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Supplemental Figure S1. Full schematic pan-cancer discovery pipeline. Pan-cancer 
discovery pipeline permitting the refining of >7,300 DEGs identified from training ccRCC 
cohort, down to ~30 for validation on new ccRCC cohort, as first identified by microarrays 
performed on paired patient CD8+ and CD19+ TIL and TIL-B, TIIC, and ptPBL, and 
matched cdPBL. Tumors, normal adjacent tissues and blood are simultaneously received, 
and used for rapid (~1hr) isolation of immune cell subsets via tissue homogenizing 
followed by Ficoll gradient and magnetic bead separation. Quality tested RNA is amplified 
and applied to comprehensive microarray profiling. Gene expression profiles are 
normalized and DEGs are identified by comparing expression in TIL relative to TIIC, and 
ptPBL relative to cdPBL (n = 5; fold 1.5; P < 0.05). Algorithms designed to probe The 
Cancer Genome Atlas (TCGA) ccRCC KIRC RNA-Seq and clinical databases (n = 534 
tumors; n = 72 normal tissues) were used to identify ccRCC DEGs that had significant 
effects on patient prognosis. DEGs were refined for most feasible targets by selecting 
Gene Ontology defined plasma membrane associated proteins (Partek and PANTHER), 
and proteins having pre-existing targeting compounds for potential drug repurposing 
(ChEMBL). Additional microarray datasets for lung, breast, gastric and ovarian cancers 
were probed (n = >11,500 tumors and normal tissues) to refine pan-cancer DEGs that 
had significant effects on patient prognosis. Principal component analysis (PCA) was 
used to view most feasible pan-cancer targets (R and R studio). Pan-cancer DEGs were 
further refined using a four pronged scoring system, taking into account: expression of 
DEGs by lymphoid and myeloid cells and having modified expression in cancers relative 
to normal tissues (n = 17 cancers; The Human Protein Atlas), literary evidence that DEGs 
have been experimentally determined to be expressed in target cells, with existing 
functional classification in those cell types, and DEG protein-protein interaction (PPI) and 
coexpression analyses. DEG, differentially expressed genes; TIL, tumor infiltrating 
lymphocytes; TIIC, normal adjacent tissue infiltrating immune cells; pt, patient; nd, normal 
donor; PBL, peripheral blood lymphocytes; QC, quality control; HTA, GeneChip Human 
Transcriptome Array 2.0; TCGA, the Cancer Genome Atlas; GEO, Gene Expression 
Omnibus; EGA, European Genome-phenome Archive; ccRCC, clear cell renal cell 
cancer; NSCLC, non-small cell lung cancer; BC, breast cancer; GI gastric cancer; OV, 
ovarian cancer; PPIs, protein-protein interactions; FIR, failed immune response.  
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Supplemental Figure S2. Sample quality control (QC) experiments performed for 
comprehensive microarrays. QC experiments demonstrate efficient isolation of specific 
immune subsets from tumors, perfect chip-hybridization and example of paired total CD8+ 
DEGs resulting from microarrays. Following their magnetic bead-mediated isolation, 
immune cell subsets were labelled for multi-parametric (M-P) flow cytometry analysis 
verifying their viabilities, via gating on Aqua LIVE/DEAD assay (Molecular Probes) and 
quality of their separation from other immune cell subsets isolated by Ficoll gradients. (A) 
Validation of viability of total leukocytes isolated from tumors (left), and CD8+, CD4+, 
CD19+, and CD14+ tumor infiltrating immune cell subsets isolated using positive selection 
kits from STEMCELL, as shown by contour plots due to low numbers of isolates. (B) 
Validation that all immune cells isolated from tumors were CD45+ using α-CD45-PE-Cy7 
antibody (BD biosciences), using FlowJo v.10 overlay graphs normalized to mode. (C) 
Visual demonstration that positive selection kits were able to rapidly and efficiently 
separate numerous desired immune cell subsets from tumors, with very little 
contamination from other immune cell subsets, using clones that are not represented in 
STEMCELL isolation kits (i.e., α-CD8-PE-Cy5, α-CD4-APC-H7, α-CD19-AF700, α-
CD11c-APC; BD biosciences), using FlowJo v.10 overlay graphs normalized to mode 
(color scheme legend as in (B)). Representative percentages of isolates relative to other 
species examined are shown in (D). (E) Screen shot example supporting visualization of 
HTA 2.0 chip hybridization of total amplified CD8+ RNA isolated from TIL (described in 
methods), where black box in center serves as negative control. (F) Examples of CD8+ 
TIL vs TIIC and ptPBL vs cdPBL DEG expression via scatter and volcano plots, and non-
specific chromosome summary segregation patterns of DEG expression, along with 
splicing/isoform scatter plots of DEGs generated by TAC software (Affymetrix). These 
demonstrating that TIL have much larger difference in reference to TIIC than ptPBL have 
in reference to cdPBL. DEG, differentially expressed genes; TIL, tumor infiltrating 
lymphocytes; TIIC, normal adjacent tissue infiltrating immune cells; pt, patient; nd, normal 
donor; PBL, peripheral blood lymphocytes.  
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Supplemental Figure S3: Pan-cancer DEG refinery. (A-C) Principal component 
analyses (PCA) of pan-cancer DEGs identified from prognostic and expression scoring 
across five cancers, common CD8+ (green) or CD19+ (blue) ptPBL (A), TIL (B) ccRCC 
identified DEGs at PCA intersects. (C) DEGs common to CD8+ TILs and CD19+ TIL-Bs 
are shown, where dark highlighted gene names represent best antagonistic targets, and 
green highlighted gene names represent best agonistic targets. (D) PCA biplot of DEGs 
that are commonly identified from ccRCC ptPBL and TIL, where those most common 
across five cancers are found at PCA intersects. (E) Patient PBL and TIL correlograms 
demonstrating similarities of prognostic effects and gene expression modulation among 
483 pan-cancer prognostic biomarkers queried for refinement; demonstrating that DEGs 
identified from ccRCC ptPBL and TIL have similar results across other cancers: breast 
cancer (BC), non-small cell lung cancer (NSCLC), gastric cancers (GI), and ovarian 
cancers (OV) (n > 11,500) (Spearman method, coexpression coefficient ladder on right). 
(F) Protein-protein interaction (PPI) networks between the top 200 DEGs discovered. A 
high PPI enrichment value (P = 1.85e-10) indicates interactions among these DEGs is 
very significant relative to proteins drawn from the genome at random; an indicator of 
biologically connection as groups in defined pathways. Pan-cancer score defined 
agonistic and antagonistic DEGs are colored red and green, respectively to demonstrate 
groupings of these two pan-cancer subclasses in unsupervised PPI matrix (String 
software, v10.5). Bottom graph demonstrates that TIL DEGs are most involved observed 
in PPI, as are those discovered from CD8+ TIL and ptPBL. TIL, tumor infiltrating 
lymphocytes; TIIC, normal adjacent tissue infiltrating immune cells; pt, patient; nd, normal 
donor; PBL, peripheral blood mononuclear cells.  
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Figure S4 
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Supplemental Figure S4: Validation and analysis of pan-cancer and polarizing 
CD8+ DEGs across new RCC cohort. (A) Demonstration of raw Biomark HD generated 
heatmap providing evidence that all RNA samples and Taqman assays were successful 
(ladder on right, detection range), (B-D) graphical representation of housekeeping genes 
used for data normalization (GUSB, IPO8, PGK, POL2RA, TBP) and generation of ΔCT 
values, where (B) are M-values generated by GeNorm for normalization of real-time 
quantitative RT-PCR data by geometric averaging of multiple internal control genes, and 
(C-D) are SD and Acc. SD (respectively) generated by Norm Finder algorithm for 
identifying optimal normalization genes. (E) Example of correlogram, created using 
algorithm and -ΔCT normalized values from qRT-PCR validation, and used to find genes 
across CD8+ cdPBL and CD8+ ccRCC ptPBL validation cohorts that would distinguish 
possible pan-cancer DEG clusters that would permit efficient stratification of patients 
according to CD8 ptPBL (Spearman method, coexpression coefficient ladder on right). 
ccRCC, clear cell renal cell carcinoma; pt, patient; nd, normal donor; PBL, peripheral 
blood mononuclear cells.  
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Figure S5 
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Supplemental Figure S5: Independent pan-cancer, adhesion, or T cell polarizing 
gene groups from minimal 32- or 12-gene sets are unable to stratify patients from 
normal donors. From Figure 6A, (A) Loss of patient stratification from removal of pan-
cancer (PF4V1, CDA, PDK4, KLF4, PIM2, TIMP1, IGF2BP3, and adhesion (JAM3, SELP) 
DEGs from 32 DEG stratifying signature. From Figure 6B, pan-cancer and adhesion 
markers were analyzed independently from other T cell polarizing DEGs. Normalized -
ΔCT qRT-PCR expression values from individual CD8+ T cells isolated from cdPBMC and 
ptPBMC (PBL) from patients undergoing surgery following RCC diagnosis, were used for 
principal component analysis (PCA) using applying the euclidean distance metric and 
complete linkage clustering method (R programming language; R-studio) (n = 69). (B) 
Independently assessed top plus bottom PCA DEG groups from Figure 6B (ZEB2, 
EOMES, CD244, IFNG, LEF1, NT5E) are insufficient for stratifying patients from normal 
donors. (C) Independently assessed mid-left PCA DEG group from Figure 6B (CDA, 
PDK4, KLF4, IGF2BP3, JAM3, SELP) are insufficient for stratifying patients from normal 
donors. ccRCC, clear cell renal cell carcinoma; pRCC, papillary renal cell carcinoma; 
RCC, renal cell carcinoma; pt, patient; nd, normal donor; misclas., misclassified benign 
kidney lesion;  n, number of patients in pool.  
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Figure S6 
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Supplemental Figure S6. Protein-Protein interaction of top 200 pan-cancer DEGs 
provide insights on core target pathways and intra pathway linkages. (A) Protein-
protein interaction (PPI) primary pathways and connecting networks between the top 200 
DEGs discovered, with high PPI enrichment value of P = 1.85e-10 (String software, 
v10.5). Unsupervised arrangement and highlighting of distinct pathways in PPI are 
expanded in B-G. (B) MMP9, TIMP1 and SERPINE1 are central to regulation of cell death 
and migration pathways. (C) PIK3CA, IFNG, ICOS, BCL2, and CSK are central to cell 
adhesion and lymphocyte activation pathways. (D)  CCNB1, PLK1 and CENPE are 
central to cell division pathway. (E) CXCL13, CXCR1, and CXCL5 are central to 
chemokine signaling pathways. (F) NCOR1 is central to positive regulation of transcription 
cellular pathways. (G) MMP9 interacts with more than any other pan-cancer gene, and is 
a central node of many pathways bridging cell migration and immune system processes 
(supervised clustering). (H) PPI matrix of the pan-cancer DEGs found capable of 
stratifying patients from normal donors with addition of CTNNB1, IL2, CDH5, and PDK4, 
involve immune system, cytokine, activation, migration, adhesion and apoptotic cellular 
pathways.  
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Figure S7 

  
 
Figure S7. Complete ccRCC ptPBL PPI. Network of all protein-protein interactions 
(PPIs) among all ccRCC ptPBL DEGs. PPIs obtained from IID ver. 04-2018 and network 
visualization in NAViGaTOR ver. 3. DEGs increased and decreased in expression and 
their interacting edges are colored red and green, respectively to demonstrate groupings 
of these two pan-cancer subclasses, mauve lines highlight interactions between them, 
and grey lines highlight other protein mediators identified by IID ver. 04-2018. DEG nodes 
are colored according to GO Molecular Functions described in the legend. Black outline 
on nodes represents DEGs with the highest number of interacting partners in this network. 
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Supplemental Figure S8. MMP-9 extended pathway analyses. (A-B) Results of the 
pathway enrichment analysis as obtained from pathDIP ver. 3 for all ptPBL. MMP-9 
pathways associated ptPBL DEGs from pathDIP matrix were correlated, and DEGs which 
were significantly associated to MMP9 positive pathways (p<0.05) were used for pathway 
scoring and classification. Pathway enrichment analysis graphs depicting results of 
pathDIP analysis for MMP-9 significant pathway interactors found from correlation 
analyses. Upper panels shows significance of enrichment obtained for individual 
pathways expressed as p-value (-log10) adjusted for multiple testing by applying FDR 
(red) and Bonferroni (blue) methods. Lower barplot shows size of the overlap between 
query genes and members of individual pathways. Respective numbers of known and 
predicted pathway members are distinguished by the opacity, and fill color indicates 
original source of the given pathway. Plots are restricted to top 100 most significantly 
enriched pathways (full list is found in Supplemental File S1). (C) Differential gained and 
lost PPIs of MMP9 in cancers. Gained and lost PPIs of MMP9 in thirteen epithelial tissues-
cancers suggesting its tissue-specific role in cancer. MMP9 has 106 disrupted PPIs, 60 
of which are specific to only one tissue-cancer. It has the highest number of disrupted 
PPIs in colorectal, mouth and lung cancers (60, 36, and 29 PPIs, respectively) followed 
by esophagus with 11 PPIs. 
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Figure S9 
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Supplemental Figure S9. MMP9 full pathways DEGs from Figure 7C. Supervised 
heatmap organizing main correlating MMP-9-pathway genes and associated pathways 
featuring disease and immunity, followed by differentiation, survival, and migration 
pathways. Orange, DEG represented in the pathway; blue DEG not represented in the 
pathway.  
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Supplemental Tables (see Supplemental materials Supplemental Tables for .xlsx file 
format): 

Table S1 

 

 
 

Supplemental Table S1. Clinicopathological patient parameters. Patients and normal 
donors enrolled in the study. mm, millimeter; yrs, years; n, number of patients, %, 
percentage of total patients; ccRCC, clear cell renal cell carcinoma; pRCC, papillary renal 
cell carcinoma; RCC, renal cell carcinoma; ICD-O, International Classification of Diseases 
for Oncology; UNKN, unknown.   
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Table S2 

 
 

Supplemental Table S2. Non-redundant pan-cancer DEGs expressed in T/B cells. 
Pan-cancer DEGs discovered from ccRCC ptPBL and TIL from profiling TCGA, GEO and 
EGA, ccRCC, NSCLC, BC, GI and OV cancers datasets using KM plotter. From a Total 
of 467 DEGs discovered (see Supplemental Figure S1), those that have been cited in 
the literature as being expressed by T or B cells are shown here, with redundancies of 
DEGs discovered as expressed in both isolates merged for simplicity of table 
presentation. Common names are shown in brackets in some instances. PMID, Pubmed 
ID.  
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Table S3 

 
 
Supplemental Table S3. Top 100 Pan-cancer DEGs with scoring and literature.  
Top 100 Pan-cancer DEGs selected from 4-pronged scoring system (see Supplemental 
fig. S1). Red highlighted DEGs are increased in expression, whereas green highlighted 
DEGs are decreased in expression in training set ccRCC. Dark red or green highlighted 
DEGs are interactors (e.g., Figure 3). Underlined are common to both PBCM and TIL. 
Bold DEG gene names are only expressed in lymphoid/myeloid tissues and are modified 
in expression across 17 cancers (The Protein Atlas). Pan-cancer scores from increased 
or decreased in tumor relative to normal tissues, and positive or negative effect on overall 
survival (scores >50% are highlighted). Correlation scores are calculated from ccRCC 
microarrays (scores >0% are highlighted according to degree). Gene names added in 
instances where PMID uses this notation. PMID, Pubmed ID. ptPBL listed DEGs are 
genes discovered from ccRCC training microarray dataset where DEG was higher in 
ptPBL than cdPBL.  TIL listed DEGs are genes discovered from ccRCC training 
microarray dataset where DEG was higher in TIL than TIIC (-1.5 to 1.5 Fold-change cut-
off; FDR P = 0.05).   
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Table S4 

 
 
Supplemental Table S4. Selected Pan-cancer and T cell polarizing DEGs for 
validation. DEGs selected for validation on new RCC cohort ptPBL CD8+ T cells. Assay 
IDs represent TaqMan assays codes used. Pan-cancer DEGs are in bold. PMID (Pubmed 
ID) and PMCID (Pubmed central ID) and notes are reference for pan-cancer functions 
and link to immunity.  
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Table S5 

 
 
Supplemental Table S5. Comparison of validation assays to HIV-1 elite controllers. 
Pan-cancer DEGs were compared to DEGs identified from HIV-1 elite controllers (n = 81 
patients and 98 controls). Many Pan-cancer DEGs are commonly modulated in 
expression, or have similar effects towards inducing T cell HIV-1 or cancer 
permissiveness. Pathways most associated with non-permissive genes included positive 
regulation of T cell gene translation, differentiation, activation, and proliferation, and 
response to cytokines. Pathways associated with permissive genes were regulation of 
cell surface receptor signaling, cytokine-receptor interactions, hepatitis B, and 
proteoglycans in cancer. Inversely permissive genes were also enriched in immune 
differentiation, but were also associated with auto-immune disease pathways.  PMID, 
Pubmed ID; Avg.LogFC, average log fold-change; t-ratio, ratio divided by the standard 
error (GraphPad).  
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Table S6 

 
 
Supplemental Table S6. Immunotherapy resistance genes common to pan-cancer 
DEGs. Published transcriptomic and genetic profiles of melanoma and NSCLC patients 
treated by anti-PD-1 therapy were compared to pan-cancer DEGs (Hugo and Rizvi refs 
found in main text). Pan-cancer columns are DEGs discovered from ccRCC training set 
and confirmed across five cancers. Genex BIOMARK column represents DEGs we 
validated on our validation cohort.  
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Table S7 

 
 
Supplemental Table S7. Pan-cancer and T cell DEG validation summary. Table 
summarizing significant DEGs validated from microarrays using microfluidics qRT-PCR 
and new RCC cohort. Table also highlights DEGs most significantly correlating, and those 
common to studies HIV-1 resistance, bacterial resistance, and resistance to 
immunotherapy. Red are increased in expression, green are decreased in expression. (a-
f) all DEGs validated from microarrays to qRT-PCR. (a) DEGs validated as upregulated 
in CD8+ T cells isolated from ptPBMC relative to those isolated from cdPBMC. (b) DEGs 
validated as downregulated in CD8+ T cells isolated from ptPBMC relative to those 
isolated from cdPBMC. (c) DEGs validated as upregulated in total ptPBMC relative to 
those isolated from cdPBMC. (d) DEGs validated as downregulated in total ptPBMC 
relative to those isolated from cdPBMC. (e) Other PBL DEGs observed as being 
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significantly upregulated by qRT-PCR. (f) Other PBL DEGs observed as being 
significantly upregulated by qRT-PCR. Symbols: *, validated pan-cancer DEGs identified 
by this study; ∞, top Biomark HD correlating genes; ф, common to both HIV-1 and cancer 
resistance; §, common to bacterial infection by Song et al.; ǂ, common to immunotherapy 
resistance Hugo et al.; †, common to immunotherapy resistance by Rizvi et al.  
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Table S8 

 
 
Supplemental Table S8. Spliceoforms of pan-cancer DEGs. TAC expression console 
was used with paired ccRCC isolates to define pan-cancer genes not only modified in 
overall gene expression, but also possibly affecting T cell fitness by being expressed as 
modified RNA isoforms. Only coding genes are represented in table. Tot. No. represents 
total number of significant isoforms present between isolates. PSR/Junction ID retained 
is matched significant isoform present across isolates. All other definitions can be found 
at: https://assets.thermofisher.com/TFS-Assets/LSG/manuals/tac_user_manual.pdf.  
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Table S9 

 
 

Supplemental Table S9. Correlation of ptPBL DEGs with MMP9 pathways. 
Spearman correlation analyses were performed on pathDIP-identified significantly 
enriched pathways that include MMP-9, and other associated ccRCC ptPBL DEGs 
(Graphpad). 
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Supplemental Methods for:  

Failed immune responses across multiple pathologies share 
pan-tumor and circulating lymphocytic targets 
Study design 

This is a study of renal cancer patients who underwent resection for stage I-IV 

RCC at the CHUM (Montreal, Quebec, Canada), between 2013 and 2017. Written and 

informed consent procedures were approved by the CHUM research ethics board (REB). 

Informed consent was obtained from all subjects for participation in the CHUM kidney 

biobank (CHUM ref no. SL07.053) prior to the collection of specimens, and all methods 

were performed in accordance with the relevant guidelines and regulations. Clinical 

patient data was randomly numbered for complete anonymity. Training cohort and 

validation cohort had similar overall clinicopathological parameters (Supplemental Table 

1), with exception that all training cohort patients were ccRCC, while a few pRCC and 

RCC patients were included in the validation cohort. The TCGA KIRC ccRCC RNA-seq 

datasets and clinical files used for analysis of single prognostic and synergistic prognostic 

DEGs (n = 534 tumor and n = 72 normal), were downloaded from 

http://gdac.broadinstitute.org/ on 02/12/2016. Pan-cancer, MAS5-normalized patient 

cohort GEO, the EGA and TCGA datasets including lung (n = 2,435), breast (n = 5,143), 

gastric (n = 2,183), and ovarian (n = 1,816) cancers, were derived from http://kmplot.com/. 

DEG protein profiles in cells and across 17 cancers were derived from 

https://www.proteinatlas.org/. For comparison of our DEGs to cancer immunotherapy 

resistance genes, we used two datasets, including a transcriptomic dataset from 

melanoma patients treated with anti-PD-1 therapy (n = 38) (1), in addition to a genetic 
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dataset from NSCLC patients treated with anti-PD-1 therapy (n = 31) (2). To compare our 

DEGs the effects of HIV-1 infection, we used a HIV-1 elite controllers dataset (n = 81 

patient, n = 98 controls) (3). For comparison of DEGs to bacterial infection induced 

effects, we used four including generalized bacterial infection, sepsis, and specific 

infection by Staphylococcus aureus and Escherichia coli (n = 157 cases, n = 157 controls) 

(4). 

 

Rapid RNA extraction from CD8+ and CD19+ immune cells 

To avoid ischemia effects on RNA and proteins, tissue specimens and paired 

patient blood were kept on ice during immediate transport following surgical extraction, 

from operating rooms to pathology by a specialized research technician. Expert renal 

pathologists immediately classified and selected experimental tissues (i.e., tumor and 

normal adjacent tissues distant from tumor margins), and according to the defined 

guidelines from the WHO 2004 and the WHO 2016. Selected specimens were kept on 

ice during direct transport from pathology to TIL extraction laboratories. For the isolation 

of TILs and TIICs from freshly resected kidney tumors and normal adjacent tissues, cold 

tissues were homogenized using three consecutive cycles of the h_tumor_01 program of 

the gentleMACS™ Dissociator (Miltenyi Biotec, USA), and resulting cellular suspensions 

were passed through a 0.45 μm filter fit onto a 50 mL falcon tubes (Fisher), were pelleted 

by centrifugation (4 °C, 10 min, 300 g), and were subjected to Ficoll gradient separating 

lymphocytes from tumoral material (Lymphocyte separation medium; WISENT 

Bioproducts) followed by an additional two 50 mL PBS washes prior to cell pelleting by 

centrifugation (4 °C, 10 min, 300 g). 40 mL of blood from patients and matched control 
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donors were treated alongside tumors, via dilution in PBS for Ficoll gradient separation 

of immune cells (Lymphocyte separation medium; WISENT Bioproducts), pelleting of 

cells (4 °C, 10 min, 300 g), and followed by two additional 50 mL PBS washes prior to cell 

pelleting by centrifugation. Cell pellets were resuspended in EasySep™ Buffer 

(STEMCELL Technologies), and cells were counted and resuspended at appropriate 

dilutions for extraction using Human CD8 and CD19 Positive Selection Kits (STEMCELL 

Technologies), used as recommended by the manufacturer for the rapid isolation of CD8+ 

and CD19+ immune cells. Total RNA was purified using QIAshredder cell-lysate 

homogenizers followed by the RNeasy Plus Micro Kit (QIAGEN). The quality of the total 

RNA was evaluated with the RNA 6000 nano LabChip kit on an Agilent 2100 Bioanalyzer 

system (Agilent Technologies). 

 

Flow cytometry 

Efficiency of isolation of various immune cell subsets from tumors was quality tested using 

flow cytometry (Supplemental figure S2). Cells were counted and resuspended in PBS 

for transfer to 5 mL polystyrene round bottom FACS tubes (Falcon) where non-specific 

binding sites were blocked with human gamma globulin (Jackson ImmunoResearch) and 

dead cells were labeled for flow cytometry-mediated elimination using a LIVE/DEAD 

fixable Aqua Dead Cell Stain Kit (Life technologies) for 20 min at 4 °C. Following a cold 

PBS wash and centrifugation (4 °C, 5 min, 300 g), cells were resuspended in cold FACS 

buffer (PBS containing 0.5% BSA and 0.1% NaN3) and were stained for 30 min at 4 °C 

with the following titrated monoclonal antibodies,  α-CD45-PE-Cy7 (clone  HI30), α-CD8-

PE-Cy5 (clone RPA-T8), α-CD4-APC-H7 (clone  L200), α-CD19-AF700 (clone  HIB19), 
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and α-CD11c-APC (clone  B-ly6) (BD Biosciences). Clones chosen were recommended 

by STEMCELL as these are not the same clones used in magnetic beads antibody 

separation mixtures otherwise interfering with flow cytometry antibodies. Cells were then 

washed with, and resuspended in cold FACS buffer for flow cytometry analysis. In multi-

parametric FACS analyses, compensation beads (BD Biosciences) stained in parallel to 

cells were used to compensate for fluorescence spill over. Flow cytometry data was 

acquired using an LSR Fortessa cell analyzer with DIVA software (BD Biosciences) and 

data was analyzed using FlowJo V10 software. 

 

Microarrays 

Microarray experiments were performed using the GeneChip® HTA 2.0 

(Affymetrix, Santa Clara, CA). This comprehensive array interrogates 44,699 protein-

coding genes and 22,829 non-protein coding genes with approximately ten probes per 

exon and four probes per exon-exon splice junction. 1 ng of total RNA for each sample 

was processed using the Affymetrix GeneChip WT Pico Reagent Kit. This kit uses a 

reverse transcription priming method that specifically primes non-ribosomal RNA, 

including both poly(A) and non-poly(A) mRNA, and is used to generate sense-stranded 

cDNA. 5.5 µg of the single-stranded cDNA was then fragmented and labeled using the 

Affymetrix GeneChip WT Terminal Labeling Kit and it this product was hybridized onto 

the chip. The entire hybridization procedure was performed using the Affymetrix 

GeneChip system according to the manufacturer’s recommendations. Test GeneChip® 

HTA 2.0 microarrays and GeneChip WT Pico Reagent kits were kindly donated by Peter 

Graf (Affymetrix). The hybridization was evaluated using the Affymetrix GeneChip 
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Command Console Software (AGCC) and the quality of the chips was assessed using 

the Affymetrix Expression Console. Normalization and QC analysis: The data obtained 

was normalized using Partek Genomics Suite™ 6.6 (Partek, St. Louis, Missouri). GC 

content adjustment, background adjustment, quantile normalization and mean probe set 

summarization were performed using the Robust Multichip Average (RMA) algorithm. 

Quality control analysis was then performed and included: QC metrics (pos vs. neg area 

under curve (AUC), all probe set mean absolute deviation (MAD) residual mean, all probe 

set relative log expression (RLE) mean, hybridization controls (BAC spike), synthesis 

controls (poly(A) spike), and log expression signal box plots), signal histograms, and 

principle component analysis (PCA). RNA expression analysis: Transcripts found to be 

significantly differentially expressed between groups, i.e., with p-values ≤ 0.05 and fold 

change cutoff of ≥1.5 (using analysis of variance (ANOVA) with Fisher’s Least Significant 

Difference (LSD) posttest). 4-way Venn diagrams generated to demonstrate DEG 

overlaps from microarrays were created using http://www.interactivenn.net/ (5). 

 

Real-Time quantitative PCR microfluidics gene expression analysis 

cDNA was synthesized using the High-Capacity Reverse Transcription Kit with 

RNase Inhibitor (Life Technologies) (25˚C for 10 min, 37˚C for 120 min, 85˚C for 5 min). 

The produced cDNA was subjected to gene-specific preamplification using Taqman 

Preamp MasterMix (Applied Biosystems) and 96 pooled TaqMan Assays (Assay IDs are 

listed in Supplemental table S4) (Applied Biosystems) at final concentration 0.2X (95˚ C 

for 10 min, followed by 16 cycles of 95˚C for 15 s and 60˚C for 4 min). The preamplified 

cDNA was diluted 5-fold in DNA suspension buffer (Teknova) and was mixed with 
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TaqMan Universal PCR Master mix (Life Technologies) and 20X GE sample loading 

reagent (Fluidigm). 20X Taqman assays were diluted 1:1 with 2X assay loading buffer 

(Fluidigm). Samples and Taqman assays mixtures were loaded onto a primed 96.96 

Dynamic Array chip (Fluidigm). The chip was loaded into the IFC Controller, where each 

sample was mixed with each assay in every possible combination (a total of 9,216 

reactions). The chip was transferred in a Biomark (Fluidigm) for real-time PCR 

amplification and fluorescence acquisition using single probe (FAM-MGB, reference: 

ROX) settings and the default hot-start protocol with 40 cycles. Cycle thresholds (Ct) were 

calculated using the Fluidigm BioMark software and further analysis was carried out using 

GenEx software (MultiD Analyses, http://www.multid.se). Five endogenous control genes 

were included in each Fluidigm run and the stability of endogenous control genes across 

all experimental samples was evaluated applying the NormFinder algorithm in GenEx. 

The geometric mean expression of the four most stable endogenous control genes (IPO8, 

GUSB, PGK1 and POL2RA) was used for normalization. Relative expression (2-Δct) 

values were log2 transformed for subsequent analyses. Unsupervised hierarchical 

clustering was performed using the in heatmap2 function in R on mean-centered –ΔCt 

expression values applying the Euclidean distance metric and complete linkage clustering 

method 

(https://www.rdocumentation.org/packages/gplots/versions/3.0.1/topics/heatmap.2). 

PCA biplots were created on –ΔCt values using the programming language R and 

function biplot (http://stat.ethz.ch/R-manual/R-

devel/library/stats/html/biplot.princomp.html). Combination testing for revealing smaller 

sets of patient stratifying pan-cancer genes was performed by PCA testing for patient 
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stratifying combinations of DEGs that were most significantly modulated in expression, 

correlating, or anti-correlating in ptPBLs versus cdPBLs.   

 

Statistical analysis 

For the training ccRCC cohort, a sample size of n = 5 paired patient TILs, TIICs, 

and PBLs was determined as having above 0.9 power according to the GeneChip Human 

Transcriptome Array 2.0 manufacturer guidelines (Affymetrix, Thermo Fisher Scientific). 

Training set microarrays power calculations by the manufacturer used an inference of 

means calculation from https://www.stat.ubc.ca/~rollin/stats/ssize/n2. Multiple hypothesis 

test correction was performed using the FDR Benjamini–Hochberg step-up procedure. 

For the RCC validation cohort (n = 74), power analysis determined that a minimal sample 

size of n = 62 to reach a power of 0.80 at α = 0.05 (two-tailed) (G*Power ver. 3.1.9.2; 

Universitat Düsseldorf, Germany). For algorithms used, statistical methodology for 

algorithms is described within scripts and https://www.biostars.org/p/153013/. Limma and 

survival packages for R are used for single and synergistic ccRCC prognostic algorithms. 

Dendrogram, heatmap and PCA unsupervised algorithms used the Euclidean distance 

metric and complete linkage clustering method. Correlogram algorithm uses the R 

corrplot library, and was created from http://www.sthda.com/, using r-project corrplot and 

vignette packages. Binomial correlations for testing of validated DEGs against clinical 

patient parameters used two-tailed nonparametric Spearman correlation with 95% CI 

(Prism V6.01, GraphPad). An unpaired 2-tailed student's t test with FDR of 1% was used 

to compare two groups, and two-way ANOVA (with Sidak's multiple-comparisons test) 

and 95% CI was used for multiple comparisons. Pathway enrichment analysis results 
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were adjusted for multiple testing by applying FDR and Bonferroni methods. P-values of 

less than 0.05 were considered to indicate a statistically significant difference.  

 

Prognostic Signature Validation and gene expression analysis 

Kaplan Meier plotter was used to validate the prognostic value of the ICP 

signature, and to assess ICP gene expression modulation between tumors and normal 

tissues. Gene ID symbols were mapped to Affymetrix probes from GEO, EGA and TCGA 

datasets, and their mean expression was used to assess OS. For K-M, default settings 

were used with auto select best cutoff and best specific probes (JetSet probes). The 2017 

version of Kaplan Meier plotter contains information on 54,675 genes for survival, 

including 2,437 lung, 5,143 breast, 1,065 gastric, and 1,816 ovarian cancer patients with 

mean follow-up times of 49, 69, 33, and 40 months, respectively. 

 

Protein-Protein Interaction Network and Pathway Enrichment Analysis, and pan-

cancer MMP-9 PPI networks 

To test validity of performing in depth analyses on DEG datasets, online search 

engine STRING: functional protein association networks; https://string-db.org/) was first 

used to observe PPIs and PPI enrichment values. Then, top 200 pan-cancer DEGs and 

all ccRCC ptPBLs were subjected to comprehensive pathway enrichment analysis using 

pathDIP ver. 3 (http://ophid.utoronto.ca/pathDIP) (6). Default settings were used, with 

extended pathway associations (combining literature curated core pathways with 

associations predicted using physical protein interactions with minimum confidence levels 

of 0.99). Lists were also used to retrieve physical protein interactions and explore 
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biologically relevant links. IID ver. 04-2018 (http://ophid.utoronto.ca/iid) was used to map 

identified biomarkers to proteins and retrieve their interacting partners (7). Default settings 

were used, and interactions among partners of query proteins, source information 

(detection methods, PubMed IDs, reporting databases), and tissue information 

(presence/absence of interactions in selected tissues) were included. Corresponding 

networks were visualized using NAViGaTOR ver. 3 (http://ophid.utoronto.ca/navigator) 

(8). 

For MMP-9 PPI networks: For PPI networks, 216 human PPIs for MMP-9 were 

obtained from IID (version 04-2018), 205 of which have proteins mapping to the gene 

expression data. Furthermore, 3,880 PPIs among interactors of MMP-9 were found, out 

of which, 3,776 PPIs were mapped to gene expression data. All of these PPIs were 

annotated with differential gene-coexpression and their normal or cancer specificity 

across thirteen different tissues (6). For differential gene co-expression networks, raw 

gene expression profiles for 1,013 non-malignant (N) and 1,788 tumor (T) pre-treatment 

patient samples were obtained from GEO. These data cover thirteen tissue-cancers, 

comprising: breast (86 N, 93 T), cervical (30 N, 52 T), colorectal (117 N, 345 T), 

endometrial (21 N, 58 T), esophageal (132 N, 159 T), renal (89 N,111 T renal), liver (20 

N, 20 T), lung (188 N, 510 T), mouth (oral cavity and tongue; 67 N, 70 T), ovarian (49 N, 

71 T), pancreatic (61 N, 73 T), prostate (96 N, 143 T), and thyroid (57 N, 84 T). GEO 

Accession Numbers of sample source datasets are as follows, (downloaded in 11/2012): 

GSE19383, GSE26910, GSE3744, GSE5764, GSE20437, GSE5364, GSE5462, 

GSE6883, GSE9574, GSE9750, GSE20916, GSE8671, GSE41258, GSE5364, 

GSE11024, GSE14762, GSE8271, GSE6280, GSE6344, GSE781, GSE6280, GSE6344, 
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GSE781, GSE29721, GSE14520, GSE10245, GSE19188, GSE28571, GSE31210, 

GSE31908, GSE10072, GSE31908, GSE5364, GSE7670, GSE31908, GSE14407, 

GSE15578, GSE18520, GSE19383, GSE36668, GSE38666, GSE15471, GSE16515, 

GSE22780, GSE17951, GSE32448, GSE32982, GSE3325, GSE6956, GSE29265, 

GSE3467, GSE3678, GSE6004, GSE27155, GSE5364; (downloaded 01/2016): 

GSE17025, GSE20347, GSE23400, GSE29001, GSE30784, GSE31056, GSE33426, 

GSE38129, GSE53757, GSE64985, GSE7305, GSE7307, GSE7803). Due to the lower 

sensitivity of co-expression (i.e., pairwise correlation) to batch effects relative to 

expression analysis, all samples were normalized using the MAS5 function implemented 

in Affy package (1.48.0) in R (9). For differentially co-expressed PPIs, for each pair of N 

and T samples in tissue-cancer datasets, their relevant co-expression matrices (i.e., ρN 

and ρT) were calculated using Pearson Correlation Coefficient. Absolute values of the 

difference between these two matrices as the differential co-expression matrix (i.e., 

Diff(N,T)) were used. For each dataset, PPIs whose corresponding gene pair were among 

the top 1% of values in Diff(N,T) were annotated as differential PPIs in that particular tissue-

cancer dataset. For MMP-9, we found 106 PPIs (out of 205) and for PPI networks among 

MMP-9 interactors, we found 1,814 PPI (out of 3,776) differentially co-expressed PPIs in 

at least one tissue-cancer dataset. Gained PPIs in tumour (tumour-specific PPIs) were 

defined as PPIs with ρT > ρN, and lost PPIs in tumour (normal-specific PPIs) were defined 

as PPIs with ρN > ρT. For significance of the number of differential PPIs across tissue-

cancers, a binomial test was used to identify tissue-cancers in which the number of 

differential PPIs has been statistically significant. Expected probability of an interaction to 

be differential at each tissue-cancer was calculated by dividing the sum of differential 
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PPIs across all tissue-cancers by the total possibilities it may have across all tissue-

cancers (i.e., the number of tissues multiplied by the size of the union of the differential 

PPIs). Heatmaps were generated heatmaps using gplots package (version 3.0.1) in R. 

 

Data availability 

TCGA KIRC RNA-seq datasets and associated clinical datasets are available at 

the cBioPortal for Cancer Genomics at http://gdac.broadinstitute.org/. Pan-cancer testing 

patient cohort GEO, the EGA and TCGA datasets are available at http://kmplot.com/. 

DEG protein profiles in cells and across 17 cancers are available from 

https://www.proteinatlas.org/. Transcriptomic datasets from melanoma and NSCLC 

patients treated with anti-PD-1 therapy are available from Hugo et al. (1), and Rizvi et al. 

(2). The HIV-1 elite controllers dataset is available from Zhang et al. (3), and the bacterial 

datasets are listed in Song et al. (4). Comprehensive pathway enrichment analysis and 

PPI analyses are available as Supplemental Data. The microarray data is published at 

the National Center for Biotechnology Information Gene Expression Omnibus 

(http://www.ncbi.nlm.nih.gov/geo) under GEO accession number GSE117230. 

 

Code availability 

R source codes used for: heatmaps, dendrograms, PCAs, prognostic genes 

identification from TCGA KIRC, synergistic prognostic genes identification from TCGA 

KIRC, and correlograms are available from the authors upon reasonable request.  
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