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diagnostics and precision pan-disease immunotherapeutics.

Introduction

Pan-cancer studies have demonstrated that tumor-infiltrating
lymphocytes (TILs) are prognostic determinants of intratumor-
al heterogeneity (1). The failure of TILs in discriminating and
eliminating neoantigen content from general tissue-specific,
tumor-associated, or tumor-selective antigens should reclassify
the emergence of cancer as a facet of the failed immune response
(FIR). The one-size-fits-all potential for pan-cancer treatment by
immune checkpoint blockade (ICB) is being investigated, but a
significant fraction of patients do not respond to any single cur-
rently available therapies, while others progress or develop resis-
tance. To identify TIL phenotypes contributing to responses,
pan-cancer studies have correlated epithelial-to-mesenchymal
transition and immune activation (2), in which immune activation
and CD8* TIL landscapes are associated with favorable prognostic
genes (3). Pretreatment pan-cancer surveillance of IFN signaling
and antigen presentation factors (4) or pan-cancer immunophe-
noscore (5) may become adopted by mainstream oncology. Com-
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Tumor-infiltrating lymphocytes (TILs) are widely associated with positive outcomes, yet carry key indicators of a systemic
failed immune response against unresolved cancer. Cancer immunotherapies can reverse their tolerance phenotypes while
preserving tumor reactivity and neoantigen specificity shared with circulating immune cells. We performed comprehensive
transcriptomic analyses to identify gene signatures common to circulating and TILs in the context of clear cell renal

cell carcinoma. Modulated genes also associated with disease outcome were validated in other cancer types. Through
comprehensive bioinformatics analyses, we identified practical diagnostic markers and actionable targets of the failed
immune response. On circulating lymphocytes, 3 genes (LEF1, FASLG, and MMP3) could efficiently stratify patients from
healthy control donors. From their associations with resistance to cancer immunotherapies and microbial infections, we
uncovered not only pan-cancer, but pan-pathology, failed immune response profiles. A prominent lymphocytic matrix
metallopeptidase cell migration pathway is central to a panoply of diseases and tumor immunogenicity, correlates with multi-
cancer recurrence, and identifies a feasible noninvasive approach to pan-pathology diagnoses. The differentially expressed
genes we have identified warrant future investigation into the development of their potential in noninvasive precision

prehensive multi-cancer databases vastly extend our knowledge
of tumorigenesis by providing avenues for deciphering diagnos-
tic pan-cancer signatures distinguishing tumor types and having
prognostic, predictive, and therapeutic potential (6, 7). Integrative
pan-cancer analyses elucidate tumor lineage unique signatures (8)
and trace metastatic lesions to tissues of origin (9). However, the
use of whole tumor data sets as precise scoring determinants of
immune inference requires complex deconvolution (10), compli-
cated by the influence of tumor expression programs on TILs (11).

Although baseline tumor specimens provide a wealth of prospec-
tive information (12), their use for routine prediction to response is
challenged by specimen sizes, limits imposed by cancer heterogene-
ity, and invasiveness and delays from surgical procurement (13). Lig-
uid biopsies have the advantage of being easily accessible (14) where
circulating tumor cells, DNA (15, 16), and pan-cancer platelets (17)
have been investigated for diagnostics. However, their nonspecifici-
ties and inabilities of pinpointing the nature of primary tumors have
delayed adoption of these methods (18). The traceability of circulating
immune cells that are targets for immunotherapies should make their
shifting phenotypes superior predictive biomarkers. Pan-cancer diag-
nostic and predictive biomarkers from circulating effector peripheral
blood lymphocytes (PBLs) could mirror neoantigen-specific FIR TIL
phenotypes, providing a “peripheral immunoscore” correlating with
tumor burden or response to therapies (19, 20).
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Figure 1. Distinct comprehensive transcriptomics from paired CD8* and CD19* profiles from ccRCC blood, tumors and tissues, and control donor blood
isolates. (A and B) PCA demonstrating distinct DEG profiles from comprehensive HTA 2.0 microarray analyses of (A) CD8* (n = 15) and (B) CD19* (n = 15)
immune cell subsets from TILs and TIL-Bs, TIICs, and circulating ptPBLs, and cdPBLs (n = 10). (C) Four-way Venn diagram demonstrating percentage over-
laps of DEGs identified by microarrays across different source biospecimens analyzed. (D) Venn diagram showing that ptPBLs have greater numbers of dif-
ferentially represented exon-exon PSR junctions compared with TILs, relative to TIICs from paired CD8* samples (P < 0.05; ANOVA, Transcriptome Analysis
Console v.3, Affymetrix). Thirteen percent of shared PSR junctions exist between ptPBLs and TILs, representing 33% of total genes common to ptPBLs
and TILs having shared isoform identity. (E) GO PM proteins identified by Partek and unsupervised hierarchical clustering algorithm-generated heatmaps
demonstrating that the 4 different CD8" isolates are stratified according to PM, using log, expression values applying the Euclidean distance metric and
complete linkage clustering method (R programming language; R-studio). Heatmaps demonstrate the unsupervised clustering of PBL isolates as most
closely related, with TILs and TIICs at their boundaries, suggesting that their profiles may be influenced by the cancer microenvironment. (F) Feasibility of
using PM-associated proteins toward identifying pan-cancer DEGs that can stratify patients is demonstrated by PCA biplots of PM DEGs from CD8* cdPBL
and ptPBL isolates created on log, values using the biplot function (R; R-studio). diff., differential; id., identity; PSR, probe-selected region.
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We have overcome the limitations of tumor heterogeneity
and biospecimen and biomarker accessibility by identifying cell
surface FIR pan-cancer diagnostic and actionable targets circulat-
ing PBLs. Clear cell renal cell carcinoma (ccRCC) was used as the
primary model for biomarker discovery for several reasons: it fea-
tures the highest numbers of differentially expressed genes (DEGs)
(21), observed PBL profiles correlate with TIL profiles (22), and its
strong yet dysfunctional immunogenicity represents an enigma
(23) despite renal cell carcinoma (RCC) trials demonstrating better
responses to ICB than other targeting therapies (24).

We performed comprehensive microarray analyses on paired
patient CD8* T cells and CD19* B cells isolated from ccRCC
tumors (TILs, TIL-Bs), normal tumor-adjacent tissue-infiltrating
immune cells (TIICs), PBMCs from patients (patient peripher-
al blood lymphocytes [ptPBLs]), and from age-matched healthy
control donors (cdPBLs). DEGs from TILs and ptPBLs were com-
pared with The Cancer Genome Atlas (TCGA) Kidney Renal Clear
Cell Carcinoma (KIRC) cohort, identifying DEGs associated with
patient prognosis. Both cell surface DEGs and DEGs having pre-
existing targeting compounds, more amenable to antagonistic or
agonistic design or drug repurposing, were retained. ccRCC prog-
nostic, pan-cancer DEGs were identified in lung, breast, ovarian,
and gastric cancers. A scoring system was implemented to retain
DEGs whose expression (a) was restricted to lymphocytes, (b) was
supported by immunology and oncology literature, and (c) had sig-
nificant protein-protein interactions (PPIs) and gene expression
correlations. Top-scoring DEGs were validated on a new indepen-
dent RCC cohort, in which a minimum set of 3 DEGs could strat-
ify patients. A central DEG, MMP-9, could also stratify patients
having pan-cancer recurrence. Effects of pan-cancer genes were
investigated for splicing defects and used in pathway discovery.
Our “blinded” gene discovery pipeline design is supported by
identification of DEGs previously reported as biomarkers con-
ferring resistance and others slated as novel immunotherapeutic
targets. The demonstration that pan-cancer FIR-DEGs are essen-
tial for controlling HIV-1 and other microbial infections implicates
these as pan-pathology immune biomarkers with diagnostic and
therapeutic potential.

Results

Distinct cell surface coding DEG profiles from ccRCC CD8" and CD19*
PBLs and TILs. To investigate pan-cancer immunity, we performed
comprehensive microarray analyses on matched case-control
pairs of CD8* TILs and CD19* TIL-Bs from ccRCC tumors, CD8*
and CD19* TIICs from normal tumor-adjacent tissues, and CD8*
and CD19* PBLs from patients with ccRCC along with CD8* and
CD19" PBLs from matched healthy control donors (Supplemental
Figure 1; supplemental material available online with this article;
https://doi.org/10.1172/JCI125301DS1). Study patient clinico-
pathologic characteristics are presented in Supplemental Table 1.
Quality control experiments for yield and quality of various rap-
idly isolated immune cell subsets from tumors were performed
(Supplemental Figure 2, A-D) in addition to stringent bulk total
RNA quality testing prior to its amplification and application to
comprehensive microarrays interrogating greater than 67,000
transcripts (Supplemental Figure 2E). The Affymetrix Transcrip-
tome Analysis Console was used to observe prominent DEGs in

RESEARCH ARTICLE

TILs and ptPBLs relative to TIICs and cdPBLs (Supplemental Fig-
ure 2F), totaling 7300 (i.e., CD8" and CD19* TIL-Bs/TIICs and
ptPBLs/cdPBLs; 1.5-fold change; P < 0.05) (Supplemental Figure
1). Principal component analyses (PCAs) were generated using the
Partek Genomics Suite for all paired CD8* or CD19* biospecimens
and PBL controls (Figure 1, A and B). Venn diagrams were gener-
ated to demonstrate overlaps in DEGs represented by CD8* and
CD19* ptPBLs (20.4%) and TILs (37.8%) (Figure 1C) and to show
overlaps of possible splice junctions generating spliceoforms com-
mon to CD8* ptPBLs and TILs. This was made possible by using
comprehensive HTA 2.0 microarrays (Figure 1D) and suggesting
that patient-inherent posttranslational modification programs
generating distinct RNA isoforms may also influence the behav-
ior of TILs. To assess the feasibility of pursuing DEGs more easily
amenable to therapeutic interventions such as ICB (i.e., actionable
targets), we used unsupervised clustering and PCA to examine
DEGs coding for molecules expressed on the plasma membranes
(PMs). These analyses efficiently stratified immune isolates, with
the largest differences maintained between TILs and TIICs (Fig-
ure 1E) and also permitted efficient stratification of ptPBLs and
cdPBLs (Figure 1, E and F).

Prognostic ccRCC DEGs have pan-cancer prognostic potential.
To identify prognostically important ccRCC DEGs, we generated
Kaplan-Meier plots and P values for the 7300 significant DEGs
using TCGA KIRC RNA-seq and associated clinical data sets
(n =534 tumor, n =72 healthy control donors). This step resulted in
detecting 2257 prognostic DEGs (Supplemental Figure 1). To fur-
ther refine prognostic DEGs and find the most feasible actionable
targets, we focused on PM-associated proteins, or those having
known targeting compounds. Partek and PANTHER Gene Ontol-
ogy (GO) were both used to identify PM proteins, ensuring most
PM-associated DEGs would be retained. ChEMBL target searches
were used to identify proteins with known targeting compounds.
Together, these 2 approaches reduced target DEGs to 779, which
were then investigated for their pan-cancer potential using more
than 11,500 patients with lung, breast, gastric, and ovarian cancer
from an online Kaplan-Meier plotter, generating 467 (i.e., 62%)
target DEGs with pan-cancer potential. This refined list represent-
ed pan-cancer FIR biomarkers, grouped as either (a) agonistic tar-
gets decreased in tumors relative to normal tissues and having a
positive prognosis or (b) antagonistic targets increased in tumors
relative to normal tissues and having negative prognosis (Sup-
plemental Figure 1). PCA analyses permitted the visualization of
how these pan-cancer FIR-DEGs identified from ptPBLs (Figure
2A and Supplemental Figure 3A) or TILs (Figure 2B and Supple-
mental Figure 3B) were distributed across the 5 cancers and how
they correlated with each other, and where many were found to
be common to both CD8* TILs and CD19* TIL-Bs relative to their
TIIC counterparts (Figure 2C; see full gene list in Supplemental
Figure 3C). A subset of pan-cancer FIR-DEGs was also found to
be common between TILs and ptPBLs (Supplemental Figure 3D).

Correlograms reflected increased correlations between
the 5 cancers used to refine for pan-cancer target FIR-DEGs
(compare Supplemental Figure 3E and Figure 2D). Because
the selected 467 pan-cancer FIR-DEGs were discovered using
whole tumor TCGA data sets, we compared percentages of cor-
relations between 5 cancers to that of their immune infiltrates
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Figure 2. A subset of prognostic ccRCC DEGs have pan-cancer prognostic potential. (A and B) PCAs nominal derivatives of combined modulation of expres-
sion and effects on prognosis to visualize CD8* and CD19* DEGs from (A) ptPBLs and (B) TILs with significant gene modulation and effect on prognosis across
the 5 cancers tested. Genes on the far left are more highly expressed in normal tissues than tumors and have positive prognostic effects (N/T pos prog),
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neg prog), representing antagonistic targets. PCAs also illustrate linkage between gene coexpression and cancer types, in which breast cancer (BC) ptPBLs and
NSCLC TILs are most related to other cancers. In (A), all ptPBL DEGs are shown. In (B), DEGs unique to CD8* TILs or CD19* TIL-Bs are shown. (C) DEGs common
to CD8* TILs and CD19* TIL-Bs are shown, where dark highlighted gene names represent best antagonistic targets, and green highlighted gene names repre-
sent best agonistic targets. (D) Correlograms representing linkage between the 5 cancers from nominal derivatives demonstrating that NSCLC and BC are most
related to ccRCC, independently of patient sample number (Spearman method, coexpression coefficient ladder on right). (E) Graph demonstrating similar
expression patterns of pan-cancer DEGs and genes representing infiltrating immune cell subsets used: CD45, CD3, CD4, CD8, CD20, CD56, and CD68 across
pan-cancers (n = 11,577). (F) Graph demonstrating distributions of relative ratios of 483 agonistic vs. agonistic pan-cancer genes, in which TILs have higher
percentages of genes that are lower in tumors and have positive prognostic value. Gl, gastrointestinal; OV, ovarian.
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(n >11,500) providing similar trends, suggesting a strong like-
lihood that global FIR-DEG signatures were immune based
(Figure 2E). Of these 467 pan-cancer FIR-DEGs, proportions
of agonistic and antagonistic targets derived from ptPBLs were
equal, whereas those derived from TILs had increased agonis-
tic target representation (Figure 2F).
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expression in myeloid and lymphoid cells relative to 12 other can-
cers, (c) modified in expression levels in cancers relative to normal
tissues (n = 17 cancers; The Human Protein Atlas), and (d) direct
published literary evidence of DEG expression in the immune
subtypes from which they were identified (Supplemental Table 2).
The top 200 scoring pan-cancer ptPBLs and TIL FIR-DEGs were
subjected to PPI analyses using the rudimentary search engine
(STRING) (Supplemental Figure 3F and ref. 25), providing a PPI
enrichment value (P = 1.85 x 10°) warranting further investiga-
tion. For more comprehensive PPI analyses, we used IID, pathDIP,
and NAViGaTOR, providing new evidence of interactions (Figure
3), with most the highly associated pathways to antagonistic tar-
gets including the immune system, TNF signaling, NF-«B, and
agonistic pathways WNT signaling, chemokine signaling, proteo-
glycans, and GPCRs (P <1x 107°) (Supplemental File 1A). Finally,
the top-scoring 200 ptPBLs and TIL pan-cancer FIR-DEGs were
further refined by retaining those that were the most correlated in
differential pan-cancer gene expression toward discovery of nov-
el mechanistic pathways not deciphered from the above analyses
(Figure 4). The combination of these scoring methods was used to
select pan-cancer FIR-DEG for validation on a new RCC patient
cohort (Supplemental Figure 1).

Pan-cancer and polarizing DEGs stratify CD8*, CD19*, PBLs,
TILs, and TIICs. Twenty-eight pan-cancer FIR-DEGs and 62
commonly used T cell-polarizing genes defining known T
cell subsets were selected for validation on a new, indepen-
dent 74-patient RCC cohort, using TagMan Gene Expression
Assays on 96.96 microfluidic BioMark HD Real-Time PCR
system dynamic arrays (Fluidigm), providing the advantage
of DEG coexpression analysis. Total CD8* ptPBL RNA from 41
patients with ccRCC, 8 with RCC, and 6 patients with papil-
lary renal cell carcinoma (pRCC), and CD8* ¢cdPBL RNA from
control donors were analyzed, with 3 ccRCC patient dupli-
cates added as inter-assay RNA extraction controls. Five total
ptPBMC and five total ndPBMC RNA preparations were also
included. Finally, to maximize use of the microfluidics chip
and to determine whether these could provide a baseline for
DEG expression, pooled total RNA samples from CD8* (n =
50 patients) and CD19* (n = 50 patients) ptPBLs, CD8" (n = 15
patients) and CD19* (r = 15 patients) cdPBLs, ccRCC PBMCs
(n = 10 patients), pRCC PBMCs (n = 10 patients), ndPBMCs
(n = 10 control donors), and paired ccRCC TILs (n = 8) and
TIICs (n = 8) were also included. BioMark HD-generated heat-
maps, housekeeping genes, and loading controls are shown in
Supplemental Figure 4, A-D.

Following normalization, correlograms were used to visu-
alize coexpression dynamics between all DEGs (Supplemental
Figure 4E). Unsupervised clustering demonstrated that pooled
RNA fractions were stratified as expected, with CD8* and CD19*
isolates stratifying furthest apart, and total PBMC isolates stratify-
ing independently, but remaining closer to CD8", as a function of
T cells (7%-24%) representing a larger frequency of total PBMCs
than B cells (1%-7%) (Figure 5A). Also expected, TILs stratified
closest to total PBMCs, yet remained close to TIICs—reflecting
tissue-infiltrating immune profiles. Finally, ccRCC ptPBLs and
c¢dPBLs from either CD19* or CD8" isolates clustered closely, at
opposite ends of the heatmap. Unsupervised clustering was also
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used to observe that individual ccRCC ptPBMCs were efficiently
stratified from ndPBMCs (Figure 5B). PCA was used to visualize
coupling of pooled RNA fractions and DEG coexpression, here
demonstrating that patient TILs, PBMCs, and CD8* ptPBLs were
distantly stratified from both TIICs and CD19* ptPBLs (Figure 5C).
This 3-dimensional view also provided evidence of coexpressing
groups of pan-cancer FIR-DEGs and polarizing genes.

Pan-cancer DEGs stratify patients with RCC from control donors.
Differential expression and correlation analyses were coupled
to identify pan-cancer FIR-DEG combinations most efficiently
stratifying patients. Several pan-cancer FIR-DEGs (ICOS, PF4V1,
IFNG, LAG3, TIGIT, CDA, PDK4, KLF4, PIM2, TIMP1, IGF2BP3,
IL23A, LEFI1, and TCF7), in combination with other T cell genes,
efficiently stratified patients from control donors to an accuracy
of 90.1% (Figure 6, A and D). The absence of novel discovered
pan-cancer FIR-DEGs uncommon to T cell polarization caused
loss of patient stratification (Supplemental Figure 5A); however,
control donors still stratified with an LEFI- and NT5E-expressing
population, which included other biomarkers of activation, and
immune checkpoint BTLA, which we and others believe marks T
cells having enhanced survival properties (26, 27).

Combination testing revealed that a smaller set of these
patient-stratifying pan-cancer genes (IFNG, CDA, PDK4, KLF4,
IGF2BP3, and LEFI) could also stratify patients to an accuracy of
89.1% (Figure 6, B and D), which could not be met in their absence
(Supplemental Figure 5, B and C). Additional combination testing
identified a minimal set of 3 DEGs (MMP9, FASLG, and LEFI)
stratifying patients to an accuracy of 79.3% (Figure 6, C and D).
Interestingly, aside from stratifying patients from control donors,
pan-cancer FIR-DEG PCAs revealed 2 dominant CD8* ptPBL pop-
ulations containing either FASLG or LEFI together responsible for
triggering cell death or cell activation. In addition, the 3 internal
patient duplicates remained closely clustered throughout PCAs,
whereas pooled RNA factions were centralized among their coun-
terparts (Figure 6, A-C). Further correlation analyses performed
on patients with RCC populating yellow PCA quadrants occupied
by control donors demonstrated these to have increased CXCR3
(P = 0.0021; r = 0.4898; CI, 0.1874-0.7074) and CXCR5 (P =
0.0029; r = 0.4764; CI, 0.1705-0.6988) (Spearman method), sug-
gesting that these may be 2 key RCC fitness genes, also recently
linked to increased abilities of broadly neutralizing antibody pro-
duction by HIV-1 elite controllers (28).

Pan-cancer FIR-DEGs common to RCC and HIV. This link
between RCC ptPBL DEGs and HIV-1 controllers prompted us
to examine other pan-cancer FIR-DEGs commonly expressed
by HIV-1 controllers. Intriguingly, the majority of our validated
pan-cancer FIR-DEGs were represented in an HIV-1 elite DEG
screen (29). As such, we searched the literature to elucidate
which of these DEGs were useful to both cancer and HIV-1 when
expressed by PBLs, demonstrating that 60% of these similarly
polarized T cells toward permissiveness to cancer development
and HIV-1 infection (Supplemental Table 5). In comparing HIV-
1 controller DEGs similarities to ccRCC DEGs, we observe that
the pan-cancer DEG prioritization pipeline increased identity to
HIV-1 controller DEGs from 17% (467 pan-cancer DEGs) to 50%
(top 100 pan-cancer DEGs) (Figure 6E). This finding led us to
consider whether the pan-cancer FIR-DEG pipeline was actually
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Figure 6. Iterative DEG combination testing defining minimal gene sets
required for stratifying patients from control donors according to circu-
lating CD8* T cells. Normalized -ACt gRT-PCR DEG expression values from
individual and pooled CD8* ptPBLs and cdPBLs were used for PCA using
applying the Euclidean distance metric and complete linkage clustering
method (R programming language; R-studio) (n = 69). (A) Patients are
stratified using 32 DEGs including pan-cancer (ICOS, PF4V1, IFNG, LAG3,
TIGIT, CDA, PDK4, KLF4, PIM2, TIMP1, IGF2BP3, IL23A, LEF1, and TCF7),

T cell-polarizing (FASLG, ZEB2, EOMES, CCR5, TOX, PRDM1, BATF, FOXO1,
CD28, and CD27), adhesion (JAM3, SELP), and immune checkpoint DEGs
(CD160, CD244, PDCD1, TIM-3, BTLA, and NT5E). (B) Patients are strati-
fied using 12 DEGs including pan-cancer (CDA, PDK4, KLF4, and IGF2BP3)
and adhesion (JAM3, SELP) DECs. (C) Patients are stratified using 3 DEGs
(pan-cancer, MMPS, and LEFT; T cell polarizing, FASLG). Boxes with a

pale yellow background highlight PCA-stratified control donors used to
calculate the percentage of patient stratification. (D) Graph representing
the percentage of patient stratification from DEG groups in (A-C) and in
Supplemental Figure 5, with representative numbers of pan-cancer genes
among groups at the bottom (n = 66, nonduplicate samples). (E and F)
Venn diagrams demonstrating overlaps between (E) CD8* ccRCC ptPBL
DEGs, CD8* ccRCC TIL DEGs, CD8* HIV elite controllers, and PBMC from
patients infected with bacteria and (F) effect of pan-cancer pipeline on
enhancing CD8* DEG identity. dupe, duplicate sample; misclas., misclassi-
fied benign kidney lesion; n, number of pooled samples; other, other DECs;
pan-can, pan-cancer; ub-fig., associated sub-figure.

identifying pan-pathology genes. We thus compared our pan-can-
cer DEGs to data sets from another study aimed at identifying
frontline biomarkers common to numerous pathologies (30).
Strikingly, 82.1% of our ptPBL-based and 42.8% of our TIL-based
top 200 pan-cancer FIR-DEGs were confirmed by their find-
ings, with 51% of 467 pan-cancer DEGs and 59% of the top 100
pan-cancer DEGs present (Figure 6F). A total of 71.1% of DEGs
were commonly reflected by bacterial infection data sets. Poten-
tially revealing pan-pathology T cell biomarkers, we then com-
pared our lists to cancer patient data sets of response to anti-PD-1
immunotherapy (31, 32), highlighting a few of our pan-cancer
FIR-DEGs (Supplemental Table 6), notably including our MMP9,
FASLG, and LEF-I minimal triad stratifying patients with ccRCC
from control donors (Figure 6C; see Supplemental Table 7 for a
summary of validated DEGs common to other data sets).
Pan-cancer DEGs are associated with pan-cancer recurrence and
T cell activation. Within the validation cohort, 10 of 28 patients
with ccRCC (35.7%) were recorded as having been previously
treated for other malignancies including kidney, bladder, blood,
breast, colon, liver, melanoma, ovary, prostate, rectal, and uterine
cancers, in which a few had suffered from 3 different malignancies
with norecorded metastases. We used this opportunity to compare
validated DEGs across control donors, patients with RCC, and
those positive or negative for pan-cancer recurrence. Strikingly,
MMP9 expression best stratified patients with pan-cancer recur-
rence (P < 0.0001, ¢ test; P = 0.007, 2-way ANOVA with Tukey’s
post test) (Figure 7A). All patients categorized as MMP9" had pre-
viously suffered from RCC, along with blood, breast, colon, mel-
anoma, ovarian, prostate, or uterine cancers with a high propor-
tion of adenocarcinomas (80.0%). A disproportionate number of
patients categorized as MMP9® had previously suffered from blad-
der or prostate cancer (66.6%). Other DEGs stratifying patients
with recurring pan-cancer were KLF4, RORC, PDK4, and CCR4;
yet these genes were decreased in these patients with recurrence.
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From PCA analyses demonstrating that pan-cancer DEGs
stratified 2 CD8" T cell pools in addition to individual patients (Fig-
ure 6), along with observations of their ability to stratify patients
according to pan-cancer recurrence (Figure 7A), we applied cor-
relograms to observe whether their combined expression could
tip the balance between tolerant/anergic and activated/effector
T cell profiles. The merging of correlograms providing a split in
DEG populations, expression levels of DEGs between isolates,
and balance of DEGs formerly documented in the literature as
being associated to activation or tolerance phenotypes, suggested
existence of a dominant activated effector CD8* ptPBL population
(Figure 7B). The majority of these effector DEGs (69.2%) provid-
ing an activation phenotype were downregulated in patients with
pan-cancer recurrence, suggesting these patients may lack the
ability to mount an immune response.

Pan-cancer DEGs synergize toward prognosis and are subject
to splicing defects. The TCGA KIRC-probing prognostic algo-
rithm was modified to test all combinations of additive effects of
pan-cancer FIR-DEGs on patient prognosis. The only DEGs with
marked additive effects on patient survival were MMP9, LEFI,
PF4V1, and TIMP-I — this observation gained additional support
from correlograms providing evidence of their coexpression (Fig-
ure 7C). Additionally, relative to the 3-DEG signature stratifying
patients (Figure 6C), although FASLG was not associated with
prognosis (P = 0.401), patients categorized as MMP9" LEFI™
FASLG" KIRC had reduced survival rates (HR, 0.0988-0.6324;
P =3.71x10"%). While the TCGA KIRC data set represents whole
tumor RNA expression, the Human Protein Atlas showed that
unlike the others having additive effects on prognosis, expression
of MMP9 RNA and protein is strictly associated with lymphoid
and myeloid systems, thus, possibly enhancing prognostic effects
by identifying immune-relevant signature populations from whole
tumor data sets. Inverse correlation observed between oncostatic
melatonin receptor 1A (MTNR1A), extensively expressed by lym-
phocytes and MMP-9 expression in RCC as a plausible mecha-
nism for our findings (33), prompted us to reexamine microarray
data sets to see that MTNRIA was reduced in ccRCC CD8* TILs
(P=8.3x10"°%) and CD19" TIL-Bs (P =1.4 x 107%4).

To gain insight on other possible mechanisms behind effects
of pan-cancer FIR-DEGs on patients, and because we used the
Human Transcriptome Array (HTA) 2.0 microarray able to dis-
tinguish between differential gene expression and transcript
isoform modulation, we used the microarray data set to observe
whether these differed at the isoform level. In paired patient
CD8* ptPBLs and TILs, with the exception of HISTIH2BG, ICOS,
and IFNG, all other validated pan-cancer FIR-DEGs had modified
isoforms, and 47.36% of these were found to be mirrored between
CD8" ptPBLs and TILs relative to TIICs (Figure 7D) (Supplemen-
tal Table 8). Additionally, as determined by Affymetrix Transcrip-
tome Analysis Console software, there were many more distinct
transcript isoforms present and heightened splicing indices for
ptPBLs than for TILs, relative to TIICs (i.e., ptPBLs vs. TIICs,
71.97%; avg. splicing index = 18.432, avg. splicing event score =
0.224; TILs vs. TIICs, 28.57%, avg. splicing index = 1.727, avg.
splicing event score = 0.306). Thus, the transcript isoform reper-
toire of CD8" ptPBLs is much larger than that of CD8* TIL, likely
due to similarities for tissue infiltrates but with a few notable dif-

jci.org  Volume129 Number6  June 2019

2471



RESEARCH ARTICLE

The Journal of Clinical Investigation

A [JCD8* cdPBLs [ Nonrecurring CD8* ccRCC ptPBLs [ Multi-cancer recurring CD8* ccRCC ptPBLs

Tissue
infiltration Apoptosis Transcription factor Proliferation Metabolism
MMP9 FASLG LEF1 KLF4 RORC MKI67 PDK4
*% *% * *kkk * *%k *

c

i

[}

%]

o

o

x

o

o

=

©

©

o

S °
@ 4
2o
o
3 o =
L T
22 \
5 1
& 6
Adhesion Transcription factor Inhibitory Inhibitory receptor Proinflammatory
B Tolerance Activation C —High —Low
TNFRSF4 - ZEB2 o MMP9 + LEF1 o MMP9 + PF4V1
BATF  TNF s 5=
CD244  IFNG MKI67 22 22
CD160 FASLG MMP9 PDK4 = €o
DGKA LEF1  CCR4 SPRY2 RORC 23 23
KLF4 PRDM1 EOMES PDCD1 SELP‘ © o © o
CD244 @ 1 g g q>> g
a2 ®e® Oc|p=69x10% Oolp=22x10+
EOVES @ @ @ 0.8 o T T T T G T T T T
Fae® 0 1000 2000 3000 4000 0 1000 2000 3000 4000
cois .06 Survival (days) Survival (days)
PRDM1
PRy -0.4 o_TIMP1 + TMEFF1 o MMP9
Aore! T, S,
PDK4 -0.2 22 22
KLF4 o0 c <
SELP ) 0 S < S <@ |
MMP9 » S » S
TNFRSF4 ) =< =<
A @ole O 9% % 0.2 o © S
1 9 0000000000000000 [ X J 04 0 q [l
88[5&&’%8’.%§§85%§§§§%Eﬂ9%§ ' Oolp<1x107 Oslp=94x10+
%\ “88°:§W¥0Q~880~§% Q';Lm%g(JHQ 06 0 1000 2000 3000 4000 0 1000 2000 3000 4000
o LEL xan<a © gL © 08 Survival (days) Survival (days)
- ~ 1 o LEF1 o PF4V1
i ¥ < QL g Q 2o 2 o
€ gl=9a0Ese TRSEIL S STNG 22 2
E »° » °
=< =<
@ o @® o
B o~ ‘q_.) o~
> o > o
Oglp=21x10° Oclp=38x102
D CD8* TILs/TlICs d 1d00 2600 30‘00 4600 d 1600 2600 3600 40‘00
- Survival (days) Survival (days)
o TIMP1 o TMEFF1
52 diff. S o S o
exon junctions (exon| exon junctions = =D
in 19 in 19 | 3 3o
common genes \ id. / common genes / TS TS
/ 2 2s
L /// Og P=3x10"7 Og P=51x 104
6 1600 2600 30‘00 4600 d 1600 2600 3600 40‘00
Survival (days) Survival (days)
2472 jci.org  Volume129  Number&  June 2019



The Journal of Clinical Investigation

Figure 7. Additive prognostic pan-cancer DEGs stratify multi-cancer recur-
ring ccRCC patients having activated CD8* T cell profiles. (A) DECs from
the validation cohort were compared among cdPBLs (n = 12) and ptPBLs
with (n = 10) or without (n = 18) recurring multi-cancers. P, 2-way ANOVA
with Tukey post test; * P < 0.05; ** P < 0.01; **** P < 0.0001; boxes, upper
and lower quartiles; whiskers, all points maxima to minima; +, mean;

line, median. Functional classifications of DEG groups are listed above

and below, and the literature was used to (B) segregate DEGs according

to tolerance or activation phenotypes. Correlograms (Spearman method)
using normalized -ACt gRT-PCR expression values for visualization of 2
groups of pan-cancer and T cell-polarizing DEGs, with differences observed
between all patients with ccRCC vs. control donors and patients with vs.
without recurring cancers (Student t test, P < 0.05) (red, increased expres-
sion; green, decreased expression). Only MMP3 is significantly increased in
multi-cancer patients relative to all others. (C) Pan-cancer DEG combina-
tions tested for additive prognostic effects using TCGA KIRK data set. Only
MMP3, LEF1, PF4V1, TIMP1, and TMEFF1demonstrate additive prognostic
effects, and these cluster in correlograms (as above) enquiring pan-cancer
DEGs with combinatorial effects on prognosis. Kaplan-Meier plots P, log-
rank. (D) Venn diagram illustrating that ptPBLs have more differentially
represented exon-exon PSR junctions relative to TILs; both are relative to
TIICs (P < 0.05; ANOVA, Transcriptome Analysis Console v.3, Affymetrix),
with 8% overlap of total PSR junctions between ptPBLs and TILs and 47%
of all pan-cancer DEGs having shared ptPBL and TIL PSR junction identity
(see Supplemental Table 8).

ferences including higher isoform numbers for immune check-
points TIGIT and LAG3. Both MMP9 and TCF7 common isoforms
were further increased in ptPBLs relative to TILs, and both CD69
and IQGAPI common isoforms were modified in ptPBLs relative
to cdPBLs. For MMP9, TIMPI, IQGAPI, MPHOSPHS, CD69,
TCF7,LAG3, and TIGIT, the same isoforms are repeatedly repre-
sented among isolate types (i.e., CD8* ptPBLs and TILs, relative
to CD8* TIICs and cdPBLs) (Supplemental Table 8). Together,
these results suggest that prognostic effects of pan-cancer FIR-
DEGs may also be the result of deficiencies in transcript isoforms
required for optimal T cell fitness.

Enrichment of pan-cancer-disrupted MMP9 pathways in ccRCC
PtPBLs. Our initial strategy to use PPI analyses for refining ccRCC
DEGs for validation was only partially useful. Now armed with
validation experiments and strength in statistics for individu-
al DEGs by repeating PPI analysis using a rudimentary search
engine (STRING), the importance of MMP9 having the highest
combined interaction annotation score (14.91) and its positioning
as a central interacting node of pan-cancer FIR-DEGs (TIMP],
PDK4, LEF1, CDA, KLF4, PF4V1, SELF, PIM2, ICOS, IFNG,
IL23A, IL6ST, TCF7, SELL, SERPINEI, OSM, CXCL5, HBAI,
COLAI, MAB2, LIFR, IQGAP1, MAPKS, PIK3CA, BLC2, LAG3,
and TIGIT) with associated cytokine production and immune
cell migration and adhesion cellular processes held more weight
(Supplemental Figure 6).

MMP9 in CD8* PBLs was 1 of 3 DEGs able to stratify patients
with RCC from control donors, and MMP9 was increased in
patients with RCC who had recurring pan-cancer. We thus used
advanced PPI and pathway analyses (IID and pathDIP, using
NAViGaTOR) to reexamine the microarray data sets with the
aim to decipher the significant role of MMP-9 in signaling cas-
cades at play in patients with ccRCC. A comprehensive pathway
enrichment analysis using all 1036 nonredundant ptPBL DEGs
identified pathways including amyloid fiber formation, plate-
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let activation, sirtuin (SIRT) and histone deacetylase (HDAC)
activation, leukocyte transendothelial migration, alcoholism,
SUMOylation, androgen receptor, and TNF-a (P <1 x 1079); all
had links to MMP9 regulation (Supplemental File 1B). To iden-
tify the most relevant MMP-9 pathways of the 235 revealed by
pathDIP in ccRCC ptPBLs, we performed correlation analyses
revealing that 216 of the 1036 DEGs were significantly correlat-
ed with MMP-9-positive pathways (Supplemental Table 9).
Generating physical PPI networks using NAViGaTOR demon-
strated that all but 6 of these 216 DEGs (97.71%) do interact
(Figure 8A, see Supplemental Figure 7 for full PPI). From path-
way-enrichment analysis using pathDIP, many disease, cancer,
and immunity pathways could be repeatedly observed in MMP-
9-significant DEG-associated pathways (Figure 8B, see Supple-
mental Figure 8 for full analyses). Tissue-specific disrupted PPI
networks among MMP-9 interactors in 13 cancers were exam-
ined. The majority of identified genes represented in cell/leuko-
cyte migration and adhesion processes and extracellular matrix
disassembly and collagen metabolism (Supplemental Figure 8)
as recently reported represent pretreatment serum biomarkers
in response to ICB (34). Genes common to ccRCC ptPBLs are
involved in immune response and activation, apoptosis regula-
tion, and migration in response to bacteria (35). Interestingly,
cancers having the highest MMP-9 gained and lost PPIs were
colon, mouth, and lung (Figure 8C). Finally, an independent
differential correlation analysis and organization of MMP-9
pathways and their significantly associated DEGs was used to
validate that although extracted from ccRCC ptPBL expression
signatures, the majority of MMP-9 pathways filtered on ccRCC
DEGs were most linked to a variety of renal diseases; numer-
ous viral, bacterial, and parasitic infections; numerous cancers;
immunity and antigen recognition and activation; differentia-
tion; and cellular survival pathways (Figure 9; see Supplemental
Figure 9 for expanded pathway DEG names).

Discussion

The importance of combining TIL and ptPBL profiles, large
patient data sets, and bioinformatics to resolve singular predictive
biomarkers representing pan-pathology personalized immuno-
therapeutic targets cannot be understated. We set out to elucidate
novel pan-cancer targetable immune biomarkers using a non-
biased approach in which we discovered numerous pan-cancer
FIR-DEGs correlating with patient survival, several of which have
also been identified as immunotherapy-resistance, HIV-control-
ler, and bacterial infection biomarkers. In developing an assay for
RCC patient stratification, we found that this was possible with as
few as 3 CD8* ptPBL DEGs (i.e., MMP9, LEF1, and IFNG). We dis-
covered that MMP9 was increased among patients with recurring
pan-cancer, with some suffering from as many as 3 malignancies
without recorded metastases. PPI networks placed MMP9 as a
central node of interaction matrices amid other pan-cancer FIR-
DEGs identifying cell migration and cytokine pathways.

MMP-9 (leukocyte gelatinase B) is a type IV collagenase (36)
belonging to the MMP family of more than 25 secreted and trans-
membrane-bound, zinc-dependent endopeptidases controlling
tissue remodeling by degrading components of the extracellular
matrix, proteinases, adhesion molecules, chemokines, and cyto-
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Figure 8. Enrichment of disrupted MMP9 pathways in ccRCC patient
circulating cells and various cancers. (A) PPl network linking pan-can-
cer proteins from significant MMP-9 pathways-associated ccRCC ptPBL
DEGs. DEGs (nodes/circles) and their interactions (edges/lines) are shown
in red (high expression) and green (low expression), and gray edges
highlight interactions between them (NAViGaTOR v3 and 11D v04-2018).
Noninteracting proteins are listed on the top right. DEG nodes are colored
according to GO Molecular Functions listed in the legend. Larger node
circles, represent the high degree of interactions with all other DEGs, and
blue DEG names represent centrality of interactors. (B) Pathway enrich-
ment analysis graphs depicting results of pathDIP analysis for MMP-9
pathway interactors from correlation analyses. Upper panel shows sig-
nificance of enrichment obtained for individual pathways (P value, -log, )
adjusted for multiple testing using FDR and Bonferroni methods. Lower
bar plot shows overlap between query genes and members of individ-

ual pathways. Respective numbers of known and predicted pathway
members are distinguished by opacity, and fill color indicates source of
given pathway. Plots are restricted to the top 100 most significant (see
Supplemental Figure 7A for the full pathways). (C) Tissue-specific dis-
rupted PPl networks among MMP-9 interactors in cancer. Gained and lost
MMP-3 PPIs in 13 nonmalignant and pretreatment tumors highlighting
its tissue-specific role in cancer, where 106 disrupted MMP-3 PPIs were
identified (n = 2801) (see Supplemental Figure 7). A total of 1814 disrupt-
ed PPIs were found, 81% of which are disrupted in only 1or 2 tissues and
only less than 5% are present in more than 3 tissues.

kines (37). Following its activation by cleavage, secreted pro-
MMP-9 is regulated by tissue inhibitor of metalloproteinases 1
(TIMP-1), also identified as a pan-cancer FIR-DEG. MMP-9 is a
biomarker of pathogenesis and progression of various diseases,
including heart disease, atherosclerosis, hypertension, chronic
obstructive pulmonary disease, blood-brain barrier disorders,
endometriosis, Down syndrome, and streptococcal pneumonia
(38, 39). MMP-9 is important for productive infection by numer-
ous viruses, including hepatitis viruses, vesicular stomatitis virus,
respiratory syncytial virus, and HIV-1 (40).

Although many MMPs are associated with poor prognoses,
MMP-9 is the most extensively studied and is associated with
aggressive phenotypes and poor prognoses in several solid malig-
nancies (41). In cancer, MMP-9 is associated with genetic instabil-
ity, tissue remodeling, tumor cell proliferation, invasion and motil-
ity, progression, extravasation, metastasis, epithelial-mesenchymal
transition, angiogenesis, apoptosis, inflammation, and immunosur-
veillance (36). MMP-9 in PBLs, serum, and tumors predicts prog-
nosis, invasiveness, grade and differentiation, recurrence, metas-
tasis, and treatment resistance, for bladder, lung, blood, colorectal,
prostate, and liver cancers (42-49). In patients with RCC, MMP-9 is
increased in tumors and plasma (50) and correlates with histologi-
cal grade (51), poor prognosis, and lowered survival (52), metastasis,
decreased time to progression, and poor response to sunitinib (53).

Although many studies have examined MMPs facilitating epi-
thelial cancer invasion via migration toward chemokines (54), oth-
ers indicate MMPs shape the aggressive stromal compartment of
the tumor microenvironment (55). MMPs are expressed by various
immune subsets within stromal compartment across cancers, and
TILs are the highest MMP-9 producers (56). MMP-9 expression
disproportionately correlates with immune response genes rath-
er than extracellular matrix genes in lung adenocarcinomas (57).
MMP-9 is constitutively expressed at higherlevelsin splenic T cells
and TILs than tumor cells (56). Immunosurveillance requires an
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invasive phenotype, supporting a role for MMP-9, upregulated in
response to cytokines, and facilitating migration of PBLs from the
vasculature into sites of inflammation. Induced by adhesion-mol-
ecule interactions between APCs and lymphocytes, MMP-9 is
considered a pure effector molecule, amplifying immune function
by catalyzing innate and acquired immunity (58) and is critical
for antigen-specific, activation-induced proliferation of T cells
(59). We observed increased MMP9 expression in both CD8* and
CD19* ccRCC ptPBLs, and other genes we find correlating with
MMP9 expression are implicated in CD8* cross-priming and anti-
gen-mediated activation and proliferation (CD69, STAT4, NFIL3,
IL10, and JAKI) (40, 59, 60). In patients with recurring pan-can-
cers, MMP9 was inversely correlated with its regulator STATS3,
which restricts tumor penetration of anti-tumor CD8* T cells (61,
62). In pooled RNA PCA analyses, MMP9 expression correlated
with TILs and CXCL13, which induces MMP-9 expression toward
leukocyte migration in perivascular spaces (63, 64). BATF was
the only pan-cancer FIR-DEG negatively correlating with MMP9
in patients with RCC, ccRCC, and recurring pan-cancer, and it
is known to suppress MMP-9 and effector molecules for CD8*
T cell differentiation and survival (65). Other DEGs in patients
with recurring pan-cancer (KLF4, RORC, CCR4, and PDK4) are
implicated in MMP-9 regulation for cell migration (66-69). Some
DEGs stratifying patients with RCC and correlating with MMP9
have been associated with response to immunotherapies (MMP9,
IL10, NFIL3, LEF1, FASLG, MKI67, STAT4, CD244, and JAKI). In
a recent study examining correlates with the response of ccRCC
to ICB, despite an underpowered discovery cohort, increased
MMP9 correlated with progressive disease relative to low MMP9
in partial responders or patients with stable disease (70). Another
study demonstrated that reduction of MMP-9 on monocytes from
combination immunotherapies led to conversion of tumor micro-
environments from “cold” to “inflamed” states eliciting protective
T- cell responses (71). Finally, MMP9 and numerous other extra-
cellular matrix pan-cancer genes we have identified, have also
just recently been shown to be differentially expressed between
ICB responders and nonresponders (72), and where, notably, we
identify almost half (44%) of their defined immunotherapy failure
signature as gained PPIs of MMP-9 during cancer.

Possible mechanisms of MMP-9 regulation in cancer are sup-
ported by our observations of alternative MMP9 RNA isoforms in
RCC CD8" ptPBLs and TILs and by previous association of MMP-
9 polymorphisms with disease (36). Another possible mechanism
stems from reports of pharmacologic concentrations of melatonin
inhibiting MMP-9 through melatonin receptor 1A (MTNRI1A), as
an oncostatic agent inhibiting tumor growth and invasiveness of
renal, breast, gastric, hematological, prostate, bone, skin, liver,
and brain tumors (33). MTNRIA, extensively expressed by splen-
ic, thymic and circulating CD4*, CD8*, and B* lymphocytes (73),
was found to be significantly reduced in ccRCC TILs and TIL-Bs
and thus less likely to respond to melatonin or to regulate MMP-9.
Thus, representing an attractive target for the treatment of numer-
ous diseases, a specific MMP-9 inhibitor, JNJ0966, has been
developed for clinical utility in immune disorders (74) and could
be repurposed to control numerous cancers and pathologies.
Finally, another possible MMP-9 cancer-onset mechanism stems
from our observations of its gained and disrupted PPIs that were
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Figure 9. MMP-9 pathway DEGs are linked to a variety of renal diseases,
cancers, microbial infections, and immune activation. MMP-3 pathways
associated ptPBL DEGs from pathDIP matrix were correlated, and DEGs
significantly associated with MMP-9 pathways (P < 0.05) were used to gen-
erate a supervised heatmap of the most highly correlating MMP-9 pathway
genes and associated pathways. The majority of FIR DEG-associated MMP-9
pathways are enriched for those of renal diseases; numerous viral, bacterial,
and parasitic infections; numerous cancers; immunity and antigen recognition
and activation; differentiation; and cellular survival pathways. The orange area
shows DEGs represented in the pathway; blue shows DEGs not represented in
the pathway (see Supplemental Figure 9 for the full list of DEG pathways).
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most significant in colon, mouth, and lung cancers. Thus, deregu-
lation of MMP-9 roles in maintaining colonic microbiota (75) may
have profound effects on cancers in these systems.

We have focused on MMP-9 because this molecule efficient-
ly stratifies patients with RCC via both CD8* and CD19* immune
cells, yet extends itself beyond pan-cancer. It is an attractive
pan-pathology immune biomarker and target for the treatment
of numerous diseases and is a central interactor for numerous
other pan-cancer biomarkers we have identified herein. MMP-9
is an attractive pan-pathology biomarker because its elevated
expression can be detected in tumors but also by less invasive
methods examining blood and by completely noninvasive meth-
ods examining urine, fecal samples, tears, and exhaled breath
condensate (76-78). Because MMP-9 expression is controlled by
circadian rhythm, diurnal variations may be responsible for its
initial immune deregulation in patients. With the possibility of
its expression causing varied responses among patients, MMP-9
monitoring may be valuable over the course of treatment, whether
it is radio-, chemo-, or immunotherapeutic. Further work deter-
mining the precise polarity of T cell subsets expressing MMP-9
and its function permitting their infiltration into tumors may
resolve imminent questions of the field concerning tumor immu-
nogenicity. Aside from MMP9, however, numerous other identi-
fied pan-cancer FIR-DEGs warrant further investigation.

In the discovery of how pan-cancer FIR-DEGs may have
pan-pathology effects, we observed that blinded refining of
the target list using informatics without previous knowledge of
their oncostatic or -promoting abilities increased the identity of
pan-cancer DEGs also important for HIV-1 controllers. As the first
data-driven suggestion, these may actually represent pan-pathol-
ogy markers. To be certain of this link to HIV-1 fitness correlated
by our pan-cancer FIR-DEGs, we performed extensive literature
reviews indicating that the majority shared similar effects of pro-
motion or inhibition of HIV-1 infection. Other PBL DEGs shared
by many infectious and autoimmune diseases are common to
those discovered here (e.g., MMP9, IGF2BP3, TIMP1, CDA, IFNG,
PFAVI, LAG3, PIM2, ICOS, TIGIT, and IL23A).

To our knowledge, we are the first to present a pan-patholo-
gy biomarker pipeline starting from CD8* and CD19* DEGs from
paired cancer patient PBLs, TILs, and TIICs. Prognostic DEGs
were validated across 5 cancers and as few as 3 could stratify
patients and pan-cancer recurrence. We focused on DEGs that
could be easily detected as biomarkers or targeted by therapies.
The resulting pan-cancer genes are of additional interest, as they
may reflect a pan-pathology state of the FIR, with numerous DEGs
similarly modulated and important for resistance to immunother-
apy and unresolved viral and bacterial infections. The noninvasive
FIR-DEGs we have identified warrant future investigation toward
the development of their potential in precision diagnostics and
precision pan-disease immunotherapeutics.

Methods

Complete detailed methods are in the supplemental materials.
Statistics. For the training ccRCC cohort, a sample size of n =

5 paired patient TILs, TIICs, and PBLs was determined as having

above 0.9 power according to the GeneChip Human Transcriptome

Array 2.0 manufacturer guidelines (Affymetrix, Thermo Fisher Sci-
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entific). Training set microarrays power calculations by the manu-
facturer used an inference of means calculation (https://www.stat.
ubc.ca/~rollin/stats/ssize/n2). Multiple hypothesis test correction
was performed using the FDR Benjamini-Hochberg step-up proce-
dure. For the RCC validation cohort (n = 74), power analysis deter-
mined that a minimal sample size of n = 62 was needed to reach a
power of 0.80 at a.= 0.05 (2-tailed) (G*Power ver. 3.1.9.2; Universitat
Diisseldorf, Germany). For algorithms used, statistical methodology
for algorithms is described within scripts and https://www.biostars.
org/p/153013/. Limma and survival packages for R are used for sin-
gle and synergistic ccRCC prognostic algorithms. Dendrogram, heat-
map, and PCA unsupervised algorithms used the Euclidean distance
metric and complete linkage clustering method. Correlogram algo-
rithm uses the R corrplot library, and was created from http://www.
sthda.com/, using R-project corrplot and vignette packages. Bino-
mial correlations for testing validated DEGs against clinical patient
parameters used 2-tailed nonparametric Spearman correlation with
95% CI (Prism V6.01, GraphPad). An unpaired 2-tailed student’s
t test with FDR of 1% was used to compare the 2 groups, and 2-way
ANOVA (with Sidak’s multiple-comparisons test) and 95% CI was
used for multiple comparisons. Pathway enrichment analysis results
were adjusted for multiple testing by applying FDR and Bonferroni
methods. P values of less than 0.05 were considered to indicate a sta-
tistically significant difference.

Study approval. Patients with renal cancer underwent resection
for stage I-IV RCC between 2013 and 2017 at the CHUM (Montreal,
Canada). Study approval and written and informed consent procedure
approval was granted by the CHUM Research Ethics Board. Written
informed consent was received from all study participants prior to
inclusion in the study. All methods were performed in accordance with
the relevant guidelines and regulations. Clinical participant data was
randomly numbered for complete anonymity.

Data availability. TCGA KIRC RNA-seq data sets and associated
clinical data sets are available at the cBioPortal for Cancer Genomics
(http://gdac.broadinstitute.org/). Pan-cancer testing patient cohort
GEOQ, the EGA and TCGA data sets are available at http://kmplot.
com/. DEG protein profiles in cells and across 17 cancers are available
from https://www.proteinatlas.org/. Transcriptomic data sets from
patients with melanoma and non-small-cell lung cancer (NSCLC)
treated with anti-PD-1 therapy are available from Hugo et al. (31) and
Rizvi et al. (32). The HIV-1 elite controllers data set is available from
Zhang et al. (29), and the bacterial data sets are listed in Song et al.
(30). Comprehensive pathway enrichment analysis and PPI analyses
are available as Supplemental Data. The microarray data are pub-
lished at the National Center for Biotechnology Information Gene
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) under GEO
accession number GSE117230.
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