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Background
Environmental exposures can dramatically influence the pheno-
type of allergic diseases, including atopic eczema, food allergy, 
asthma, and allergic rhinitis (1–4). These diseases now affect 
approximately 20% of the population worldwide (4, 5); yet the 
prevalence has increased too rapidly in recent decades to be 
explained by genetic changes alone (1, 6). The International Study 
of Asthma and Allergies in Childhood has demonstrated that the 
prevalence of these diseases can be very high in settings with low 
socioeconomic conditions and can vary greatly between regions, 
countries, and centers within a city or country, indicating the 
role of local environmental characteristics (7, 8). Global trends of 
increasing urbanization and rapid population growth contribute 
to changes in lifestyle (diet, time indoors, physical activity) and 
environmental exposures (air pollution, smoking, mold, infec-
tions) that affect atopic allergic mechanisms and rising disease 
prevalence worldwide (1, 2, 9–11). Many of these changes are 
associated with early-life and lifelong risk factors for the devel-
opment and exacerbation of asthma and atopic allergic diseases.

The terms “allergy” and “atopy” are often used to describe 
IgE-mediated diseases wherein persons with atopy are predis-
posed to produce IgE antibodies against common environmental 
allergens and have one or more atopic allergic diseases (i.e., atop-
ic eczema, food allergy, asthma, and allergic rhinitis), though 
some nonatopic allergic diseases (e.g., nonatopic asthma, con-
tact dermatitis) develop through IgE-independent mechanisms 
(4). The interplay of genetic predispositions and environmental 
exposures is instrumental in shaping the immune system, espe-

cially in early life when neonates go from limited environmental 
exposure in utero to having their skin, lungs, and intestinal tract 
colonized by fungus and bacteria to form their microbiome. It is 
increasingly recognized that the timing and route of exposure 
affect allergic disease development (1, 6). An impaired skin bar-
rier represents an important route of entry for allergens, bacte-
ria, viruses, air pollutants, and environmental chemicals leading 
to epicutaneous sensitization, atopic dermatitis, and/or asthma 
in susceptible children (12–16).

In this context, it is useful to consider three types of exposures: (a) 
the external outdoor environment; (b) the indoor environment; and 
(c) host environmental factors. Many early-life exposures and phys-
iological mechanisms not included in this Review have been linked 
to allergic disease development, including lifestyle factors, obesity, 
pre- and postnatal maternal psychological stress, pharmaceuticals, 
occupational exposures, chemical pollutants, and more. In addition 
to varying by host response, geographic regions, and socioeconomic 
status, these exposures likely interact simultaneously to affect allergic 
mechanisms such that no one factor dictates disease development in 
all subjects. This Review summarizes the epidemiologic and mecha-
nistic evidence linking environmental exposures to the development 
and exacerbation of atopic asthma and allergic responses.

Microbial exposures
Adoption of a Western lifestyle corresponds to environmental, 
behavioral, and dietary changes characterized by increased time 
spent indoors, antibiotic usage, obesity prevalence, and decreased 
physical activity and siblings per family. The hygiene hypothesis 
theorizes that increased exposures to early-life infections and 
larger family size lead to decreased risk of allergic disease devel-
opment (17). Alternatively, the “old friends” hypothesis proposes 
that increases in allergic diseases are due to the loss of symbiotic 
relationships with parasites and bacteria that were once beneficial 
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children living on large modern communal farms (5% vs. 23%, 
respectively) and bacterial home exposure that differed in both 
quantity and quality (27). Taken together, these findings support a 
protective role for early bacterial exposure. A clinical trial is under 
way to test whether oral bacterial extract (ORBEX) administered 
to high-risk infants can increase the time to occurrence of the first 
episode of wheezing-related illness after therapy (https://clinical-
trials.gov/ct2/show/NCT02148796).

The origin and nature of bacterial exposure is critical to alter-
ing allergic responses. In mice exposed every other day to either 
Amish or Hutterite house dust extract while being sensitized and 
challenged with OVA, only Amish dust–exposed mice showed 
ablated airway resistance and eosinophilia (27). This was depen-
dent on MyD88 and TRIF, which are downstream of TLR4, a pat-
tern recognition receptor that binds endotoxin and the house dust 
mite (HDM) allergen Derp2 (Figure 1 and ref. 28). In HDM-ex-
posed mice, TLR4 signaling on airway epithelial cells induces Th2 
allergic responses (29), but its contribution to allergic responses is 

to our evolution (18, 19). Reduced environmental microbial expo-
sures and reduced microbiome diversity may influence host aller-
gic responses by affecting epithelial and immune cells (1, 18, 20).

The outdoor microbial environment. Environmental exposure to 
diverse microorganisms has repeatedly demonstrated an inverse 
association with the manifestation of atopic allergic diseases (6, 
18, 20–22). European children from the PARSIFAL and GABRIE-
LA studies raised on rural farms had lower prevalence of atopy and 
asthma and increased microbial exposure than unexposed chil-
dren in nonrural environments (Table 1 and refs. 21, 23). Studies 
comparing populations from wealthier, more Westernized Finland 
versus more rural Russian Karelia have demonstrated significantly 
greater allergic disease prevalence in Finland and corresponding 
differences in skin and nasal microbiota despite similar ancestry 
and geographic location (24, 25). Rural children in China exposed 
to farming and higher endotoxin levels had decreased asthma risk 
compared with urban children (26). Amish children living on small 
traditional US farms had lower asthma prevalence than Hutterite 

Table 1. Consistently observed environmental effects associated with allergic diseases in epidemiologic studiesA

Exposure or risk factor Clinical phenotype Study type No. of studies Age group Consistent findings

Environmental microbial 
exposures

Microbiome diversity, 
atopy, asthma

Review;  
cross-sectional

2 6–13 years Decrease in environmental symbiosis with parasites/bacteria and microbiome diversity 
influences immunoregulation, increases allergy and asthma prevalence (18)

Exposure to diverse microbes inversely related to risk of asthma (PARSIFAL, OR 0.62, 
0.44–0.89; GABRIELA, 0.86, 0.75–0.99) (21)

Dogs and cats (dog and cat 
exposure and ownership)

Asthma,  
sensitization

NHANES  
cross-sectional; 

cohort

1; 1 1–69 years Dog and cat allergen exposure and sensitization associated with risk and protective 
effects for developing allergic disease (37, 39)

Early-life dog or cat ownership reduced sensitization to ≥1 aeroallergen (dog, OR 0.65, 
0.45–0.95; cat, OR 0.87, 0.73–1.04) and decreased asthma risk in children (dog, OR 
0.87, 0.81–0.93) (37)

Increased asthma attack prevalence attributable to dog allergen among dog-sensitive 
(44.2%) and cat allergen among cat-sensitive (30.3%) (39)

Mold (mold odor and 
visibility, dampness 
damage)

Asthma,  
allergic rhinitis

Meta-analyses;  
birth cohort

27; 2 Birth–44 years Exposure to Cladosporium, Alternaria, Aspergillus, and Penicillium species increased 
asthma symptom exacerbation 36%–48% (43)

Mold or dampness indicator exposure during infancy increased risk of allergic asthma  
(OR 1.31, 1.08–1.59) and rhinitis (OR 1.29, 1.03–1.62), and nonallergic asthma (OR 1.80, 
1.27–2.55) and rhinitis (OR 1.41, 1.03–1.93), up to 16 years of age (45)

Viral infections  
(HRV, RSV)

Wheezing  
and asthma

Meta-analyses 15 Birth–18 years HRV-induced wheezing is more robust marker of asthma risk than RSV/other infection–
induced wheezing (67)

HRV wheezing illness in first 3, <10, and ≥10 years increased asthma risk in later life  
(≤3 yr, RR 2.00, 1.62–2.49; <10 yr, RR 2.02, 1.70–2.39; ≥10 yr, RR 1.92, 1.36–2.72) (69)

TRAP (BC, NO2, PM2.5, PM10) Allergy, sensitization,  
eczema, allergic  
rhinitis, asthma

Meta-analyses 5–15 Birth–18 years Childhood TRAP exposure increases risk for development or exacerbation of atopy, 
sensitization, eczema, and asthma (91, 109, 111)

Increased risk of asthma development associated with BC (OR 1.08, 1.03–1.14), NO2  
(OR 1.05, 1.02–1.07), PM2.5 (OR 1.03, 1.01–1.05), and PM10 (OR 1.05, 1.02–1.08) (111)

Living within 50–200 m of major road associated with increased risk of eczema,  
allergic rhinitis, atopy and asthma (109)

Tobacco smoke 
(secondhand smoke,  
pre- or postnatal, 
household)

Wheeze, asthma, 
sensitization, 

eczema

Meta-analyses;  
birth cohort

71; 1 Birth–18 years Pre- or postnatal maternal smoking increased risk of incident wheezing (OR 1.70, 
1.24–2.35) and incident asthma (OR 1.85, 1.35–2.53) in children ≤2 years (158)

Secondhand smoke in infancy without prior exposure in utero increased risk of food 
sensitization (OR 1.47, 1.08–2.00); risk of eczema with sensitization (OR 1.62, 1.20–2.18) (45)

AOdds ratios and risk ratios are reported as (OR, 95% confidence interval) and (RR, 95% confidence interval). BC, black carbon; HRV, human rhinovirus; 
NHANES, US National Health and Nutrition Examination Survey; NO2, nitrogen dioxide; PM2.5, particulate matter 2.5 μg/m3; PM10, particulate matter  
10 μg/m3; RSV, respiratory syncytial virus; TRAP, traffic-related air pollution.
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Figure 1. Epithelial pathways impacted by environmental exposures promote asthma pathogenesis. Exposure to air pollutants induces oxida-
tive stress. AhR recognizes polycyclic aromatic hydrocarbons on diesel exhaust particles (DEPs), promoting cytochrome P450 family 1 A1–mediated 
(CYP1A1-mediated) detoxification. Oxidative stress induces Nrf2 translocation to the nucleus, leading to antioxidant transcription. Failure to detoxify 
results in release of the neutrophil chemokine IL-8, the antigen-presenting cell (APC) chemokine CCL20, and proinflammatory cytokines (including 
IL-1, IL-6, and TNF-α) that in the absence of allergen promote naive T cell differentiation into IL-17A–producing Th17 cells. Similarly, exposure to mold-
derived β-glucans, which signal through dectin-1, induces recruitment of IL-17A–secreting Th17 and γδT cells and neutrophils. Mold and other complex 
allergens also stimulate epithelial cells through pathogen-associated molecular pattern (PAMP) receptors like TLRs. TLR4 recognizes the house dust 
mite allergen Derp2 and endotoxins, which can modulate NF-κB activation of proinflammatory cytokines via the ubiquitin-modifying enzyme A20. 
Notch4-Jagged1 interaction between T cells and APCs, respectively, can induce Th2 cell generation when APCs are exposed to allergens and epithelial 
cell–derived IL-25, IL-33, and/or TSLP. These cytokines can be released following viral infection of epithelial cells and cellular damage resulting from 
exposure to pollutants and/or proteolytic allergens. They can induce innate lymphoid cells (ILC2s) to release IL-13, which drives mucus production and 
AHR, and IL-5, which is central to eosinophil biology. In addition to interacting with APCs and Th2 cells to potentiate allergic responses and IgE genera-
tion, ILC2s also release amphiregulin (AREG) to promote tissue repair. HRV and RSV infections in asthmatics can exacerbate Th2 responses and inhibit 
type 1 IFN responses, enhancing viral replication and promoting more severe disease.
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asthma attacks and 700,000 asthma emergency care visits each 
year are associated with elevated levels of pet allergen in bed-
rooms of sensitized patients (39).

Indoor fungal exposure and asthma. Indoor fungal exposure, 
defined by the presence of visible fungi/mold, visible dampness, 
and/or mold odor, is present in 18% to 50% of household dwellings 
worldwide (40–43). Old houses (≥90 years) and those with damp 
indoor environments are at increased risk of higher concentra-
tions of Penicillium and Aspergillus species (43, 44). Indoor fungal 
profiles vary by geographic location, season, air exchange rates, 
and interaction with outdoor sources of fungi, such as Cladospo-
rium and Alternaria species (43). The Institute of Medicine found 
sufficient evidence of a causal association between dampness or 
dampness-related agents and asthma exacerbation in children (2). 
Numerous epidemiologic studies have determined indoor fungal 
exposure to be associated with asthma, wheeze, allergic rhinitis, 
and eczema in both atopic and nonatopic individuals (41, 42, 44, 
45). Fungal exposure has consistently been associated with the 
highest excess risk for development and exacerbation of asthma 
(43, 44) and rhinitis (45, 46). Exposure to an increased number 
of mold or dampness indicators in infancy has been associated 
with a greater risk of allergic (47) and nonallergic asthma (44, 45). 
However, there is evidence that mold exposure can be protective. 
Exposure to higher fungal diversity shortly after birth has been 
associated with decreased risk of wheezing and aeroallergen sen-
sitization later in childhood (48, 49) similar to the aforementioned 
protective role of endotoxins.

Environmental fungal exposure promotes allergic disease 
through immune responses to both fungal-specific pathogen-as-
sociated molecular patterns (PAMPs) and proteolytic allergens 
(50). Fungal spores and conidia are protected by a rigid outer wall 
of β-glucans with an outer mannan layer and an inner chitin lay-
er that enables signaling through C-type lectin receptors (ref. 51 
and Figure 1). The immune system recognizes β-glucans using the 
dectin-1 receptor, while mannans bind a range of C-type lectins 

likely influenced by load, cell type, and timing of exposure (30). 
Chronic low-dose LPS or farm dust exposure in mice can prevent 
development of HDM-induced allergic immune response by a 
mechanism involving A20, a ubiquitin-modifying enzyme that 
partially inhibits NF-κB signaling in lung epithelial cells, support-
ing a protective role for bacterial exposure (31). It remains to be 
seen which bacteria confer this protective effect and how these 
findings may differ in urban areas.

Indoor microbe and allergen exposure. The indoor microbial 
environment is determined by a dwelling’s inhabitants. Dog 
ownership increases house dust diversity by introducing addi-
tional bacterial taxa compared with homes with cats or without 
pets (32). Exposure to dog and/or cat has been implicated as 
both a risk and a protective factor for developing allergic symp-
toms, allergic sensitization, or asthma (33, 34). Dog ownership 
may act as a surrogate marker for particular microbial exposures 
that enhance the protective effect of pet ownership against aller-
gic disease (32). The protective effect on allergic disease risk 
may depend on pet exposure during the first year of life, which 
correlates with the timing of endotoxin exposure that confers 
the most significant protective effects (Figure 2 and refs. 1, 35, 
36). In a Swedish birth cohort, dog exposure during the first year 
of life conveyed a reduced risk of asthma at age 6 independent 
of parental asthma (37). The cumulative evidence suggests no 
increased risk of allergic disease from pet exposure (1, 33, 34). 
However, the Institute of Medicine recently found sufficient 
evidence of association between dog and cat allergen exposure 
and asthma exacerbation, but only in individuals sensitized to 
those particular allergens (2). Increased levels of IgE to fur-
ry-animal allergens are associated with allergy-related symp-
toms, but polysensitization (IgE-specific for three or more cat or 
dog allergens) during early childhood may predict cat and dog 
allergy better than IgE to cat or dog extract (38). In the United 
States, where pet ownership is common (36.5% of households 
own a dog and 30.4% a cat), an estimated excess of 1,700,000 

Figure 2. Interplay of indoor and outdoor environmental exposures and host factors that affect lifelong allergic disease development and progression. 
Allergic disease development is influenced by many environmental exposures that may interact with host factors and trigger a host response. These expo-
sures may be part of the outdoor, indoor, or host environment. The timing of environmental exposures is important in the development and progression 
of allergic disease. Common factors within the external, internal, and host environments contribute to disease development, exacerbation, and lifelong 
progression. The host response to different exposures varies depending on host genetics and epigenetics in addition to other host factors that influence 
the timing and onset of allergic disease symptoms and severity.
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susceptibility (63–65). ARIs caused by human rhinovirus (HRV), 
respiratory syncytial virus (RSV), parainfluenza viruses, and other 
pathogens are common in early childhood (10%–30% bronchiol-
itis prevalence in the first 2 years) (64). ARIs provoke wheezing in 
individuals with and without asthma. Up to 50% of children will 
have acute ARI-associated wheezing before school age, and 30% 
to 40% of these will have recurrent wheeze (66).

HRV-associated bronchiolitis and wheezing illnesses are a 
more robust marker of asthma risk than those caused by RSV or 
other viruses (66, 67). Upon infection with HRV, patients with asth-
ma have more severe airway symptoms than nonasthmatic con-
trols (68). HRVs are single positive-stranded RNA enteroviruses 
classified into three species (HRV-A, HRV-B, and HRV-C) and over 
160 distinct genotypes (67). HRVs utilize three major types of cel-
lular membrane glycoproteins to enter respiratory epithelial cells: 
intercellular adhesion molecule 1 (ICAM-1) (HRV-A and HRV-B), 
low-density lipoprotein receptor (LDLR) family members (HRV-A), 
and cadherin-related family member 3 (CDHR3) (HRV-C) (67). 
HRV-associated wheezing in the first 3 years of life doubled the 
risk of subsequent asthma development (69). Among neonates 
with high familial risk for asthma, having at least one HRV-associ-
ated wheezing episode during the first 3 years of life increased the 
likelihood of wheezing in the third year (OR 10.0) more than hav-
ing at least one RSV-associated wheezing episode (OR 3.0) (70). 
Prospective studies have shown that RSV-induced bronchiolitis is 
associated with subsequent asthma development (67, 71, 72) and 
with recurrent wheeze (63, 73), but this may reflect an underlying 
predisposition to asthma and not a causal mechanism.

The interaction between early-life ARI and allergic sensitiza-
tion increases the risk of subsequent asthma (63, 66). Children fol-
lowed prospectively from birth to age 13 years with HRV-induced 
wheeze and aeroallergen sensitization by age 3 years had the high-
est incidence of subsequent asthma development compared with 
sensitization or HRV-wheezing alone (74). Among children in the 
Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS), 
having at least 6 ARIs in the first year of life and early sensitiza-
tion to mold increased asthma risk at age 7 years 12-fold compared 
with children with fewer than 6 ARIs who were not sensitized (75). 
This suggests that the load and timing of viral exposure may be 
important in progression to asthma. The strength of association 
between early-life ARI and childhood asthma is large in compar-
ison with other environmental risk factors, but determining cau-
sality in children is not possible for ethical reasons (76). However, 
Beigelman et al. suggest that at least seven of nine Hill’s criteria 
for causality are met for respiratory viruses (76). Evidence from a 
randomized, double-blind, placebo-controlled trial showing sig-
nificant reductions in recurrent wheeze among healthy preterm 
infants who received palivizumab to prevent RSV infections sup-
ports the concept of a causal relationship (76, 77).

Mechanisms of viral-induced wheezing. Transcriptomic analysis 
comparing asthmatics with nonasthmatic controls following infec-
tion with HRV demonstrated increased magnitude and persistence 
of epithelial gene dysregulation throughout the course of infection 
(78). Distinct differences in the quality of the response following 
HRV infection were observed in asthmatics, including increased 
expression of genes involved in inflammation, decreased expres-
sion of viral replication inhibitors, and impaired induction of the 

(50, 51). In mice, fungal-derived chitin exposure induced IL-25, 
IL-33, and thymic stromal lymphopoietin (TSLP), activated type 
2 innate lymphoid cells (ILC2s), and drove Th2 allergic inflamma-
tion, whereas inhibition of this pathway increased activation of 
IL-17A–producing γδT cells and prolonged neutrophilia (52, 53). In 
a mouse asthma model, exposure to HDM allergen and curdlan, a 
linear β-glucan that induces a robust IL-17A response, enhanced 
airway hyperresponsiveness (AHR) and airway inflammation in 
the absence of fungal sensitization, demonstrating that the impact 
of fungal exposure may be more dependent on the direct immuno-
modulatory functions of fungal components rather than its ability 
to act as a sensitizing agent (54).

Mold species are capable of inducing distinct inflammatory 
lung phenotypes based on the mold’s available surface PAMPs. 
Cladosporium cladosporioides has high β-glucan content, but 
limited surface availability (55); Aspergillus versicolor has lower 
β-glucan content, but higher surface availability of β-glucans. In 
mice, inhalation of C. cladosporioides spores induced robust AHR 
and eosinophilia, whereas A. versicolor induced a strong dectin-1–
mediated Th17 response and neutrophilic inflammation, but mild 
AHR (55). Mice exposed to heat-killed C. cladosporioides spores 
with more exposed β-glucans on their surface exhibited dec-
tin-1–mediated Th17 and neutrophilic inflammation (56). In the 
absence of dectin-1, heat-killed spores induced a predominantly 
Th2 response similar to that induced by live spores, indicating 
that the immune response is dependent on surface availability of 
β-glucans (56). In mice, β-glucans also exacerbated allergen-in-
duced allergic responses in a dectin-1–dependent manner (54, 
57). These findings highlight several innate pathways triggered 
by mold exposure and resulting in a mixed Th2/Th17 response 
associated with more severe asthma.

Airway smooth muscle cells can respond directly to inhaled 
fungi to generate AHR. A major allergen of Aspergillus fumigatus 
(Asp f13) is a serine protease (alkaline protease 1; Alp1) that has 
been detected in the lungs of severe asthmatics and inversely cor-
related with forced expiratory volume in one second (FEV1) (58). 
Alp1 promotes calcium flux and contraction of smooth muscle cells 
(58). Mice repeatedly exposed to Aspergillus lacking Asp f13 had 
significantly lower pulmonary inflammation and signs of remod-
eling, supporting a role for the endogenous protease activity; 
however, AHR was unchanged, demonstrating the complexity of 
fungal actions (59). Fungal proteases can also cleave protease-ac-
tivated receptor-2 (PAR2), triggering innate immune responses. 
Following Alternaria alternata exposure, PAR2-mediated serine 
protease–induced activation has been shown to induce the release 
of IL-33 from human bronchial epithelial cells (60). Similarly, in 
mice, Alternaria exposure induced IL-33, Th2 cytokines, IgE, and 
AHR (61, 62). These Th2 responses were attenuated in ST2-defi-
cient mice lacking a functional IL-33 receptor, suggesting a role for 
IL-33 in severe asthma with fungal sensitization (62). However, 
the mechanisms by which fungal exposure contributes to allergic 
disease are not fully delineated.

Viral infections in wheezing and asthma development. Early-life 
acute respiratory tract infections (ARIs) are strongly associated 
with wheeze in infants and asthma inception and exacerbation 
in children; however, it is still debated whether they are causative 
in the pathogenesis of asthma or whether they unmask asthma 
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serine protease inhibitor SPINK5, which has been implicated in 
epithelial maintenance and repair (78). Patients with asthma also 
displayed increased upper and lower respiratory symptoms, mark-
edly higher viral load, and higher nasal Th2 cytokine levels (68). 
Accordingly, supernatants from HRV-infected primary bronchial 
epithelial cells induced IL-5 and IL-13 production from isolated 
CRTH2+ ILC2s and promoted Th2 differentiation in vitro in an 
IL-33–dependent manner, suggesting a link between infection and 
asthma exacerbation (68). In a sister study, bronchial epithelial 
cells from asthmatic individuals released significantly more IL-25 
upon infection with HRV-1B than control cells (79). In neonatal 
mice, HRV infection increased IL-25, IL-33, and TSLP expres-
sion (80), and neutralizing antibody against IL-25 abolished ILC2 
expansion, mucous metaplasia, and AHR in HRV-infected neona-
tal mice (81). These findings suggest that early-life viral infection 
may contribute to asthma development and exacerbation by pro-
voking type 2 immune responses.

In humans, these viral-induced type 2 innate responses likely 
favor allergic Th2 responses upon exposure to common aeroal-
lergens. This type 2 environment has been shown to inhibit type 
1 interferon antiviral responses in infected cells from asthmatic 
patients, further exacerbating disease (65, 82–84). RSV-infect-
ed human neonatal regulatory B cells upregulated CX3CR1 to 
promote infection and release of IL-10 that inhibited antiviral 
responses and exacerbated disease in a manner favoring microbi-
al pathogenesis (85). In mice, pathogenic clinical isolates of RSV 
induced accumulation of ILC2s via a TSLP-dependent mechanism 
(86) and increased susceptibility to atopic asthma through impair-
ment of regulatory T cells and promotion of a Th2 response (87). 
Thus, impaired antiviral responses in early life result in increased 
disease and the development of asthma (65, 67, 88, 89). Treatment 
strategies limiting type 2 responses may alleviate viral-induced 
asthma exacerbations partly by restoring antiviral responses (65).

A missense variant in CDHR3 (receptor for HRV-C) has also 
been associated with childhood asthma exacerbations (90). Over-
all, this evidence highlights the complex interplay of environmen-
tal microbial exposures and host factors that influence the timing 
and the development of allergic disease.

Impact of air pollution on allergic disease
Air pollutants can cause adverse health effects worldwide (14, 91–
94). Outdoor air pollution frequently occurs as a mixture of natural 
pollutants (e.g., from wildfires, volcanoes, biological decay, dust 
storms) and human-made pollutants (e.g., from motor vehicles, 
biomass burning, power plants, industrial facilities, waste incin-
erators, pesticides) (Figure 2 and refs. 9, 91, 95). Sulfur dioxide, 
nitrogen oxides (NOx), carbon monoxide (CO), and particulate 
matter (PM) are typical outdoor air pollutants from fuel combus-
tion or motor vehicle emissions.

Concern is increasing over indoor air pollution since some 
societies spend up to 90% of time inside exposed to pollutants 
from tobacco smoke, solid fuels, stoves, construction materials, 
ambient PM, and biological materials (mold spores, viruses and 
bacteria, animal dander, and HDMs) (91, 96). Indoor air pollution 
is determined partly by outdoor air quality depending on venti-
lation systems and cleaning practices. Additional environmental 
chemical exposures associated with atopic disease include phar-

maceuticals, cosmetic products, flame retardants, and others (97–
100). Volatile organic compounds (VOCs) are also worrisome as 
Westernized societal exposure shifts from transport-related VOCs 
to VOCs from coatings, adhesives, and consumer products that 
alter urban air quality (101). Additionally, VOCs react with NO2 in 
the presence of sunlight to form ozone. Overall, the risk of air pol-
lution is a function of the hazard of the pollutant, the combination 
of pollutants and their interactions, and the extent of exposure 
(96). Here, we focus on the impact of traffic-related air pollution 
(TRAP) and tobacco smoke in allergic disease and asthma.

TRAP exposures. An expert panel for the Health Effects Insti-
tute found sufficient evidence that exposure to TRAP causes 
asthma exacerbation in children (102). TRAP produced by motor 
vehicles is made up of a complex mixture of PM, reported as black 
carbon (BC), PM10, and/or PM2.5; and gaseous emissions includ-
ing NOx, CO, ozone, and other air pollutants (9, 91, 103). Diesel 
exhaust particles (DEPs) are of particular concern and contrib-
uted to more than 90% of the PM derived from traffic sources 
in European and American cities (103). This exposure is signifi-
cant in cities where up to 45% of the population resides in zones 
most impacted by TRAP (102, 104, 105). Despite falling sales, 
diesel-powered cars still represent a major portion of cars on the 
road in Europe and India. Air quality and engine exhaust control 
policies implemented in 2005 to 2010 have not produced rapid 
changes in TRAP levels (106).

Evidence suggests that TRAP is associated with reduced lung 
growth, lower lung function, and development and exacerbation of 
asthma (107–110). Meta-analyses estimated significantly increased 
risk estimates for BC, NO2, PM2.5, and PM10 exposures and subse-
quent development of childhood asthma (Table 1 and ref. 111). 
Near-roadway exposure is associated with increased asthma prev-
alence, chronic lower respiratory symptoms, phlegm production, 
bronchitis, wheeze, and medication use (112), and decreased lung 
function, lifetime diagnoses and symptoms of allergic rhinitis, and 
allergic sensitization among school-aged children (113). Exposure 
to pollutants from roads with high vehicle traffic contributed to an 
estimated 14% of incident childhood asthma and 15% of childhood 
asthma exacerbation (104). In CCAAPS, a child’s risk for persistent 
wheeze and asthma development varied depending on the tim-
ing, duration, and level of TRAP exposure (114–117). Accordingly, 
meta-analysis data suggest that TRAP exposure may have ongo-
ing effects with a 3-year lag time (108). TRAP exposure in infancy 
resulted in a 40% to 83% increased risk of aeroallergen sensitiza-
tion by age 4 (118, 119) and increased risk of food allergy by age 8 
years (118). TRAP and other air pollutants also act as risk factors for 
eczema development and/or aggravation of eczema symptoms (91).

Collectively, there is mounting evidence supporting the contri-
bution of TRAP to allergic diseases, although some meta-analyses 
have reported conflicting associations (108, 120). Meta-analyses 
of American and European cohorts observed substantial hetero-
geneity across studies that limited the ability to draw conclusions 
related to diverse definitions in exposure (land-use regression/
dispersion models and roadway proximity) and outcomes (asth-
ma, wheeze, allergic sensitization), and unmeasured confounding 
of other factors (environmental pollens, fungal spores, climate; 
socioeconomic) and their complex interactions that drive allergic 
disease and modify the effects of TRAP exposure (103, 108).
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Several mechanisms contribute to TRAP-induced allergic dis-
ease development and exacerbation, including oxidative stress, 
altered barrier integrity, and induction of inflammation (14, 95, 
121). Interpretations from mouse studies of TRAP depend on the 
nature of the traffic pollutant studied. DEPs are coated with heavy 
metals and organic compounds (e.g., polycyclic aromatic hydro-
carbons), but can also carry pollen and airborne PAMPs depending 
on the local environment (122). Thus, DEPs collected from diesel 
engine vehicle exhaust will not necessarily recapitulate immune 
responses to ambient PM collected in urban cities (123). Neverthe-
less, inhaled ambient PM (and DEPs) adversely affects the bronchi-
al epithelium by promoting oxidative stress, which has been impli-
cated in key pathophysiological features of asthma (124). Briefly, 
exposure to DEPs induces a cascade of events including transloca-
tion of the transcription factor NF-E2–related factor 2 (Nrf2) to the 
nucleus and induction of antioxidants (e.g., heme oxygenase-1) to 
detoxify the cell and limit oxidative injury (Figure 1 and refs. 125, 
126). PM exposure has also been shown to disrupt epithelial tight 
junctions in a dose-dependent manner, and alleviating oxidative 
stress restored normal epithelial barrier function (127–129). Thus, 
PM-induced oxidative stress could damage the integrity of epithe-
lial barriers, allowing aeroallergens to gain entry into pulmonary 
tissues, facilitating uptake by antigen-presenting cells (APCs), and 
promoting allergic sensitization. Numerous studies have demon-
strated increased allergen-specific IgE levels following coexposure 
to allergen and DEPs (108, 118, 119, 130).

Particulate matter–induced inflammation. The nature of PM-in-
duced inflammation is context dependent. In cultured human epithe-
lial cells, DEP exposure leads to NF-κB activation and transcription 
of proinflammatory cytokines (IL-1β, IL-6, TNF-α) and neutrophil 
chemokines such as IL-8 (121, 128). Accordingly, acute exposure to 
DEPs generated an inflammatory response dominated by neutro-
phils in healthy adults but no changes in lung function (131, 132). In 
contrast, decreased lung function has been shown in DEP-exposed 
asthmatics (133). Primary bronchial epithelial cells obtained from 
asthmatic patients and exposed to DEPs have increased mRNA and 
protein levels of IL-25, IL-33, and TSLP, and this induction is depen-
dent on the aryl hydrocarbon receptor (AhR) (134). These epitheli-
al-derived cytokines promote dendritic cell maturation and shape 
APC responses to allergen exposures (135, 136).

In T cells, Notch signaling is essential for allergic inflamma-
tion (137). Exposure to fine particles and ultrafine particles (UFPs; 
<0.2 μm) upregulated Jagged-1 (Jag1), the Notch signaling ligand 
on APCs (138). In mice, exposure to UFPs enhanced allergen-in-
duced AHR, IgE production, and Th2/Th17 inflammation result-
ing from AhR-dependent induction of Jag1 expression in alveolar 
macrophages (AMs) (138). AMs are the major pulmonary cell type 
involved in phagocytosis of UFPs. Jag1-expressing AMs interact-
ed with Notch4-bearing naive allergen-specific T cells to promote 
Th2 and Th17 differentiation (138), albeit only in AMs harboring 
a constitutively active IL-4 receptor (138, 139). This is consistent 
with a more severe asthma phenotype observed in patients with 
this IL4RAR576 polymorphism (139, 140).

DEP exposure is associated with increased IL-17A levels in 
human and murine asthma (141). In mice, IL-17A blockade pre-
vented DEP-induced exacerbation of allergic asthma (141). This 
increase in DEP-mediated disease severity is associated with an 

impaired response to steroid treatment and increased IL-17A (141, 
142), which can directly induce smooth muscle contraction (143). 
In mice, coexposure to HDMs and DEPs induced pulmonary accu-
mulation of T cells that coproduce Th2 and Th17 cytokines (130, 
141). In asthmatic patients, the presence of these dual Th2/Th17 
cells, which are more resistant to steroids in vitro, is associated 
with more severe disease (144). After transfer into naive mice, 
Th2/Th17 cells have been shown to promote more severe disease 
than classic Th2 cells (145). Additionally, simultaneous expo-
sures to IL-13 and IL-17A can exacerbate IL-13–induced AHR by 
enhancing IL-13/STAT6 signaling (146), which suggests that cells 
cosecreting IL-13 and IL-17A would be ideally poised to generate 
a stronger STAT6 response in epithelial and smooth muscle cells, 
a pathway critically involved in allergic AHR (147). DEP exposure 
promoted increased numbers and persistence of allergen-specific 
memory T cells in adult and neonatal murine lungs (130). Accord-
ingly, coexposure to high TRAP in the first year of life was associ-
ated with earlier allergen sensitization and increased prevalence 
of asthma at age 7 in allergen-sensitized children (130).

TRAP exposure may alter the immune system even before birth. 
DEPs can cross the placenta and induce oxidative stress pathways 
in the fetus; thus maternal exposure has the potential for negative 
health effects to the fetus (148). Offspring of female mice exposed 
to DEPs in utero and sensitized to OVA postnatally were primed for 
enhanced allergen-induced bronchoalveolar lavage fluid inflamma-
tion, increased Th2 and Th17 cytokines, and elevated AHR com-
pared with unexposed offspring (149–151). The associated increase 
in lung levels of genes induced by direct DEP exposures suggests 
that some DEPs likely crossed the placental barrier and resulted in a 
primed state and asthma susceptibility in offspring.

Tobacco smoke exposures. In 2015, one-quarter of men and 5.4% 
of women worldwide smoked daily (152), exposing up to 40% 
of nonsmokers to secondhand smoke (SHS) (153). An estimated 
36,950 asthma deaths in adults and children were attributable to 
SHS exposure in 2004 according to comprehensive disease data 
from WHO (153). SHS exposure is also a risk factor for allergic sen-
sitization, allergic rhinitis, and allergic dermatitis among children 
(154–156). Further, smoking among asthmatics promotes emphy-
sema and decline in lung function, resulting in chronic obstructive 
pulmonary disease over time.

There is convincing evidence suggesting a causal relation-
ship between SHS exposure and asthma incidence in children (2, 
153, 157–159). Prenatal or postnatal maternal smoking was asso-
ciated with significantly increased risks of incident wheezing 
(28%–70%) and incident asthma (20%–85%) up to age 18 years 
(158). Even in the absence of maternal smoking, SHS exposure 
in infancy increased the risk of food sensitization and the risk of 
eczema with allergic sensitization up to age 16 years (156, 160). 
In the Greater Cincinnati Pediatric Clinic Repository cohort, 33% 
of the asthmatic children aged 5 to 18 years lived with a smoker; 
of these, 66% of mothers reported smoking in the household (3). 
Children in lower-income families were almost 3 times more likely 
to be exposed to SHS than those in higher-income families (161). 
Strong evidence of an SHS exposure-response relationship and 
induction of asthma in children, adolescents, and adults makes 
prevention efforts critical (162–165). Further, thirdhand smoke 
(THS; residual smoke contamination remaining after the source 
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Conclusion
The effects of environmental exposures early in life contribute to 
the development of allergic disease and asthma later in life. The 
influence of these environmental factors on allergic mechanisms 
likely differs based on host genetics, host immunologic milieu, tim-
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