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local microenvironment to restore homeostasis.

Introduction

Macrophages are innate immune cells present in every tissue and
necessary for homeostasis. Macrophages sense and respond to patho-
gens and other environmental challenges and participate in tissue
repair after injury. Work from many groups in the last decade reveals
macrophages as remarkably plastic cells that are epigenetically pro-
grammed in response to signals originating from the tissue environ-
ment (1, 2). Macrophages integrate endocrine or paracrine signals
with signals originating from phagocytosed cells, microvesicles, and
molecules in the extracellular matrix. In addition, macrophages can
interact directly with surface receptors on other tissue-resident cell
populations, immune cells recruited during injury, and extracellular
proteins. As a result, macrophages play diverse roles in development,
the acute response to infection and tissue injury, and tissue repair.
Because macrophages play tissue- and disease stage-specific roles,
therapies that target them might be expected to have fewer of the
off-target effects that limit the use of less selective therapies. Achiev-
ing this goal will require more precise molecular endotyping and tar-
geting of macrophage subpopulations over the course of tissue injury
and repair. Here we describe recent advances in our understanding
of the origin, subtype, and phenotype of tissue macrophages during
homeostasis and repair.

Macrophages in homeostasis

Developmental origins of tissue macrophages. In 1968, based on label-
ing studies after whole-body irradiation, van Furth and colleagues
proposed that bone marrow-derived circulating monocytes are the
source of tissue macrophages (3). This paradigm was overturned
within the last decade when several independent groups reported
the results of genetic lineage tracing studies in mice (4-10). They
found that in many tissues, macrophages originate from precursor
cells derived from the yolk sac or fetal liver and differentiate into
macrophages as part of prenatal or antenatal development. These
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“tissue-resident macrophages” can be very long-lived (months
to years in the brain, liver, lung, and skin) and self-renewing,
maintaining their homeostatic pool without a contribution from
circulating monocytes (11-13). In other tissues, tissue-resident
macrophage populations are replaced by monocyte-derived cells
over different time scales. For example, in the intestine, locally
maintained tissue-resident macrophages coexist with monocyte-
derived populations with relatively short half-life, which have dis-
tinct roles in gut homeostasis and intestinal physiology (14-16).

Advances in flow cytometry, lineage tracing systems, and
insights from single-cell transcriptomics have dramatically
improved our ability to identify distinct macrophage populations
(17). For example, a recent study identified at least two unique
tissue-resident interstitial macrophages in the steady-state lung
that could be distinguished by unique transcriptional profiles
and spatially localized to the interstitium of the bronchovascular
bundles, but not alveolar walls (18). Indeed, most tissues are now
recognized to contain multiple macrophage populations localized
to distinct microanatomical domains (18-20). Each of these pop-
ulations differs in its ontogeny, rate of replacement by monocyte-
derived cells, and capacity for self-renewal, and each is likely to
play a specialized role in tissue homeostasis, injury, and repair
(Figure 1 and refs. 13, 21). The application of single-cell transcrip-
tomics and high-throughput spatial transcriptomics in mice and
humans combined with advanced lineage tracing studies in mice
will allow a more complete understanding of the spectrum of mac-
rophage phenotypes in different microdomains within healthy and
diseased tissues. These same technologies can be used to generate
and test hypotheses with respect to the molecular mechanisms by
which macrophages contribute to tissue injury and repair and how
they can be targeted for therapy (19).

Epigenetic control of macrophage differentiation is tissue-specific.
Relative to dendritic cells, tissue macrophages poorly present anti-
gens to other immune cells and fail to migrate to regional lymph
nodes (22). Transcriptomic profiling of four tissue-resident macro-
phage populations by the InmGen consortium revealed that mac-
rophages from different tissues — brain microglia, splenic red pulp
macrophages, large peritoneal macrophages, and Kupffer cells in the
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Figure 1. Tissue-resident macrophages and monocyte-derived macrophages play distinct roles in tissue injury and repair. Tissue-resident macrophages
(TRMs) originate from the yolk sac and fetal liver during development and persist in many tissues via self-renewal. During homeostasis (left panel), TRMs
clear apoptotic cells, proteins, and phospholipids and either clear or respond to toxins, particulates, and pathogens within the local microenvironment.
Many TRMs are capable of maintaining themselves by local proliferation without the contribution of monocyte-derived macrophages (MoMs). TRMs
produce a variety of factors that stimulate the activation, proliferation, and differentiation of immune cells, epithelial cells, endothelial cells, fibroblasts,
and stem cells that facilitate tissue homeostasis. In response to tissue injury (middle panel), bone marrow-derived monocytes are recruited to the injured
tissue, where they differentiate into MoMs. During injury, TRMs and MoMs play distinct roles; usually MoMs exhibit a more robust inflammatory response.
During the resolution of injury (right panel), TRMs may die or expand through self-renewal and repopulate the niche. MoMs either undergo apoptosis or
persist, sometimes gaining the capacity for self-renewal. Over time, the phenotypes of TRMs and MoMs become increasingly similar. Arrows indicate

interactions with other cell types.

liver — had more differences in their transcriptional program than
similarities (23). In contrast, dendritic cells recovered from a variety
of tissues had more similar transcriptomes. These findings suggested
that tissue-resident macrophages were uniquely defined by factors
originating from their microenvironment. In seminal studies, two
groups of investigators used transcriptional and epigenomic profil-
ing of tissue-resident macrophage populations to provide insights
into the molecular events that allow monocytes to differentiate
along widely divergent paths in a tissue-specific context (2, 24). They
found that macrophage populations were distinguished from other
myeloid cells and each other at the epigenetic level as measured by
histone modifications in both promoters and enhancers. These epi-
genetic modifications determined tissue macrophage transcriptomic
identity. Enhancers are regions distal to the transcriptional start site
of genes marked by the corresponding histone marks (H3K4mel
for poised enhancers or H3K27ac for active enhancers). Most
macrophage-specific enhancers contain binding domains for the pio-
neering transcription factor PU.1. Tissue-specific macrophages are
further distinguished by enrichment in tissue-specific transcription
factor binding domains, for example GATA-6 in peritoneal macro-
phages, MEF2 in microglia, LXRa in Kupffer cells and spleen macro-
phages, and PPARy in alveolar and spleen macrophages. Importantly,
these epigenetic enhancer landscapes are similar both in naive mice
(embryonically derived macrophages) and in macrophages derived
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from monocytes after total-body irradiation and congenic bone mar-
row reconstitution, suggesting that fully developed tissues retain
the ability to epigenetically program monocytes into tissue-resident
macrophages. Furthermore, these epigenetic changes are reversible,
as mature macrophages adoptively transferred from one tissue to
another take on the phenotype of the recipient tissue macrophages
(2, 25, 26). Together these findings support a model whereby the
tissue microenvironment continuously provides signals that revers-
ibly induce macrophage differentiation in a tissue-specific context
through the hierarchical recruitment of transcription factors that
alter the epigenetic landscape of the cell. Given the dramatic changes
in environmental signals associated with tissue injury, these results
suggest important plasticity in macrophage responses as the micro-
environment changes.

Macrophages during tissue injury. For almost a century, investi-
gators have focused on the role of monocytes and macrophages in
the acute response to tissue injury, where they are known to pro-
duce cytotoxic and proinflammatory mediators, clear invading
microorganisms, remove apoptotic and damaged cells, and pro-
mote tumor progression (27, 28). Chemokine receptor 2 (CCR2)
is required for the release of monocytes from the bone marrow
and the recruitment of monocytes to tissues during injury. Mice
deficient in CCR2 are therefore monocytopenic and fail to recruit
monocytes and monocyte-derived macrophages to tissues during
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Figure 2. Role and kinetics of macrophages during tissue injury and repair. (A) Monocytes are recruited to the tissue during injury, where they differentiate
into macrophages in response to cues provided by the injured microenvironment. We propose two models to understand the distinct roles of monocytes in
promoting tissue injury and tissue repair during injury resolution, which are not mutually exclusive. In the passive repair model (top panel), tissue regeneration
restores signals that promote macrophage differentiation into cells that increasingly resemble tissue-resident macrophages. As the homeostatic function

of macrophages is restored, tissue repair is accelerated, creating a feed-forward loop that restores homeostasis. In the active repair model (bottom panel),
monocyte-derived macrophages respond to cues in their microenvironment and express or secrete factors that drive tissue repair. Interactions include the
uptake of apoptotic cells (often neutrophils), regulatory T cells, pathogens, and epithelial cells. These monocyte-derived macrophages might promote the
resolution of inflammation through secretion of antiinflammatory and pro-repair mediators including metabolic intermediates, pro-resolution lipid mediators,
antiinflammatory cytokines, and matrix remodeling proteins. (B) The kinetics of monocyte-derived macrophage recruitment to tissues is a subject of active
investigation. A single wave of monocytes may enter during injury and be progressively reshaped into pro-resolving macrophages in response to cues within
the local microenvironment (top panel). Alternatively, distinct waves of monocyte-derived macrophages might be involved in tissue injury (red) and tissue
repair (purple) (middle panel), or monocytes with varying functions might be continuously recruited over the course of tissue injury and repair (bottom panel).

injury. CCR2-deficient mice or genetic or pharmacologic deletion
of CCR2-positive monocytes have been widely used to demon-
strate the importance of monocytes and /or monocyte-derived cells
in the development of tissue injury and the clearance of invading
pathogens (29-32). More recently, investigators have used selec-
tive deletion strategies to specifically demonstrate a contribution
of monocyte-derived alveolar macrophages to tissue injury and
fibrosis, in some cases excluding a role for tissue-resident mac-
rophages (reviewed below). Comparisons of monocyte-derived
and tissue-resident macrophages colocalized in the injured tissue
using bulk or single-cell RNA-Seq reveal distinct transcriptional
profiles during injury (29, 33). In general, both tissue-resident and
monocyte-derived macrophages demonstrate qualitatively similar
changesin gene expression in response to injury, but these respons-
es are more robust in monocyte-derived cells (9) and dispropor-
tionately affect physiologic measures of injury.

Collectively, these findings highlight the importance of macro-
phage ontogeny during acute injury with important consequences
for the interpretation of both published and prospective studies.
Specifically, experimental strategies that target genes necessary
for monocyte-to-tissue macrophage differentiation have to be

interpreted with caution. For example, monocyte-to-alveolar
macrophage differentiation has been reported to require several
genes, including Torcl, Pparg, and Tgfbl (34-38). Deletion of these
genes in monocytes or differentiating macrophages (for exam-
ple with a LysM-Cre or CD11c-Cre system) will therefore prevent
or slow accumulation of monocyte-derived macrophages in the
tissues upon the injury (39). As a result, it is impossible to distin-
guish effects on tissue injury or repair secondary to depletion of
monocyte-derived cells from those related to the specific func-
tions of the targeted gene unless the study is combined with lin-
eage tagging to distinguish monocyte-derived and tissue-resident
cells. Similar concerns might affect tissue-specific transcription
factors important for macrophage differentiation in other tissues,
for example MEF2C in microglia, LXRa in Kupffer cells and splenic
macrophages, PPARy in splenic red pulp and lung, GATA-6 in peri-
toneal macrophages, and RUNX3 in intestinal macrophages (2).
Breaking out of the M1/M2 box. In cultured bone marrow-
derived macrophages, the administration of LPS and IFN-y induces
genes encoding proinflammatory cytokines, including TNF-o and
IL-6. In contrast, the administration of IL-4 and IL-13 results in the
expression of antiinflammatory cytokines, including IL-10, TGF-,
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Figure 3. Major questions remaining regarding the role of macrophages in tissue injury and repair.

and the cytosolic enzyme arginase-1. As initial analyses included
only a handful of nonoverlapping markers, a conceptual framework
evolved that limited macrophages to an “M1” or “M2” phenotype
in an in vivo context, analogous to the Thl/Th2 concept that was
dominating T cell biology at that time (40, 41).

While the framework of M1/M2 polarization has provided a
useful system to study macrophages in vitro, it has hindered our
understanding of macrophage plasticity in vivo, as classical M1
and M2 polarization is unlikely to occur in a tissue context. This
was definitively shown by Xue et al., who found that the M1/M2
paradigm failed to describe the transcriptome of human monocyte-
derived and alveolar macrophages stimulated with LPS/IFN-y or
IL-4/1L-13 in the presence of factors known to be present in differ-
ent tissue or disease microenvironments (42). These macrophage
responses can be remarkably selective. For example, Avraham et
al. used single-cell RNA-Seq to show that peritoneal macrophages
in the same microenvironment respond differently to salmonella
strains that differ by a single gene (43). The M1/M2 paradigm can
be particularly misleading during acute injury, when tissue-resident
and monocyte-derived macrophages coexist in the diseased micro-
environment. Specifically, many tissue-resident macrophage popu-
lations express higher levels of “M2” markers when compared with
maturing monocyte-derived macrophages (2, 13, 33). As a result,
in the absence of a lineage marker, the simultaneous presence of
immature monocyte-derived and mature tissue-resident macro-
phages will result in apparent “M1” polarization of the mixed popu-
lations (on average). During repair, monocyte-derived macrophages
increasingly mature and resemble tissue-resident macrophages, a
process that can take weeks (2, 13, 44). As a result, in the absence of
a lineage mark, the mixed population will appear to “switch” to an
M2 phenotype. These limitations likely explain emerging literature
in which bulk RNA-Seq of flow cytometry-sorted macrophages and
single-cell RNA-Seq data collected during tissue injury and repair
in mice and humans reveal macrophage phenotypes that are incon-
sistent with the M1/M2 paradigm (13, 45). We join other authors
who suggest strictly limiting the use of M1/M2 polarization to the
well-defined in vitro conditions in which it was described (46, 47).

Role of macrophages in tissue repair

Macrophages have frequently been reported to play divergent roles
in tissue injury and tissue repair (Figure 1). A better understanding
of these roles might be obtained by considering unique factors asso-
ciated with the environmental stimulus that induces the injury, the
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ular events that orchestrate the changing
roles for different macrophage populations
over the course of tissue injury and repair are
beginning to be understood. Some of these
common mechanisms are discussed below.
Macrophages as active or passive partic-
ipants in tissue repair. During tissue injury,
pathogens, infected cells, and cells dying from necroptosis or pyro-
ptosis release pathogen- or damage-associated molecular patterns
(PAMPs or DAMPS), which activate inflammatory signaling pathways
in macrophages and other resident cell populations that recruit neu-
trophils, monocytes, and other inflammatory cells to the tissue. Once
the acute injury has been controlled, macrophages play a role in sup-
pressing inflammation and initiating wound repair by clearing debris
and producing growth factors and mediators that provide trophic
support to the tissue in which they reside (48). We suggest two non-
exclusive pathways by which tissue macrophages might contribute to
repair (Figure 2). The first process, which we refer to as “passive mac-
rophage repair,” involves the progressive differentiation of monocyte-
derived macrophages in response to a growing number of “normal”
signals originating from the regenerating tissue microenvironment.
As this process of differentiation occurs, the macrophages take on
phenotype and function increasingly similar to those of homeostatic
tissue-resident macrophages. The result is a positive-feedback loop
in which an increasing normalization of the tissue microenviron-
ment drives a progressively more homeostatic role for macrophages,
which in turn promote tissue repair. In this model, monocyte-derived
macrophages may develop a capacity for self-renewal and persist in
the tissue after resolution, perhaps through downregulation of the
transcription factor MAFB (38, 45). Alternatively, monocyte-derived
macrophages might die by apoptosis, allowing the restoration of
tissue-resident macrophages through proliferation and migration, as
was shown in microglia using an elegant fate-mapping system (49).
The second process, which we call “active macrophage repair,”
involves activation of specific transcriptional programs in macro-
phages in response to factors uniquely present in the injured tissue
microenvironment. The best studied of these mechanisms involves
macrophage efferocytosis of apoptotic neutrophils recruited to the
tissue during injury (37). During efferocytosis, the externalization
of intracellular phospholipids, including phosphatidylserine, and
intracellular molecules, including ATP, on apoptotic cells induces
the absorption of opsonins such as Mfge8 and AnxA1 onto the apop-
totic cells’ surface (50, 51), and induces binding of protein S and
GAS6 to phosphatidylserine. Protein S and GAS6 serve as ligands
for the TAM receptor tyrosine kinase family (TAM is an acronym
derived from the first letter of its three constituents: Tyro3, Axl,
and Mer), whose activation is facilitated by TIM4 and bridging
molecules including DEL-1 (52-54). Binding to the TAM receptors
activates downstream transcription factors, including LXRa, LXRB,
and PPARy (encoded by NRIH3, NR1H2, and PPARG, respectively),
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to attenuate inflammatory signaling pathways in macrophages. Sur-
veys of tissue macrophages reveal that the receptors, pathways, and
transcriptional responses induced by the uptake of apoptotic cells
differ in different tissues, and even within different macrophage
populations within the same tissue (51). Despite these differences,
the uptake of apoptotic cells almost always reduces the expression
of proinflammatory cytokines and chemokines from macrophages.
In addition to efferocytosis, other factors in the injured tissue
microenvironment can activate antiinflammatory signaling path-
ways in macrophages. For example, regulatory T cells that expand
in the injured tissue can release amphiregulin, TGF-f, and IL-10, or
directly interact with macrophages via ligand/surface interactions
induced by CD40/CD80 (55). Microvesicles originating from mac-
rophages or other recovering cell populations have been reported to
carry signaling molecules including SOCS2 or signaling microRNAs
that induce reparative phenotypes (56-60).

Mechanisms of macrophage-mediated tissue repair. Understanding
how macrophages communicate with resident cell populations to
promote tissue repair represents an active area of investigation. In
the passive model, this process occurs through restoration of tissue-
specific homeostatic macrophage functions. These include upreg-
ulation of molecules that interact with the epithelium to promote
homeostasis. Examples include the receptor/ligand pairs CD200/
CD200R, signal regulatory protein-o. (SIRPa)/CD47, and CSF2R/
GM-CSF and immune/epithelial E-cadherin interactions (61-64). In
the active model, macrophages secrete factors that actively promote
tissue repair. These include antiinflammatory molecules (IL-10 and
TGF-B), growth factors (VEGF, PDGFA), matrix metalloproteinases
(MMP-8, -10, -28), and osteopontin (65-67). Macrophages are also
thought to be the major source of resolvins, protectins, and mares-
ins, long-chain fatty acid-derived lipid mediators shown to drive the
resolution of tissue injury in a wide variety of pathologies (68). Study
of these molecules has been limited by their short half-life, their sus-
ceptibility to degradation during tissue processing, the requirement
for mass spectroscopy for their detection, and the lack of a known
specific receptor on target cell populations (68). The generation of
these lipid mediators is consistent with an important role for macro-
phage metabolism in regulating tissue repair after injury (69, 70). For
example, time series transcriptional data from cultured macrophages
during efferocytosis identified a key role for solute transporters
in the sensing, sampling, and ingestion of apoptotic material (71).
These changes resulted in a switch to a glycolytic phenotype with the
extracellular release of lactate, which served a signaling function to
inhibit inflammatory responses. In addition, investigators found that
activated macrophages produce an endogenous metabolite, itacon-
ate, resulting in the attenuation of inflammation (72).

Macrophages can also contribute to chronic organ dysfunction,
perhaps through abnormal activation of repair processes. For exam-
ple, cell-autonomous activation of mTOR signaling in macrophages
induces a systemic granulomatous disease with features sugges-
tive of sarcoidosis in multiple tissues (73). While both resident and
recruited macrophages are important for the clearance of patho-
gens in multiple tissues, some pathogens might hijack macrophage
repair pathways to persist (74). For example, investigators recently
found that cadherin-containing junctional complexes between
macrophages in a zebrafish model of mycobacterial infection
allowed the mycobacteria to evade immune clearance (75).

REVIEW SERIES: REPARATIVE IMMUNOLOGY

Time and ontogeny are important determinants of macrophage
function during repair. Understanding the role of macrophages in
tissue repair experimentally requires consideration of the tissue,
the type and severity of injury, the duration of time after injury,
and the ontogeny of macrophages, creating challenges for inves-
tigators. Some examples are illustrative. In the lung, the deletion
of monocyte-derived macrophages ameliorates fibrosis during
bleomycin-induced lung injury (13, 76), but the depletion of both
tissue-resident and monocyte-derived macrophages late in fibrosis
delays resolution (76). In contrast, Madsen and Bugge reported that
monocyte-derived alveolar macrophages were dispensable for the
development of fibrosis, but were necessary for collagen breakdown
in the intact skin (77, 78). In the lung, we found that monocyte-
derived and tissue-resident alveolar macrophages persist after
the resolution of influenza A or bleomycin injury, whereupon they
become transcriptionally similar to tissue-resident alveolar mac-
rophages (13). These findings are consistent with earlier studies of
tissue-resident macrophage depletion with clodronate or radiation
(2,79).Itis not known, however, whether monocyte-derived macro-
phages are recruited to the site of injury as a single wave of cells that
differentiate into a reparative phenotype as tissue injury resolves, or
whether monocytes newly recruited during resolution serve specific
repair functions (a distinction that may also depend on the injurious
stimulus) (Figure 2B). Alternatively, tissue-resident macrophages
may disproportionately contribute to tissue repair. Finally, there is
evidence to suggest that epigenetic changes in macrophages might
be important in conferring innate immunologic memory (80, 81).
Advances in lineage tracing methods and inducible deletion strate-
gies combined with single-cell transcriptomic approaches toidentify
heterogeneity should provide answers to these questions.

Role of macrophages during aging. As age is the most import-
ant risk factor for many of the chronic disorders associated with
macrophage dysfunction, a better understanding of age-related
changes in macrophages will be important to understand their role
in tissue repair (82). Several groups of investigators have observed
impaired macrophage transcription and function in normal aging.
These include reduced phagocytosis, impaired polarization in
vitro, a loss of wound healing response, and a reduced response to
Toll-like receptor activation (83). Investigators have used diverse
models of injury and repair to show that aged macrophages drive
degenerative phenotypes in the skin, peripheral nervous system,
and vasculature (83-88). Microglial inflammatory activation and
impaired phagocytosis in aged microglia have been implicated in
the development of Alzheimer’s disease (89). Low-grade activa-
tion of the NLRP3 inflammasome in adipose tissue macrophages
impairs their ability to clear lipids in response to adrenergic stim-
ulation during aging, contributing to age-related adiposity (90).
Several questions remain to be explored. For example, are changes
in macrophage function with aging cell-autonomous, or are age-
related changes in macrophage function driven by the loss or gain
of signals from the microenvironment? Are tissues that harbor
long-lived macrophage populations (for example, the brain, liver,
skin, and lung) more or less susceptible to age-related diseases
when compared with tissues in which macrophages are continu-
ously replenished by bone marrow-derived cells? Do alterations
in macrophage ontogeny drive differential responses in young
compared with aged tissues?
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Tissue-specific macrophage contributions

to repair

Any discussion of the role of macrophages in tissue repair across
organs is necessarily incomplete, but some examples highlight
consistent themes.

Heart. Investigators have identified four distinct populations of
tissue-resident macrophages in the heart, which have been shown
to play divergent roles in tissue injury and repair (7, 20). Resident
CCR2-negative macrophages promote coronary development and
cardiac regeneration and facilitate electrical conduction within
the atrioventricular node (91, 92). The depletion of CCR2-positive
(monocyte-derived) macrophages improved outcomes following
myocardial infarction (93, 94), while depletion of tissue-resident
populations after infarction led to impaired cardiac function and
adverse remodeling primarily within the peri-infarct zone (20).
Interactions between the macrophage scavenger receptor MER and
apoptotic cells through the opsonin MFGES improve cardiac repair
after myocardial infarction (95). Metabolic changes in cardiac mac-
rophages induced via MERTK likely support their role in resolution.
While further studies with more precise lineage tracing and dele-
tion approaches are needed, these findings support the hypothesis
that tissue-resident macrophages and recruited monocyte-derived
macrophages play distinct roles in cardiac injury and repair.

Lung. Alveolar macrophages are long-lived tissue-resident
macrophages localized to the alveolar space, where they play an
important role in maintaining homeostasis and host defense in the
lung (96, 97). Monocyte-derived alveolar macrophages recruited
during injury contribute to the development of fibrosis in response
to bleomycin, while tissue-resident alveolar macrophages do not
(13, 98). Bulk RNA-Seq of flow-sorted monocyte-derived and
tissue-resident macrophage populations demonstrated enhanced
expression of genes causally related to fibrosis in monocyte-
derived relative to tissue-resident cells (13, 98). These findings
were confirmed in the same mouse model using single-cell RNA-
Seq (99). More importantly, in patients with pulmonary fibrosis,
single-cell RNA-Seq demonstrated heterogeneity in macrophage
phenotypes in patients with fibrosis relative to controls, and spatial
transcriptomics confirmed that “profibrotic” macrophages coexist
with “normal” macrophages in the same microenvironment, sup-
porting the hypothesis that ontogeny is an important determinant
of macrophage function in human lung fibrosis (13, 100).

Recently, the function of resident interstitial pulmonary mac-
rophages (which consist of two populations, peribronchial and
perivascular) in tissue injury has been explored (18). In an asbes-
tos model of lung fibrosis, these resident interstitial macrophages
did not contribute to the profibrotic macrophage pool (101). In
contrast, acute deletion of perivascular interstitial macrophages
worsened fibrosis severity after bleomycin. These findings, how-
ever, should be treated with caution, as genetic depletion of mac-
rophages induces their death via necrosis and may induce tissue
damage on its own (21). Single-cell RNA-Seq data may identify
specific markers that can be used to more precisely target distinct
macrophage populations to dissect their contributions to tissue
injury and repair (76,102-105).

Brain. Microglia are a stable population of tissue-resident
macrophages in the central nervous system. While the blood-brain
barrier limits the recruitment of monocytes, they can be recruited
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in response to some forms of brain or spinal cord injury and differ-
entiate into microglia (106). As in other tissues, these monocyte-
derived macrophages appear to worsen acute injury. For example,
during experimentally induced autoimmune encephalomyelitis,
monocyte-derived macrophages are active drivers of CNS inflam-
mationandareassociatedwithdiseaseseverity (107,108). However,
during the resolution phase of spinal cord injury, both tissue-
resident and monocyte-derived microglia remove dead cells and
debris, and contribute to injury resolution by releasing antiin-
flammatory cytokines, such as IL-10 (109, 110). Consistent with
these findings, a growing body of work highlights the importance
of scavenger receptors in microglia in slowing the progression of
age-related dementias, for example those induced by the loss of
apolipoprotein E (APOE) (89).

Atherosclerosis. During the development of atherosclerotic
plaques, monocytes are recruited to the subendothelial space,
where they differentiate into macrophages that ingest accumulated
normal and modified lipoproteins to become cholesterol-laden
foam cells. The balance of macrophages in the plaque is dynamic in
that both macrophage numbers and the inflammatory phenotype in
the plaque influence plaque fate (111, 112). Depletion of monocytes
from the circulation using clodronate-loaded liposomes reduced
plaque formation in rabbits (113), and the loss of netrin-1, which pro-
motes monocyte/macrophage retention in the plaque, promoted
the emigration of macrophages from plaques and reduced plaque
severity (114). Adenoviral rescue of APOE in Apoe”~ mice reduced
monocyte recruitment and enhanced macrophage apoptosis during
plaque resolution (115). Nevertheless, there is some evidence that
plaque monocytes and macrophages play distinct roles in athero-
sclerosis pathogenesis. For example, the loss of Nr4al and KIf4,
which are factors associated with macrophage differentiation,
accelerated atherosclerosis in Apoe”~ mice (116-119).

Gastrointestinal tract. Unlike tissue-resident macrophages in
many other organs, many macrophage populations in the gut are
constantly replenished by classical Ly6Ch circulating monocytes
to maintain the intestinal macrophage pool (14, 120). Loss of these
macrophages rapidly results in impaired gut mucosal integrity and
the development of inflammation. More recently, investigators have
used transcriptional profiling and lineage tracing to identify long-
lived self-maintaining gut macrophages in the submucosa that con-
tribute to the maintenance of the integrity of the submucosal vascu-
lature (15, 16). Both tissue-resident and recruited macrophages in the
gut play key roles in the development of inflammation and the clear-
ance of invading pathogens (121-127). These macrophages take on a
lessinflammatory and more reparative phenotype upon efferocytosis
of apoptotic epithelial cells, but their importance in physiologic
regeneration of the intestine is incompletely understood.

Liver. The liver is uniquely able to regenerate after injury
(128). Several groups have shown that both monocyte-derived and
tissue-resident macrophages expand during toxin-induced liver
injury. Selective depletion of monocyte and tissue-resident mac-
rophages at different times over the course of injury and recovery,
and selective depletion of specific macrophage populations, vari-
ably altered the severity of liver injury and the time to resolution
(129-133). Liver macrophages have also been reported to impact
hepatic progenitor cell function, perhaps through macrophage-
derived TWEAK and Wnt3a (134-138).
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Skeletal muscle. The role of macrophages in skeletal muscle
injury and repair has been primarily studied in models of acute
tissue injury induced by mechanical trauma, thermal- or toxin-
induced injury, ischemia, and denervation. In all of these exam-
ples, recovery from injury is impaired in monocytopenic CCR27
mice, suggesting a role for monocytes and/or monocyte-derived
cells in these processes (139-141). Fate mapping of recruited cells
after cardiotoxin-induced injury showed that monocyte-derived
macrophages progressively differentiate to promote satellite cell
proliferation (142). However, the precise mechanisms by which
macrophages contribute to the resolution of injury are unclear
(143, 144). The role of resident or recruited macrophage popu-
lations in muscle loss during age-related sarcopenia, systemic
inflammatory conditions, and immobility is less well studied.

Further research and therapeutic potentials

This overview raises several important questions with respect to
the role of macrophages in tissue injury and repair (Figure 3). First,
what are the factors/mechanisms in specific tissue microenviron-
ments that drive macrophage differentiation/transformation into
a reparative phenotype? Specifically, do these factors overlap with
tissue-specific signals that drive macrophage differentiation, or
do they originate from unique cells or molecules expressed during
injury? Second, is the transformation of macrophages from an
inflammatory phenotype to a resolution phenotype driven by their
ontogeny? Specifically, do individual cells change their phenotype
over the course of injury or resolution, or is there a continuous
recruitment of monocyte-derived macrophages over the course of
injury and resolution? Third, what is the role of less abundant tissue-
resident macrophage populations, such as perivascular, inter-
stitial, or nerve-associated macrophages, in tissue homeostasis,
injury, and resolution? Fourth, do different pathogens or toxins
drive distinct repair phenotypes in tissue macrophages? Fifth, how
do macrophages communicate with resident cell populations to
promote repair? Specifically, do these mechanisms involve the res-
toration of homeostatic functions of tissue-resident macrophages
or the active secretion of pro-repair molecules? Sixth, do epigen-
etic changes in resident or recruited macrophages or changes in
macrophage ontogeny confer immunologic memory that might
modify immunologic responses to repeated challenges or during
aging? Addressing these questions will require a combination of
genetic fate mapping, time series examination of macrophage epi-
genetic and transcriptional heterogeneity over the course of injury,
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high-resolution spatial transcriptomics and proteomics to identify
interactions between macrophages and reparative cell popula-
tions, and confirmation in human samples and genetic knockouts.
Fortunately, emerging technologies provide tractable solutions to
these problems in both homeostatic and disease contexts (101).

Macrophages are attractive targets for therapy as their pheno-
types differ across tissues and they can be replaced after deletion
by monocyte-derived macrophages. As a result, macrophage-
targeted therapies are predicted to have fewer off-target effects
and be more reversible than those targeting other tissue-resident
populations or circulating monocytes. Potential therapies could
inhibit damaging signals originating from monocyte-derived
macrophages early during injury or mimic the pro-repair func-
tions of macrophages. Indeed, the cellular targets of several exist-
ing drugs are unknown and might include macrophages. More
distinctly, the unique capacity of macrophages for phagocytosis
simplifies the development of targeted delivery or deletion strat-
egies. For example, bisphosphonates attach to hydroxyapatite
binding sites on bony surfaces, where they are taken up by osteo-
clasts (a resident macrophage population in the bone), inducing
their dysfunction or apoptosis. While this strategy is generally
safe, the development of jaw osteonecrosis after dental proce-
dures associated with bisphosphonates hints at their role in tissue
repair. Macrophage-specific delivery might be enhanced through
nanomaterials that are avidly phagocytosed by tissue macro-
phages (145). This property is already being exploited for delivery
of therapy to tumor-associated macrophages (146).
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