Parkinson’s disease (PD) patients have increased histamine in their basal ganglia, but the role of this neurotransmitter in PD is poorly understood. In this issue of the JCI, Zhuang et al. demonstrate that histamine levels rise in the subthalamic nucleus (STN) to compensate for abnormal firing patterns. Injection of histamine into the STN restores normal firing patterns and motor activity, whereas merely changing firing rates has no behavioral effect. Moreover, STN deep brain stimulation, a widespread therapy for PD, regularizes firing through endogenous histamine release. This suggests that abnormal firing patterns, rather than rates, cause PD symptoms, and this histaminergic pathway may lead to new treatments for the disease.
Timothy C. Whalen, Aryn H. Gittis
Usage data is cumulative from October 2023 through October 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 532 | 325 |
128 | 40 | |
Figure | 67 | 1 |
Citation downloads | 46 | 0 |
Totals | 773 | 366 |
Total Views | 1,139 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.