Title: Erythrocyte-derived microvesicles induce arterial spasms in JAK2^{V617F} myeloproliferative neoplasm

Authors: Johanne Poisson^{1,2,3}, Marion Tanguy^{1,2}, Hortense Davy¹, Fatoumata Camara¹, Marie-

Belle El Mdawar¹, Marouane Kheloufi¹, Cécile Devue¹, Juliette Lasselin¹, Aurélie Plessier^{4,5},

5

Salma Merchant⁶, Olivier Blanc-Brude¹, Michèle Souyri⁷, Nathalie Mougenot⁸, Florent Dingli⁹, Damarys Loew⁹, Stephane N. Hatem¹⁰, Chloé James^{11,12,13}, Jean-Luc Villeval⁶, Chantal M. Boulanger¹, Pierre-Emmanuel Rautou^{1,2,4,5*}

10 Supplementary Materials: Figures S1-S4 Table S1

Figure S1. Endothelial and hematopoietic progenitors' recombination.

Mechanism of mTmG reporter strategy (A). Representative "en face" images of the endothelium of aortas from constitutive mTmG; VE-Cadherin-Cre (n=3) mice (B) and inducible mTmG; VE-Cadherin-Cre-ERT2 (n=3) mice (G) (EGFP, green; tdTomato, red). Respective quantification (C & H). Confocal imaging of hematopoietic cells in adult femur sections from constitutive mTmG; VE-Cadherin-Cre mice (Nucleus, DAPI, blue; EGFP, green; tdTomato, red) (D). Flow cytometry analysis of hematopoietic progenitors isolated from femur bone marrow showed that the majority of erythroid Ter119-positive (E) and granulocyte Gr1-positive (F) progenitor cells are EGFP + in constitutive VE-Cadherin-Cre; mT/mG mice compared to Cre-negative; mT/mG-positive control mice. Abbreviations: VECreERT2, mTmG; VE-Cadherin-Cre, mTmG; VE-Cadherin-Cre,.

5

Figure S2. Heme contained in erythrocytes microvesicles do not explain the NO pathway inhibition.

Absorbance at 398nm (Heme) of microvesicles derived from $Jak2^{V617F \ Flex/WT}$; VE-Cadherin-cre mice ($Jak2^{V617F}$ HC-EC, n=5, red) and control mice erythrocytes ($Jak2^{WT}$, n=5, blue). Data are expressed as median with interquartile range. Abbreviations: MVs, microvesicles; ns, not significant; RBC, red blood cells. Data were compared using the Mann-Whitney U-test. All tests were 2 sided.

Figure S3. Gp91 expression in erythrocyte-derived microvesicles

Representative image (A) with quantification (B) of Gp91 (NOX2) western blot performed on microvesicles derived from $JAK2^{WT}$ (n=10, blue) and $JAK2^{V617F}$ (n=10, red) erythrocytes. Quantitative data are expressed as median with interquartile range. Data were compared using the Mann-Whitney U-test. All tests were 2 sided. Abbreviations: ns, not significant.

Figure S4. Spleen weight and blood cell counts in N-acetyl-Cystein treated mice.

Spleen weight/body weight ratio (A), haemoglobin level (B), platelet count (C) and white blood cell count (D) from Jak2^{V617F} HC-EC mice treated with vehicle (n=5, red) and with NAC (n=7, orange). Data are expressed as median with interquartile range. Abbreviations: Jak2^{WT}, control mice; Jak2^{V617F} HC-EC, Jak2^{V617F Flex/WT}; VE-Cadherin-cre mice; NAC, N-Acetyl-cysteine; ns, not significant. Data were compared using the Mann-Whitney U-test. All tests were 2 sided.

Table S1

Protein	Description	Ratio	p value	Peptides	Effect on oxidative stress	Ref	Deregulation potentially
							explaining the observed effect
sp P07901 HS90A_MOUSE	Heat shock protein HSP 90-alpha	3.45	5.3e-38	128	Anti-Oxidant	(61)	No
					Increased by ROS		
sp P11247 PERM_MOUSE	Myeloperoxidase	8	-	38	Pro-Oxidant	(22)	Yes
sp Q9JMH6 TRXR1_MOUSE	Thioredoxin reductase 1	2.66	1.4e-05	29	Anti-Oxidant	(62)	No
sp Q64471 GSTT1_MOUSE	Glutathione S-transferase theta-1	1/2.25	3.6e-05	20	Anti-Oxidant	(62)	Yes
sp P31725 S10A9_MOUSE	Protein S100-A9	4.28	4.1e-09	18	Anti-Oxidant	(63)	No
sp P27005 S10A8_MOUSE	Protein S100-A8	3.95	5.5e-06	15	Increased by ROS		
sp Q61133 GSTT2_MOUSE	Glutathione S-transferase theta-2	8	-	10	Anti-Oxidant	(62)	No
sp P02104 HBE_MOUSE	Hemoglobin subunit epsilon-Y2	$1/\infty$	-	8	Pro-Oxidant	(62)	No
sp O08807 PRDX4_MOUSE	Peroxiredoxin-4	8	-	6	Anti-Oxidant	(21)	No
					Increased by ROS		
sp P08226 APOE_MOUSE	Apolipoprotein E	8	-	6	Anti-Oxidant	(64)	No
sp Q9D975 SRXN1_MOUSE	Sulfiredoxin-1	8	-	6	Anti-Oxidant	(65)	No
					Increased by ROS		
sp P62897 CYC_MOUSE	Cytochrome c, somatic	8	-	6	Anti-Oxidant	(66)	No
sp P09671 SODM_MOUSE	Superoxide dismutase, mitochondrial	8	-	5	Anti-Oxidant	(66)	No
					Increased by ROS		
sp Q61093 CY24B_MOUSE	Cytochrome b-245 heavy chain	8	-	5	Pro-Oxidant	(62)	Vas
sp Q61462 CY24A_MOUSE	Cytochrome b-245 light chain	8	-	5			105
sp Q69ZK0 PREX1_MOUSE	Phosphatidylinositol 3,4,5-trisphosphate-	$1/\infty$	-	4	Pro-Oxidant	(62)	No
	dependent Rac exchanger 1 protein						
sp Q6ZPY7 KDM3B_MOUSE	Lysine-specific demethylase 3B	$1/\infty$	-	4	Epigenetic regulation	(67)	No
sp O35143 ATIF1_MOUSE	ATPase inhibitor, mitochondrial	$1/\infty$	-	3	Pro-Oxidant	(68)	No

Table S1. List of proteins involved in oxidative stress and deregulated in microvesicles derived from JAK2^{V617F} as compared with JAK2^{WT} red blood cells, identified by using quantitative label-free mass spectrometry analysis

Cellular oxidant detoxification (GO 0098869) and ROS metabolic process (GO 0072593) proteins significantly deregulated (p < 0.05, and ratio $JAK2^{V617F} / JAK2^{WT} > 2$ or < 0.5, and with ≥ 3 peptides) or with peptides identified only in one sample type by using quantitative label-free mass spectrometry analysis performed from $JAK2^{V617F}$ (6 samples) and $JAK2^{WT}$ (4 samples) erythrocyte-derived microvesicles.

7