity values.
- Heat map of expression levels of DNA damage repair related genes between aged (>20 months) untreated Nipa^{+/+} and Nipa^{-/-} HSCs analyzed by microarray. Color scale represents row Z-score mRNA intensity values.

A p-value less than 0.05 was considered significant. *p<0.05; **p<0.01; ***p<0.001. An unpaired two-tailed Student's t-test was used for statistical analyses. Data are represented as mean +SD.

Fig S6, related to Fig. 4:

- A) FANCD2-Co-Immunoprecipitation of untreated 32D cells with endogenous levels of NIPA.
- B) FANCD2-Co-Immunoprecipitation of untreated Baf3 cells with endogenous levels of NIPA.
- C) FANCD2-Co-Immunoprecipitation of untreated HPC7 cells with endogenous levels of NIPA.
- D) FANCD2-Co-Immunoprecipitation of untreated Nipa^{+/+} spleen cells with endogenous levels of NIPA.

Fig S7, related to Fig. 4:

- A) Expression level of *FancD2* in *Nipa^{+/+}* and *Nipa^{-/-}* primary MEFs analyzed by real-time PCR. Results were normalized to GAPDH. Data of 3 independent experiments. n(*Nipa^{+/+}*)=8, n(*Nipa^{-/-}*)=8.
- B) Immunofluorescence for FANCD2 in HeLa cells retrovirally transfected with pLMP miR^{Ctrl} or miR^{Nipa}.

A p-value less than 0.05 was considered significant. An unpaired two-tailed Student's ttest was used for statistical analyses. Data are represented as mean +SD.

Fig S8, related to Fig. 4:

- A) Representative western blot analysis of MG132 treated *Nipa*^{+/+} and *Nipa*^{-/-} primary MEFs for FANCD2, NIPA and VINCULIN.
- B) Quantification of western blot analysis of non- and mono-ubiquitinated FANCD2 levels of Nipa^{+/+} and Nipa^{-/-} primary MEFs treated with MG132 for indicated time frames. n(Nipa^{+/+})=7, n(Nipa^{-/-})=7.

A p-value less than 0.05 was considered significant. *p<0.05; **p<0.01. A paired twotailed Student's t-test was used for statistical analyses. Data are represented as mean +SD.

Fig S9, related to Fig. 4:

- A) Representative western blot analysis of untreated *Nipa*^{+/+} and *Nipa*^{-/-} primary MEFs analysed for FANC proteins.
- B) Quantification of western blot analysis of untreated Nipa^{+/+} and Nipa^{-/-} primary MEFs analysed for FANC proteins. n(Nipa^{+/+})=4, n(Nipa^{-/-})=4.

A p-value less than 0.05 was considered significant. *p<0.05. A paired two-tailed Student's t-test was used for statistical analyses. Data are represented as mean +SD.

Fig. S10, related to Fig. 5:

- A) Expression level of *FancD2* in untreated and MMC treated (0.5µM for 6h and 24h) Nipa^{+/+} and Nipa^{-/-} primary MEFs analyzed by real-time PCR. Results were normalized to GAPDH. Untreated and 6h: n(Nipa^{+/+})=8, n(Nipa^{-/-})=8. 24h: n(Nipa^{+/+})=4, n(Nipa^{-/-})=4.
- B) Quantification of relative FANCD2 protein levels of Nipa^{+/+} and Nipa^{-/-} primary MEFs).
 n(Nipa^{+/+})=7, n(Nipa^{-/-})=7.
- C) Immunofluorescence for γ-H2AX foci in untreated and 6h MMC treated (0.1µM) Nipa^{+/+} and Nipa^{-/-} primary MEFs. Representative confocal microscopy images are shown.

A p-value less than 0.05 was considered significant. *p<0.05; ****p<0.0001. An unpaired (S10A) or paired (S10B) paired two-tailed Student's t-test was used for statistical analyses. Data are represented as mean +SD.

*

15

Fig S11, related to Fig. 6:

- A) Immunofluorescence for FANCD2, NIPA and DAPI in untreated and 6 hour MMC (0.5µM) treated *Nipa^{+/+}* and *Nipa^{-/-}* primary MEFs retrovirally transfected with pBABE^{NipaWT} or pBABE^{NipaΔF-box}. Additional confocal microscopy images for Figure 6A.
- B) Representative Flag-Co-Immunoprecipitation of Phoenix E cells, transiently transfected with Flag-hNIPA WT or Flag-hNIPA ∆F-box.
- C) Quantification of Flag-Co-Immunoprecipitation of Phoenix E cells, transiently transfected with Flag-hNIPA WT or Flag-hNIPA Δ F-box. n(Flag-hNIPA WT)=5, n(Flag-hNIPA Δ F-box)=3.
- D) Average fluorescence intensity of FANCD2 staining in the nucleus and the cytosol of Nipa^{+/+} and Nipa^{-/-} primary MEFs (no MMC) shown in Fig. 6A, analysed by image cytometrie. Nuclear FANCD2: n(Nipa^{+/+})=2039, n(Nipa^{-/-})=3257, n(Nipa^{-/-} +Nipa WT)=1150, n(Nipa^{-/-} +Nipa ΔF-box)=262. Cytosolic FANCD2: n(Nipa^{+/+})=1971, n(Nipa^{-/-})=3090, n(Nipa^{-/-} +Nipa WT)=1123, n(Nipa^{-/-} +Nipa ΔF-box)=255.
- E) Nipa^{+/+} or Nipa^{-/-} BMCs were retrovirally infected with pMIG^{empty}, pMIG^{NipaWT} or pMIG^{NipaΔF-box} and used for in vitro CFU assay. Representative western blot analysis of BMCs used for CFU assay shown.

A p-value less than 0.05 was considered significant. *p<0.05; ***p<0.001; ****p<0.0001. A paired two-tailed Student's t-test (S11C) or a nonparametric two-tailed Mann-Whitney test (S11D) was used for statistical analyses. Data are represented as mean +SD.

Fig S12, related to Fig. 6:

- A) Quantification of chromosome radials per cell of untreated and MMC (5nM and 10 nM) treated *Nipa^{-/-}* spleen cells transfected with siRNA^{Ctrl} or siRNA^{Fancd2}. no MMC: n(*Nipa^{-/-}* +siRNA^{Ctrl})=34, n(*Nipa^{-/-}* +siRNA^{Fancd2})=34. +MMC: n(*Nipa^{-/-}* +siRNA^{Ctrl})=23, n(*Nipa^{-/-}* +siRNA^{Fancd2})=34.
- B) Representative images of DAPI stained metaphase spreads of untreated and MMC (5nM) treated *Nipa^{-/-}* spleen cells transfected with siRNA^{Ctrl} or siRNA^{Fancd2}. Arrows indicate chromosome radials.

- C) Representative western blot of spleen cells used for metaphase spreads shown in (A) and (B).
- D) Cell survival assay of *Nipa^{-/-}* primary MEFs transfected with siRNA^{Ctrl} or siRNA^{Fancd2} measured after 5 days of culture with indicated concentrations of MMC. Data from 3 independent test are shown. n(*Nipa^{-/-}* +siRNA^{Ctrl})=12, n(*Nipa^{-/-}* +siRNA^{Fancd2})=12.
- E) Representative western blot of MEFs used for cell survival assay shown in (D).

A p-value less than 0.05 was considered significant. An unpaired two-tailed Student's ttest was used for statistical analyses. Data are represented as mean +SD.

Fig. S13, related to Fig. 7:

- A) Scheme of short-term and chronic Poly(I:C) treatment assay. Poly(I:C) was injected i.p. into Nipa^{+/+}, Nipa^{-/-} (short-term), Vav^{wt/wt}Nipa^{cko/cko} and Vav^{Tg/wt}Nipa^{cko/cko} mice (chronic) twice a week for 4 weeks, followed by 4 weeks of recovery time. Mice of short-term assay were analyzed at day 56, for chronic treatment the cycle was repeated.
- Blood values of Nipa^{+/+} and Nipa^{-/-} mice (age 3-4 months) treated with Poly(I:C) twice a week for 4 weeks followed by 4 weeks of recovery time. n(Nipa^{+/+})=13, n(Nipa^{-/-})= 13.
- C) BM cellularity of Nipa^{+/+} and Nipa^{-/-} mice (age 3-4 months) at day 56 after Poly(I:C) treatment. n(Nipa^{+/+})=4, n(Nipa^{-/-})=6.
- D) Percentage of LSK and LK cells in Nipa^{+/+} and Nipa^{-/-} BMCs at day 56 after Poly(I:C) treatment. n(Nipa^{+/+})=4, n(Nipa^{-/-})=6.
- E) Cell cycle flow cytometry analysis of EdU/ FxCycleViolet staining of BMCs harvested from *Nipa^{+/+}* and *Nipa^{-/-}* mice at day 56 after Poly(I:C) treatment. Representative flow cytometrie profiles on the right. n(*Nipa^{+/+}*)=4, n(*Nipa^{-/-}*)=5.
- F) Representative H&E staining of BM sections of Vav^{wt/wt}Nipa^{cko/cko} and Vav^{Tg/wt}Nipa^{cko/cko} mice following regular Poly(I:C) treatment sacrificed when moribund or end of experiment. 10x magnification. Scale bar represents 100 μm.
- G) Representative reticulin staining of BM sections of *Vav^{wtwt}Nipa^{cko/cko}* and *Vav^{Tg/wt}Nipa^{cko/cko}* mice following regular Poly(I:C) treatment sacrificed when moribund or end of experiment. 10x magnification. Scale bar represents 100 μm.
- H) LSK cells isolated of untreated or Poly(I:C) treated (day 56) mice (age 3-5 months) and stained for FANCD2 (red) and DAPI (blue). Additional confocal microscopy images for Figure 7D.

A p-value less than 0.05 was considered significant. *p<0.05; **p<0.01; ***p<0.001. An unpaired two-tailed Student's t-test was used for statistical analyses. Data are represented as mean +SD.

Α

Patient sample	EWOG Study ID	Diagnosis	Karyotype	Germline pre- disposition	Treatment	IHC signal for NIPA
#1		IBMFS	46, XY	Fanconi anemia	Oxymetholon	physiological
#2		IBMFS	46, XY	Fanconi anemia	Wach+wait	physiological
#3		IBMFS	46, XY	Fanconi anemia	Oxymetholon	physiological
#4	D1224**	IBMFS	46, XX	Fanconi anemia	HSCT	physiological
#5		IBMFS	46, XY	Fanconi anemia	-	physiological
#6		IBMFS	46, XY	Fanconi anemia	HSCT	physiological
#7	D1143***	Secondary RCC in IBMFS	46, XY	suspected FA (syndrome; sister FA+)	HSCT	physiological
#8	D1010	Hypocellular RCC	46, XY	GATA2 mut.	HSCT	physiological
#9	D1142	Hypocellular RCC	45,XY, -7	GATA2 mut.	HSCT	physiological
#10	D1072	Hypocellular RCC	45,XX, -7	GATA2 mut.	HSCT	physiological
#11	D1127	Hypocellular RCC	45,XX, -7	SAMD9L mut.	HSCT	physiological
#12	D1160	Hypocellular RCC	46, XY	SAMD9L mut.	HSCT	physiological
#13	D1155	Normocellular RCC	46, XX	RUNX1 mut.	Wach+wait	physiological
#14	D1061	Hypocellular RCC	45,XY, -7	none identified* (syndrome suspected)	HSCT	physiological
#15	D1157	Hypocellular RCC	46, XY	none identified* (syndrome suspected)	HSCT	physiological
#16	D1080	Hypocellular RCC	46, XX	none identified*	IST (good resp)	physiological
#17	D1052	Hypocellular RCC	46, XX	none identified*	HSCT	physiological
#18	D1055	Hypocellular RCC	46, XX	none identified*	HSCT	physiological
#19	D1079	Hypocellular RCC	46, XX	none identified*	HSCT	physiological
#20	D1046	Hypocellular RCC	46, XX	none identified*	HSCT (IST unsuccessful)	physiological
#21	D1132	Hypocellular RCC (hepatitis associated)	46, XX	none identified*	HSCT	reduced
#22	D1187	Hypocellular RCC	46, XX	none identified*	HSCT	reduced
#23	D1201	Hypocellular RCC	46, XY	none identified*	Watch+wait	reduced
#24	D1048	Hypocellular RCC	46, XY	none identified*	HSCT	reduced
#25	D 995	Hypocellular RCC	46, XY	n.d.	HSCT	reduced
#26	D1205	Hypocellular RCC	46, XY	none identified*	HSCT	reduced
#27	D1193	Hypocellular RCC	46, XY	none identified*	Watch+wait	reduced
#28	D1107	Hypocellular RCC	46, XY	none identified*	HSCT	reduced
#29	D1128	Hypocellular RCC	46, XY	none identified*	Watch+wait	reduced
#30	D1030	Hypocellular RCC	46, XX	none identified*	Watch+wait	reduced
#31	D1098	Normocellular RCC	46, XX, del(20q)	none identified*	Watch+wait	reduced

Fig. S14, related to Figure 7:

A) List of patients analyzed for NIPA IHC signal. D-numbers indicate their registration number in the EWOG-MDS study. *none identified = Fanconi anemia, GATA2, SAMD9, SAMD9L, RUNX1 and TP53 mutations excluded **D1224 was included in EWOG-MDS due to secondary MDS after HSCT. At time of IHC, the diagnosis was bone marrow failure. ***D1143 is believed to suffer from FA based on his phenotype and family history (sister suffered from FA). n.d. = not described.