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Introduction
The emerging field of immunometabolism studies the functional 
interactions between metabolic signals and the myriad cells and 
molecular networks that constitute the immune system (1). Tis-
sue damage triggers a complex immune response that determines 
the balance between ongoing injury and a return to homeostasis. 
Pro-repair cell populations have substantial bioenergetic and bio-
synthetic requirements; however, our primary goal in this Review 
is to explore how metabolism governs pro-repair cell function in 
the tissue-damaged environment. Indeed, biochemical features 
of the tissue-damaged environment serve as metabolic inputs that 
signal myeloid and lymphoid cell populations to either sustain 
damaging inflammation or direct pro-resolution and pro-repair 
functional programs. Although robust causal links between tissue 
injury, metabolism, and immune cell function are lacking, sever-
al features of damaged tissues, such as hypoxia, oxidative stress, 
and nutrient depletion, represent powerful modulators of cellular 
metabolism and thus immune cell function.

While nearly every immune cell type plays a role in resolution 
of inflammation and repair of tissue damage, in this Review we 
focus on two key cell types that have emerging roles in coordinat-
ing resolution and repair: CD4+Foxp3+ regulatory T cells (Tregs) 
and tissue-resident macrophages, both of which are under the con-
trol of metabolic programming. The specific metabolic features of 
these cells in their resting and activated states have been reviewed 

elsewhere (2). Here, our objectives are to examine how Tregs and 
tissue macrophages respond to injury and how the tissue-dam-
aged environment provides metabolic cues to regulate their fate 
and function. We discuss metabolic programming, mitochondrial 
DNA stress, and redox balance as prototypical metabolic inputs 
regulating pro-repair cell function in tissue-damaged environ-
ments. Where possible, we speculate on these mechanisms as clin-
ical biomarkers or targets for therapeutic intervention and discuss 
possibilities for future investigation.

Metabolism determines cell fate and function
Historically, the utilization of different carbon fuel sources to gen-
erate ATP (i.e., catabolism) and generation of macromolecules to 
support growth (i.e., anabolism) have been considered the major 
functions of metabolism. In contrast, the central premise of our 
Review is that major metabolic pathways generate molecules that 
control key immune cell fates and functions (3). An exciting devel-
opment in the past decade is that metabolism, beyond catabolism 
and anabolism, can determine immune cell fate and function 
through a variety of mechanisms, including the release of tricar-
boxylic acid (TCA) cycle intermediates, reactive oxygen species 
(ROS), and DNA from mitochondria into the cytoplasm, extracel-
lular milieu, and circulation (4, 5). In this section, we introduce 
important pathways involved in immunometabolism and high-
light how they influence protein and cell function using examples 
detailed in the other sections of our Review (Figure 1).

Glucose, through a series of metabolic reactions known as gly-
colysis, generates pyruvate. Subsequently, pyruvate can either be 
converted into lactate or enter the mitochondrial matrix, where it 
is oxidized to acetyl-CoA by pyruvate dehydrogenase to enter the 
TCA (also known as citric acid or Krebs) cycle. Aerobic glycolysis, 
a hallmark of many immune cells, including effector T cells and 
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T cell–dependent IFN-γ production in mice and humans (15, 16). 
Other TCA cycle intermediates also undergo cytoplasmic reac-
tions, producing molecules that inhibit key enzymes involved with 
controlling cell fate and function. As discussed below, cytoplasmic 
lactate dehydrogenase and malate dehydrogenase can promiscu-
ously use the TCA cycle metabolite α-ketoglutarate (α-KG) to pro-
duce l-(S)-2-hydroxyglutarate (2-HG) under hypoxic conditions 
(17, 18). Histone demethylases and the ten-eleven translocation 
(TET) family of enzymes that participate in DNA demethylation 
reactions utilize α-KG as a substrate (19, 20) and are thus suscep-
tible to inhibition by 2-HG as well as the TCA cycle intermediate 
succinate (17, 21, 22). Recent studies indicate that 2-HG can sup-
press Treg function and enhance CD8+ T cell function and genera-
tion of memory cells (23–25).

An interesting part of mitochondrial biology is that mitochon-
dria maintain a double-stranded circular DNA genome reminis-
cent of their primordial origins as α-proteobacteria. Mitochon-
drial DNA (mtDNA) contains 37 genes, including 13 that encode 
for critical subunits of the mitochondrial electron transport chain 
(ETC); the majority of ETC subunits are encoded by the nuclear 
genome. Because of its unusual biochemistry, the mitochondri-
al genome, particularly when damaged, can serve as a signaling 
molecule to alter cell function in the setting of oxidative stress. 
Indeed, mtDNA is viewed as foreign — as opposed to self — DNA, 
likely as a result of its similar features to bacterial DNA (26). Mito-
chondrial DNA released into the cytosol, extracellular milieu, or 
circulation activates the NLRP3 inflammasome, TLR9, and cyto-

macrophages, can modulate the function of immune cell popula-
tions in addition to generating ATP and intermediates that feed 
macromolecular synthesis and the TCA cycle. For example, the 
glycolytic intermediate phosphoenolpyruvate promotes calcium 
signaling essential for murine T cell activation (6). IFN-γ produc-
tion by effector T cells can be controlled by the glycolytic enzyme 
GAPDH, which binds to the 3′-UTR of IFN-γ mRNA (7). Conse-
quently, gain or loss of function of the key glucose transporter 
GLUT1 in T cells can respectively promote or dampen their effec-
tor function (8–10). Toll-like receptor (TLR) signaling in murine 
macrophages also promotes aerobic glycolysis, which generates 
inflammation through mechanisms that are not fully understood 
(11, 12). In contrast, the cytokine IL-10 exerts its antiinflammatory  
effects by inhibiting LPS-induced glucose uptake and promot-
ing oxidative phosphorylation (13). T cells also use glutaminase- 
mediated glutaminolysis to promote differentiation and function 
of Th17 cells over Th1 cells via modulation of ROS and TCA cycle 
intermediates (14).

Although many immune cells display robust glycolysis, they 
also use the TCA cycle to control immune responses. Mitochondri-
al acetyl-CoA enters the TCA cycle through reaction with oxaloac-
etate (OAA) to produce citrate. Citrate can also be exported into 
the cytoplasm to regenerate acetyl-CoA and OAA by ATP-citrate 
lyase. This process controls cytoplasmic and nuclear acetyl-CoA 
levels for protein acetylation, which modulates the structure 
and function of many proteins, including nuclear histones. For 
example, acetyl-coA promotes histone acetylation that facilitates  

Figure 1. Overview of pathways involved with immunometabolism and their links to protein and cell function. Both cytosolic and mitochondrial reac-
tions generate important molecules that can modulate protein structure and function, regulate enzymatic reactions, and control cell fate and function. 
ACLY, ATP-citrate lyase; ETC, electron transport chain; GLS, glutaminase; α-KG, α-ketoglutarate; LDH, lactate dehydrogenase; l-(S)-2-HG, l-(S)-2-hydroxy-
glutarate; MDH, malate dehydrogenase; mtDNA, mitochondrial DNA; OAA, oxaloacetate; PDH, pyruvate dehydrogenase. 
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Metabolic features of damaged tissues
Tissue hypoxia and oxidative stress result from hypoxemia or 
vascular ischemia or from inflammation and tissue damage them-
selves (39, 40). Acute lung injury and its clinical manifestation, 
the acute respiratory distress syndrome (ARDS), cause severe 
pulmonary tissue hypoxia as well as systemic arterial hypox-
emia that leads to extrapulmonary tissue hypoxia in the absence 
of mechanical ventilation or extracorporeal life support (41–43). 
Acute myocardial infarction and ischemic stroke represent acute 
vascular ischemic states that induce local tissue hypoxia and result 
in inflammatory injury (39). In addition, the normally hypoxic 
intestinal epithelium becomes even more hypoxic in the setting of 
inflammatory bowel disease (44). These common clinical settings 
suggest self-amplifying links between hypoxia, tissue injury, and 
inflammation. Although specific causal mechanisms underlying 
these links remain largely undefined, we hypothesize that meta-
bolic responses to hypoxia, oxidative stress, and nutrient deple-
tion modulate the pro-repair functions of immune cell populations 
responding to (and residing in) tissue-damaged environments.

Prolyl hydroxylases sense intracellular oxygen tension and 
hydroxylate prolyl residues within the α subunit of the hypoxia- 
inducible transcription factor (HIF), which coordinates the 

solic cyclic GMP–AMP synthase (cGAS) stimulator of interferon 
genes (STING) pathway to induce proinflammatory and type I 
interferon responses as well as inflammasome activation even in 
the absence of an infection by a pathogen (i.e., sterile inflamma-
tion) (Figure 2) (27–29).

The TCA cycle also generates the reducing equivalents NADH 
and FADH2, which provide electrons to the ETC. Mitochondri-
al ROS are produced by ETC complexes I, II, and III through the 
reduction of molecular oxygen (O2) to superoxide (O2

–). Super-
oxide is then converted to H2O2 in the mitochondrial matrix or 
intermembrane space by the superoxide dismutases SOD2 and 
SOD1, respectively, and released into the cytosol, where it oxidiz-
es cysteine residues within proteins to alter their function. Mito-
chondrial ROS promote T cell receptor–dependent activation of 
IL-2, NLRP3-dependent inflammasome activation, and TLR- and 
TNF receptor–dependent induction of inflammatory cytokines 
and bactericidal activity (30–38). Altogether, these studies rein-
force our core theme that metabolism controls immune cell fate 
and function beyond ATP generation and biosynthesis. Below, we 
explore how metabolic features of damaged tissues arise and sub-
sequently provide biochemical cues that modulate the function of 
pro-repair cells, particularly Tregs and macrophages.

Figure 2. Immunometabolic mechanisms at play in the tissue-damaged environment. Hypoxia, oxidative stress, and nutrient depletion combine to cause 
significant changes in metabolism. Metabolic programming (blue text), mtDNA stress (red text), and redox state (orange text) are highlighted in their 
effects on pro-repair cells.
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represent an early event in the immune response to tissue damage 
(62), and neutrophils also contribute to chronic inflammation and 
tissue injury via secretion of serine and matrix metalloproteases 
and other tissue-remodeling enzymes (63). Collectively, the cel-
lular and molecular events associated with tissue injury provide 
a metabolic environment characterized by hypoxia, oxidative 
stress, and nutrient depletion, which can serve as signals to mod-
ulate the function of both tissue-resident and recruited cells. The 
balance between tissue-resident and recruited cells in generating 
these environmental features remains undefined. Future work 
involving bone marrow chimeras, adoptive transfer experiments, 
and selective loss and gain of specific tissue-resident and recruit-
ed cell populations will help clarify the relative contributions of 
these populations in creating the tissue-damaged environment.

Tregs and macrophages in tissue repair
Tregs in tissue repair. CD4+Foxp3+ Tregs are required to maintain 
immune homeostasis and suppress overexuberant immune system 
activation (64–66). Mice bearing a mutation in their Foxp3 gene 
(scurfy mice) spontaneously develop fatal autoimmunity (67, 68), 
and humans with FOXP3 mutations develop the immunodysregu-
lation polyendocrinopathy enteropathy X-linked (IPEX) syndrome 
(69). Emerging evidence demonstrates that Tregs also serve active, 
pleotropic roles in response to acute inflammation and tissue inju-
ry. Following experimental acute lung injury in mice, Tregs appear 
and proliferate in the alveolar space, suppress proinflammatory 
cytokine production, increase neutrophil apoptosis and efferocy-
tosis in a TGF-β–dependent manner, and limit fibroproliferation 
by decreasing fibrocyte recruitment to the lung (70–74). Mecha-
nistically, the inflammatory cytokine IL-18 and the alarmin IL-33 
promote pro-repair Treg functions during experimental influenza 

physiologic response to hypoxia (45). Under normoxia, oxygen- 
dependent hydroxylation of prolyl residues within HIF-1α or 
HIF-2α generates a binding site for the von Hippel–Lindau (VHL) 
protein, which is a component of the E3 ubiquitin ligase complex 
that ubiquitinates HIF’s α subunit and targets it for proteosomal 
degradation. Hypoxia prevents prolyl hydroxylation, leading to 
stabilization of HIF. In addition to hypoxia, HIF is transcription-
ally activated or stabilized under normoxic conditions such as LPS 
exposure (46) or via inhibition of prolyl hydroxylases by ROS or 
reduced intracellular iron (47, 48).

In addition to decreased oxygen delivery, immune cells 
responding to tissue damage consume substantial oxygen and 
other nutrients, thus promoting tissue hypoxia and an oxidative, 
nutrient-depleted environment following infection or sterile 
injury (ref. 49 and Figure 3). Myeloid cells of the innate immune 
system, including macrophages and mast cells, serve as tissue 
sentinels, initiating and regulating neutrophil recruitment to dam-
aged tissues (50, 51). It remains unclear whether tissue-resident 
cells themselves contribute to tissue hypoxia in a cell-intrinsic 
fashion. Regardless, numerous investigations have shown that 
pathogen- and damage-associated molecular patterns released 
from invading pathogens and damaged and dying cells signal 
via pattern recognition receptors such as TLRs on these myeloid 
sentinels (52), attracting circulating neutrophils and promoting 
their vascular adhesion and tissue transmigration (53, 54). Acti-
vated neutrophils dominate the acute inflammatory response by 
phagocytosing pathogens, releasing inflammatory mediators (55, 
56), DNA- and histone-laden neutrophil extracellular traps (57), 
and tissue- remodeling proteases (58) as well as generating ROS 
via NADPH oxidases such as NOX4 (59–61). Neutrophil extra-
vasation and activation in response to infectious or sterile injury 

Figure 3. Metabolic features of the tissue-damaged environment. Acute lung injury and its clinical correlate the acute respiratory distress syndrome 
(ARDS) represent a prototypical tissue-damaged environment. Inflammatory signals, including TLR activation, lead to neutrophil recruitment. Neutrophils 
and other cells consume oxygen and nutrients and cause tissue damage by release of various substances, importantly ROS. Combined with the physiologic 
effects of tissue injury, the result is an environment characterized by hypoxia, oxidative stress, and nutrient depletion. AEC, alveolar epithelial cell; NET, 
neutrophil extracellular trap.
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In human tissue macrophages, hypoxia drives polarization 
toward a phenotype characterized by production of proinflam-
matory and proangiogenic cytokines and chemokines (97). Mac-
rophages in inflammatory microenvironments require HIF-1α for  
glycolytic ATP production, which is necessary for multiple func-
tions, including bacterial killing (98). Macrophage-mediated T cell 
suppression in hypoxic cancer microenvironments also requires 
HIF-1α (99), demonstrating an important feature of myeloid- 
lymphoid crosstalk. The HIF isoforms HIF-1α and HIF-2α also 
have antagonistic functions in control of macrophage metabolism, 
with HIF-1α driving induction of inducible nitric oxide synthase 
and HIF-2α driving induction of arginase-1 and antiinflammatory  
functional programs (100, 101). Taken together, the metabolic  
regulation of macrophages by hypoxia appears to be context- 
dependent but could be manipulated to promote a pro-repair 
polarized state. Ideal oxygenation goals for patients with acute 
hypoxemic respiratory failure and ARDS remain uncertain (102), 
and consideration of the effect of tissue hyper- or hypo-oxygen-
ation on immune cell function could help define optimal targets.

Oxygen tension also regulates important changes in the out-
put of metabolic pathways independent of HIF stabilization. 
Under hypoxic conditions, lactate dehydrogenase and malate 
dehydrogenase promiscuously use α-KG as a substrate to gener-
ate l-(S)-2-HG (17, 18). Similar to the oncometabolite d-(R)-2-HG 
generated by mutant isocitrate dehydrogenase 1 or 2 (IDH1/2) 
enzymes in human cancers, l-(S)-2-HG can inhibit α-KG–depen-
dent enzymes, including the Jumonji family of histone lysine 
demethylases (JMJDs) and TET DNA demethylases (17, 21, 22). 
These enzymes serve as erasers of epigenetic marks that exert 
powerful effects on gene transcription programs in immune cell 
populations. Establishment and maintenance of the Treg lineage 
depends on epigenetic mechanisms, particularly DNA methyla-
tion (19, 103–105). Stable expression of the Foxp3 locus requires 
maintenance of DNA hypomethylation at critical noncoding 
sequences (106), and disruption of this epigenetic state leads to 
loss of Foxp3 expression and Treg suppressive function (107). 
Epigenetic state also determines Treg identity and function after 
injury (108, 109). Pharmacologic inhibition of DNA methyltrans-
ferase activity induces and stabilizes Foxp3 expression (110) 
and promotes resolution of experimental acute lung injury in a 
Treg-dependent manner (111). Accumulation of 2-HG in CD4+ T 
cells causes DNA hypermethylation of the Foxp3 locus, decreased 
Foxp3 transcription, and skewing toward a proinflammatory Th17 
cell phenotype (23). We recently demonstrated that Treg-specific 
deletion of mitochondrial ETC complex III in mice causes gener-
ation of 2-HG, DNA hypermethylation, and ablation of Treg sup-
pressive function without altering their proliferation or survival 
(25), illustrating the important effects of metabolic substrates in 
controlling T cell identity and function.

In human primary macrophages, pharmacologic inhibition 
of the histone 3 lysine 27 trimethyl–specific (H3K27me3- specific) 
demethylase subfamily (KDM6 subfamily members JMJD3 and 
UTX) reduces LPS-induced proinflammatory cytokine produc-
tion (112). Hypoxia, upregulation of HIF via the α-KG analog and 
prolyl hydroxylase inhibitor dimethyloxalylglycine (DMOG), 
and ROS generation by 2,3-dimethoxy-1,4-naphthoquinone 
(DMNQ) have been associated with a reduction in murine mac-

A virus infection (75). These molecules signal via T cell receptor–
independent pathways to cause release of the EGFR ligand amphi-
regulin from Tregs, representing a critical determinant of lung 
tissue protection during the acute phase of lung injury. Tregs also 
promote alveolar epithelial proliferation and regenerative alveolo-
genesis via secretion of keratinocyte growth factor (76, 77). In skel-
etal muscle, Tregs induce repair after both acute and chronic injury 
in an IL-33–dependent manner (78, 79). Thus, Tregs, in addition to 
their canonical role in maintenance of immune homeostasis, exert 
critical functions in both resolution of inflammation and repair of 
tissue damage. Clinical protocols exist to expand and administer 
Tregs to manage chronic inflammatory disorders (66); these pro-
tocols could be modified to exploit Treg pro-repair function in the 
setting of acute and chronic tissue injury.

Macrophages in tissue repair. Tissue-resident macrophages 
serve as sensors, effectors, and resolvers of inflammation and 
tissue damage. Historically defined as M1-like (classical/inflam-
matory) and M2-like (alternative/pro-repair) (80), macrophage 
polarization and phenotype are nuanced, tissue-specific phe-
nomena that regulate tissue repair following injury (81). As not-
ed above, tissue-resident macrophages coordinate the innate 
immune response to initial injury but can also worsen tissue dam-
age through generation of ROS and other toxic mechanisms (82). 
Nevertheless, polarized pro-repair macrophages also produce 
antiinflammatory cytokines such as IL-10 (83–85) and growth fac-
tors that can stimulate epithelial and endothelial repair, including 
TGF-β (86, 87), VEGF (88, 89), and Wnt proteins (90). The com-
plex dynamics between tissue-resident and monocyte-derived 
macrophages in tissue repair represent an area of active inquiry 
and have been reviewed elsewhere (81, 91).

Metabolic programming during tissue damage 
and repair
Oxygen tension, oxidative stress, and nutrient depletion serve as 
key modulators of immune system function, and T cells and mac-
rophages both display differential responses under these condi-
tions. HIF-1α activity drives a crucial glycolytic program in proin-
flammatory Th17 cell generation, and blocking glycolysis with 
2-deoxyglucose promotes generation of Tregs over that of Th17 
cells in mice (92). Induction of HIF-1α in this setting requires 
signaling via the mammalian target of rapamycin (mTOR), a key 
nutrient sensor and regulator of cellular metabolism. In Tregs, 
TLR signaling and Foxp3 oppose mTORC1 signaling, diminish-
ing glycolysis and promoting their proliferation and suppressive 
function (93). Under normoxic conditions, HIF-1α displays a 
reciprocal relationship in Th17 and Tregs, with HIF-1α directly 
binding the master Treg transcription factor Foxp3 and targeting 
it for proteosomal degradation (94). HIF-1α also induces tran-
scription of the canonical Th17 transcription factor RORγt and 
complexes with RORγt and the lysine acetyltransferase p300 at 
the Il17 promoter, establishing expression of the key proinflam-
matory Th17 cytokine, IL-17. IL-17 has an important role in coor-
dinating neutrophilic inflammation that can further tissue injury 
(95). In contrast, under hypoxic conditions in mice, HIF-1α can 
induce Foxp3 expression, forming a negative-feedback loop for 
proinflammatory T cell populations in hypoxic inflammatory 
microenvironments (96).
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rophage JMJD activity and proinflammatory cytokine expres-
sion (113). Monocyte-to-macrophage differentiation depends on 
derepression of a phagocytic gene network that is repressed by 
DNA methylation in monocytes, and 2-HG can inhibit the DNA 
demethylation events that occur during primary human mono-
cyte-to-macrophage differentiation (114). Thus, similarly to T 
cells, tissue macrophages display sensitivity to metabolic disrup-
tion via epigenetic mechanisms. We speculate that therapeutic 
approaches to increase intracellular α-KG levels could mitigate 
the detrimental effects of 2-HG generation in pro-repair cells. 
Investigators will need to establish methods to metabolically 
target specific cell types in vivo in order to translate this type of 
metabolic therapy to the bedside.

Lactate, a frequently measured metabolite in the clinical set-
ting, accumulates in damaged and hypoxic tissues. Efferocyto-
sis of apoptotic cells activates an aerobic glycolysis program that 
leads to release of lactate into the extracellular environment (115). 
Extracellular lactate inhibits motility of murine and human CD4+ 
and CD8+ T cells (116). Furthermore, lactate induces a switch 
toward Th17-polarized cells and causes loss of cytolytic function 
in CD8+ T cells. Lactate also shifts tumor macrophages toward 
an M2-like macrophage phenotype (117), which could promote 
fibrosis in nonmalignant clinical settings. Interestingly, fluorode-
oxyglucose-PET scan activity, which measures cellular glucose 
uptake, can predict progression-free survival and provide risk 
stratification for patients with idiopathic pulmonary fibrosis (118, 
119). One hypothesis is that an increased glycolytic state in fibro-
sis could lead to local elevations in tissue lactate, M2-like macro-
phage polarization, and further fibrogenesis. Lactate also inhibits 
histone deacetylases (HDACs) and can promote gene expression 
changes in an HDAC-dependent manner in vitro and in vivo (120, 
121). While the specific transcriptional effects of HDAC inhibition 
depend on a number of factors, including the preexisting chroma-
tin landscape, HDAC inhibition by short-chain molecules in CD4+ 
T cells causes skewing toward a Treg profile (122). Lactate also 
shifts tumor macrophages toward an antiinflammatory phenotype 
(123), signaling via activation of the ERK/STAT3 pathway in vitro 
(124). Elevated lactate levels are associated with worse outcomes 
among patients with sepsis (125), stimulating interest in lactate 
clearance as a resuscitation marker. Guidelines for the care of sep-
tic patients recommend normalization of lactate levels during sep-
sis treatment (126), although the benefit of lactate-guided resusci-
tation strategies remains unclear (127, 128).

Measurement of other circulating metabolites, including 
the TCA cycle metabolites succinate and itaconate, could also 
guide clinical care if validated in a prospective fashion. Indeed, 
succinate and itaconate have garnered substantial attention due 
to their release from inflammatory macrophages and ability to 
serve as an inflammatory signal (129). Murine macrophages 
stimulated by TLR4 signaling upregulate glycolytic metabo-
lism, resulting in increased intracellular succinate levels (130). 
These elevated succinate levels cause an increase in mitochon-
drial ETC complex I–dependent ROS production, ultimately 
resulting in IL-1β production (12). Succinate released into the 
extracellular milieu can signal via the GPR91 (SUCNR1) recep-
tor on macrophages in both an autocrine and a paracrine fash-
ion (131). GPR91 receptor signaling also promotes generation of 

IL-1β, which further upregulates GPR91 in a feed-forward loop 
that amplifies inflammation. In a counterregulatory mechanism, 
TLR4 signaling induces immune-responsive gene 1–dependent 
(IRG-1–dependent) accumulation of the metabolite itaconate to 
limit overproduction of IL-1β (132–134). Itaconate acts as an elec-
trophile to dampen inflammation (135). Interestingly, derivatives 
of itaconate can be used therapeutically in mice to limit proin-
flammatory cytokine production in disease models, including 
endotoxemia and psoriasis (136). Collectively, the tissue-dam-
aged environment — through hypoxia, ROS accumulation, and 
nutrient depletion — provides important metabolic cues that 
program the function of responding myeloid and lymphoid cells. 
These mechanisms hold promise as biomarkers or potential ther-
apeutic targets in the clinical setting.

Mitochondrial DNA stress in tissue damage  
and repair
Hypoxia and other features of the tissue-damaged environment, 
including neutrophil recruitment and activation, cause increased 
generation of ROS, and mitochondria are the major intracellular 
site of ROS generation (137–140). ROS exert pleotropic signaling 
functions and can damage mitochondrial DNA (mtDNA), causing 
oxidative mtDNA stress (141). ROS-mediated mtDNA damage 
tends to be repaired more slowly than in the nucleus, positioning 
mtDNA as a key sensor and mediator of ROS species. In murine 
macrophages, danger signals such as extracellular ATP lead to 
mitochondrial dysfunction and mtDNA stress and oxidation (142). 
Under mtDNA stress, aberrant mtDNA packaging leads to escape 
of mtDNA into the cytosol, a process that can be inhibited by the 
autophagy proteins LC3B and beclin-1 (35). The consequences of 
releasing mtDNA into the cytoplasm and circulation discussed 
below underscore our theme of mitochondrial biomolecules as 
signals that determine cell function.

After release into the cytoplasm, mtDNA interacts with dou-
ble-stranded DNA sensors including cGAS (29). Upon binding to 
DNA, cGAS generates the second messenger cGAMP and AMP to 
activate STING, which is present on the endoplasmic reticulum. 
Downstream signaling from STING via TBK1 engages inflam-
matory cellular functions via activation of IRF3/7 responses, 
promoting expression of antiviral transcripts (type I interferons) 
that suppress viral replication and promote resistance to viral 
injury (31). The apoptotic caspases 3 and 7 block induction of the 
type I interferon response in mice (34, 143), placing mitochon-
dria in the center of a system that determines whether a damaged 
cell dies in a proinflammatory or a noninflammatory (apoptotic) 
manner. Oxidized mtDNA derived from damaged, ROS-produc-
ing mitochondria also activates the NLRP3 inflammasome (38), 
leading to secretion of IL-1β from murine macrophages (142). In 
addition, the NLRP3 inflammasome triggers IL-18 release (144), 
which serves as a major signal promoting the pro-repair function 
of Tregs in mice (75). These observations provide mechanistic 
links between tissue damage, oxidative stress, ongoing injurious 
inflammation, and repair.

Mitochondrial DNA is also released into the circulation follow-
ing trauma and induces a systemic inflammatory response (28). 
Mitochondrial DNA activates TLR9 as a result of similarities with 
bacterial DNA (26) and, in contrast with nuclear DNA, stimulates 
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inflammatory reactions when introduced into mouse joints or the 
circulation (27, 28). TLR9 activation of gut dendritic cells sup-
presses Treg induction from CD4+Foxp3– cells, leading to inflam-
mation and disruption of intestinal homeostasis (145). In the gut, 
commensal bacteria represent the main source of TLR9 ligands, 
although mtDNA could serve a similar function in the gut and 
other tissues. Human Tregs themselves also express high levels 
of TLR9, particularly the subset producing the antiinflammatory  
cytokine IL-10 (146), suggesting that Tregs are poised to sense 
tissue damage in part via mtDNA release. Because of its unique 
sequence, mtDNA could serve as a circulating biomarker of tissue 
damage and systemic inflammation (147).

Parkin (an E3 ubiquitin ligase) and PINK1 (a ubiquitin 
kinase), enzymes linked to familial early-onset parkinsonism, 
mitigate inflammation generated via the cGAS/STING path-
way and mitochondrial antigen-driven, MHC class I–depen-
dent adaptive immune responses (148). PINK1 is required for 
normal Treg suppressive function even in the setting of normal 
Foxp3 levels (149). In CD4+ T cells, PINK1 deficiency impairs 
phosphorylation of AKT, which is a critical step in expression of 
the canonical Treg surface molecule CD25 (the IL-2 receptor α 
subunit). Parkin and PINK1 function to remove damaged mito-
chondria from cells in a modified form of autophagy known as 
mitophagy, which serves to maintain cellular metabolic homeo-
stasis (150). Parkin and PINK1 also assist in repairing damaged 
mitochondria by facilitating localized translation of nuclear- 
encoded respiratory chain complexes at the mitochondrial out-
er membrane, promoting oxidative phosphorylation in failing 
mitochondria (151). In the lung, TGF-β1 induces mitochondrial 
ROS in epithelial cells, which promotes PINK1 stabilization (152, 
153); there is evidence that PINK1 deficiency impairs mitochon-
drial homeostasis and contributes to pulmonary fibrosis (154). 
Additionally, mitochondrial ROS induced by TGF-β1 augment 
Smad-mediated transcription of TGF-β target genes, includ-
ing NOX4 (155). NOX4 is itself a source of intracellular ROS, 
creating a positive-feedback loop whereby ROS maintain and 
amplify expression of profibrotic genes. The antifibrotic med-
ication pirfenidone attenuates TGF-β signaling (156, 157), and 
may therefore limit mtDNA damage in fibrotic disorders such as 
idiopathic pulmonary fibrosis. Taken together, mtDNA serves as 
a critical hub that integrates hypoxic and oxidative signals and 
regulates the function of pro-repair cell types.

Redox balance in tissue injury and repair
Release of ROS and oxidant mediators as well as nutrient deple-
tion in the tissue-damaged environment leads to disruptions in 
redox balance, including alterations in NAD+ levels and the NAD+/
NADH ratio. In this section we highlight examples of oxidant 
mediators and NAD+ controlling pro-repair cell function, consis-
tent with our overall theme of metabolites as causal regulators of 
cell function. Aging, a state of decreased resilience to stress and 
impaired capacity for repair, is associated with a decline in NAD+ 
levels (158). Mitochondrial dysfunction accompanies advancing 
age, although many of the precise mechanisms driving age-related  
mitochondrial dysfunction remain unknown. As noted above, the 
nuclear genome encodes most of the oxidative phosphorylation 
system, necessitating nuclear-mitochondrial communication to 

maintain mitochondrial homeostasis. Aging is associated with 
specific loss of mitochondrial genome-encoded subunits of the 
oxidative phosphorylation system (159). With this decline in oxida-
tive phosphorylation, a decrease in nuclear NAD+ causes reduced 
activity of the lysine deacetylase Sirt1 in the nucleus, which leads 
to decreased levels of VHL protein and accumulation of HIF-1α. 
The result is a state of cellular pseudohypoxia and Warburg-like 
metabolism: a shift away from oxidative phosphorylation toward 
glycolysis even in the presence of normoxia (160). A decreased 
NAD+/NADH ratio also increases production of 2-HG (161, 162), 
which can modulate the function of Tregs and tissue macrophages 
via mechanisms discussed above.

Sirt1 and the other members of the sirtuin family of lysine 
deacetylases, which are NAD+-dependent enzymes and thus acti-
vated in nutrient-limiting conditions (163), serve other functions 
beyond regulation of the VHL/HIF-1α axis. In Tregs, Sirt1 colo-
calizes with Foxp3 in the nucleus and deacetylates Foxp3 (164). 
Deacetylated Foxp3 is rapidly degraded by cytoplasmic protea-
somes, contributing to Treg cellular dysfunction (165). In an oppos-
ing role, Sirt1 regulates Notch signaling in Tregs, deacetylating 
the Notch1 intracellular domain and retaining it in the cytosol to 
promote antiapoptotic signaling and Treg survival (166). Indeed, 
Treg-specific loss of Sirt1 leads to antigen-induced effector T cell 
proliferation, inflammation, and tissue damage. In murine mac-
rophages, loss of SIRT1 causes activation of the JNK and IKK 
inflammatory pathways and increased LPS-stimulated secretion of 
inflammatory cytokines (167), similar to the effect of age-related  
decreases in de novo NAD+ synthesis (168). Accordingly, there 
has been interest in dietary supplementation with nicotinamide 
(NAM), nicotinamide mononucleotide (NMN), and nicotinamide 
riboside (NR), which boost NAD+ levels and restore sirtuin activity 
to potentially treat age-related inflammatory disorders (169).

The transcription factor Nrf2 coordinates a cellular defense 
program in the setting of oxidative damage (170). In the steady 
state, the Cul3-Keap1 ubiquitin E3 ligase complex ubiquitinates 
Nrf2, targeting it for rapid proteosomal degradation. Oxidative 
conditions modify reactive cysteine residues on Keap1, decreas-
ing its E3 ligase activity and allowing Nrf2 to activate transcrip-
tion of cytoprotective genes, including those involved with glu-
tathione synthesis. Systemic activation of Nrf2 via knockdown 
of Keap1 mitigates tissue inflammation in scurfy mice (171), 
which lack Tregs and spontaneously develop fatal inflammation 
due to mutation of the Foxp3 gene (172). Nrf2 expression with-
in Tregs promotes their tissue-protective function following 
acute kidney injury (173), and Treg-specific induction of Nrf2 
via CRISPR- Cas9–mediated deletion of Keap1 holds therapeutic 
potential for treatment of autoimmune and inflammatory disor-
ders (174). Macrophages also respond to oxidative environments 
with increased Nrf2 stabilization, which suppresses their inflam-
matory response by blocking the transcription of proinflamma-
tory cytokines (175). Thus, the Keap1-Nrf2 system represents an 
important link between oxidative stress and pro-repair cell func-
tions in damaged tissues.

Glutathione (GSH) is the major molecular defense against oxi-
dation, participating in the reduction of disulfides and other oxi-
dized species and protecting against the deleterious effects of ROS 
(176). Glutamate cysteine ligase (GCL) serves as the rate-limiting 
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damage to mtDNA, and redox balance among other pathways. 
As the initial sensor of environmental cues, metabolic path-
ways and their constituents can serve as both the sentinels of 
tissue damage and the effectors of processes that lead to either 
persistent damaging inflammation or resolution and repair. A 
detailed mechanistic understanding of these pathways in spe-
cific pro-repair cell types could lead to biomarker discovery and 
pharmacotherapies that leverage immunometabolism to pro-
mote tissue repair following injury and mitigate the diminished 
repair capacity associated with aging.
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enzymatic step in GSH synthesis, and conditional deletion of the 
GCL-encoding gene Gclc in T cells prevents their ability to execute 
inflammatory responses (177). Tregs interact with dendritic cells 
via the CTLA4-CD80/CD86 synapse, leading to signaling events 
that inhibit GSH synthesis in the dendritic cell as well as local 
effector T cells (178). GSH contributes to the induction of nitric 
oxide synthase in IFN-γ– and LPS-stimulated macrophages, which 
has implications for control of intra- and extracellular pathogens 
(179). Antioxidants have received significant interest in promoting 
clinical pro-resolution and pro-repair immune responses (180), 
although clinical trials of antioxidant compounds have been almost 
universally negative, with some antioxidants, such as vitamin E and 
β-carotene, associated with increased mortality (181). In summary, 
the redox state of pro-repair cells represents an important governor 
of their function as they respond to tissue injury.

Conclusion and future directions
The tissue-damaged environment generates numerous immu-
nometabolic inputs that influence the function of pro-repair 
cells. Hypoxia, oxidative stress, and nutrient depletion signal 
via complex networks that involve metabolic programming, 
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