Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Innate gene signature distinguishes humoral versus cytotoxic responses to influenza vaccination
Eléna Gonçalves, … , Odile Launay, Behazine Combadière
Eléna Gonçalves, … , Odile Launay, Behazine Combadière
Published March 7, 2019
Citation Information: J Clin Invest. 2019;129(5):1960-1971. https://doi.org/10.1172/JCI125372.
View: Text | PDF
Clinical Medicine Immunology Vaccines

Innate gene signature distinguishes humoral versus cytotoxic responses to influenza vaccination

  • Text
  • PDF
Abstract

BACKGROUND. Systems vaccinology allows cutting-edge analysis of innate biomarkers of vaccine efficacy. We explored a strategy to shape the adaptive immune response by targeting innate immune cells through novel immunization routes. METHODS. This randomized phase I/II clinical study (n = 60 healthy subjects aged 18–45 years old) used transcriptomic analysis to discover early biomarkers of immune response quality after transcutaneous (t.c.), intradermal (i.d.), and intramuscular (i.m.) administration of a trivalent influenza vaccine (TIV, season 2012–2013, 1:1:1 ratio). Safety and immunogenicity (hemagglutinin inhibition [HI], microneutralization [MN] antibodies, and CD4+ and CD8+ effector T cells) were measured at baseline day 0 (d0) and at d21. Blood transcriptome was analyzed at d0 and d1. RESULTS. TIV-specific CD8+ granzyme B+ (GRZ) T cells appeared in more individuals immunized by the t.c. and i.d. routes, whereas immunization by the i.d. and i.m. routes prompted high levels of HI antibody titers and MN against A/H1N1 and A/H3N2 influenza viral strains. The early innate gene signature anticipated immunological outcome by discriminating 2 clusters of individuals with either distinct humoral or CD8 cytotoxic responses. Several pathways explained this dichotomy and confirmed that 9 genes and the serum level of CXCL10 were correlated with either TIV-specific cytotoxic CD8+GRZ+ T cell or antibody responses. A logistic regression analysis demonstrated that these 9 genes and the serum levels of CXCL10 at d1/d0 best predicted TIV-specific CD8+GRZ+ T cell and antibody responses at d21. CONCLUSION. This study provides new insight into the impact of immunization routes and innate signature in the quality of adaptive immune responses. TRIAL REGISTRATION. This study has been registered at ClinicalTrials.gov (NCT01707602). FUNDING. This work was supported by grants from the French Ministry of Health PHRCN 2012 – RCT 12061, INSERM-DGOS, the Fondation pour la Recherche Médicale, and the Société Française de Dermatologie (to AS). These funding sources had no direct role in any aspect of the research or article.

Authors

Eléna Gonçalves, Olivia Bonduelle, Angèle Soria, Pierre Loulergue, Alexandra Rousseau, Marine Cachanado, Henri Bonnabau, Rodolphe Thiebaut, Nicolas Tchitchek, Sylvie Behillil, Sylvie van der Werf, Annika Vogt, Tabassome Simon, Odile Launay, Behazine Combadière

×

Figure 1

Flow diagram of 60 participants through the phases of the FLUWAY randomized phase I/II clinical trial.

Options: View larger image (or click on image) Download as PowerPoint
Flow diagram of 60 participants through the phases of the FLUWAY randomi...
Flow of participants through the FLUWAY clinical trial, according to Consolidated Standard of Reporting Trials (CONSORT). Sixty participants were enrolled, randomized in 3 arms (1:1:1), to receive TIV vaccine by t.c., i.d., or i.m. routes on d0.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts