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X-linked dominant incontinentia pigmenti (IP) and X-linked recessive anhidrotic ectodermal dysplasia with immunodeficiency
(EDA-ID) are caused by loss-of-function and hypomorphic IKBKG (also known as NEMO) mutations, respectively. We describe
a European mother with mild IP and a Japanese mother without IP, whose 3 boys with EDA-ID died from ID. We identify the
same private variant in an intron of IKBKG, IVS4+866 C>T, which was inherited from and occurred de novo in the European
mother and Japanese mother, respectively. This mutation creates a new splicing donor site, giving rise to a 44-nucleotide
pseudoexon (PE) generating a frameshift. Its leakiness accounts for NF-kB activation being impaired but not abolished in the
boys’ cells. However, aberrant splicing rates differ between cell types, with WT NEMO mRNA and protein levels ranging from
barely detectable in leukocytes to residual amounts in induced pluripotent stem cell-derived (iPSC-derived) macrophages, and
higher levels in fibroblasts and iPSC-derived neuronal precursor cells. Finally, SRSF6 binds to the PE, facilitating its inclusion.
Moreover, SRSF6 knockdown or CLK inhibition restores WT NEMO expression and function in mutant cells. A recurrent deep
intronic splicing mutation in IKBKG underlies a purely quantitative NEMO defect in males that is most severe in leukocytes
and can be rescued by the inhibition of SRSF6 or CLK.

Introduction affected women, and the CNS in most but not all women (7, 8).

The IKBKG gene, also known as NEMO, encodes the NF-kB essen-
tial modulator (NEMO) (1, 2). NEMO encodes the third regulatory
subunit of the IxB kinase (IKK) complex and is also called IKKy
(3-5). NEMO was discovered in 1998 as a component required
for the activation of NF-«B via the canonical pathway (1-4, 6). In
2000, loss-of-function mutations of IKBKG were shown to abol-
ish canonical NF-«B activation and to underlie X-linked dominant
(XD) incontinentia pigmenti (IP) (phenotype MIM #308300), a
multisystem disorder affecting the skin and its appendages in all
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XD-IP has an estimated prevalence of 1 to 10 cases per million
births. A defining feature of the IP phenotype and the IP-causing
genotype is that they are both lethal in utero in males. The absence
of a functional NEMO protein renders cells apoptotic, resulting
in skewed X inactivation in most if not all of the cells of affected
females and early fetal death in affected males. In 2001, hypomor-
phic IKBKG mutations were found to impair NF-«B activation and
to cause X-linked recessive (XR) anhidrotic ectodermal dysplasia
with immunodeficiency (EDA-ID) (phenotype MIM #300291) (9,
10). Affected men display typical signs of EDA, including sparse
hair, eyebrows, and eyelashes, hypohidrosis, hypodontia, and con-
ical incisors, together with an ID not seen in patients with muta-
tions of ectodysplasin A or its receptor chains (11). Female carriers
in kindreds with EDA-ID are asymptomatic or show mild signs
of IP, mostly restricted to the persistence of cutaneous Blaschko
lines and sparse or conical incisors (9, 10, 12-14). Indeed, although
EDA-ID and IP are clearly different disorders in men, they have a
phenotypic overlap in women, in whom very mild forms of IP may
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Figure 1. Pedigrees. (A) Schematic representation of IKBKG and the surrounding region between positions X: 153,700,000 and X: 154,000,000. /KBKG and
IKBKGP are indicated in red, the 35-kb duplication in green, and the region masked for the reanalysis in black. The variants reported in the 1kG and dbSNP

134 databases are shown in blue/red and gray, respectively. (B) Pedigrees of kindreds A and B. Patients with EDA-ID are indicated in black, and the mother

with mild IP is indicated in gray.

be caused by severely hypomorphic IKBKG mutations (8). XD-IP
and XR-EDA-ID are allelic, as they are caused by different muta-
tions of the same gene.

Approximately 78% of known cases of XD-IP are due to a recur-
rent deletion (NEMO*1), removing exons 4-10 and causing losses
of both the production and function of NEMO (7, 15, 16). In two-
thirds of these patients, the deletion occurs de novo in the mother’s
germline (17). Other typical XD-IP-causing lesions include frame-
shiftindels (n = 32), nonsense mutations (n =16), and essential splice
site mutations that are not leaky and cause frameshift or in-frame
deletions of 1 or more exons (n = 6), whereas missense mutations
(n=7) and in-frame indels (n = 1) (8, 18) are much rarer. By contrast
and consistent with their hypomorphic nature, most mutations
underlying XR-EDA-ID are missense mutations or in-frame indels.
In total, 57 IKBKG mutations have been reported to date: 27 are mis-
sense, 5 are in-frame indels, and 1 is a stop-loss mutation, whereas
only 7 nonsense mutations and 9 frameshift indels have been iden-
tified. Fifteen of the 16 nonsense mutations and frameshift indels
affect the last 3 exons (3 in exon 8, 2in exon 9, 10 in exon 10) encod-
ing the ZF domain of NEMO, the truncation of which does not
abolish NEMO activity (8-10, 19-21). The remaining mutation is a
premature stop codon at position 38, which is hypomorphic because
of the reinitiation of translation (13, 22). The other EDA-ID-causing
lesions include splicing mutations that are in-frame and/or leaky
(n =7) and an exon duplication (n = 1), resulting in the expression
of residual levels of dysfunctional mutant NEMO proteins, with or
without residual expression of the full-length protein (23-26). Final-
ly, 2 mutations of the exon 1b splice site (c.-16+1 G>T, c.-16 G>C)
encoding the 5'-UTR affects only 1 of the 4 alternative transcripts.
The mechanism underlying the hypomorphism of this mutation
is unclear (27, 28). Intriguingly, no mutations outside the IKBKG
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exons and their flanking intron splice sites, including the promot-
er and introns, have been reported in families with IP or EDA-ID.
Another form of EDA-ID is autosomal dominant (AD) and caused
by gain-of-function mutations of the NFKBIA gene (29, 30). Howev-
er, approximately 10% of sporadic and familial cases of both IP and
EDA-ID remain genetically unexplained.

The human IKBKG gene is located on chromosome Xq28, close
to the IKBKGP pseudogene, which is located 71 kb away, closer to
the telomeric region on the opposite strand. IKBKGP has 8 exons
identical to the corresponding IKBKG exons, but it lacks exons 1 (a,
b, ¢, d) and 2 (which contains the IKBKG initiation codon) (Figure
1A). IKBKGP is not transcribed, as it lacks promoter and transcrip-
tion initiation sites. The 8 introns separating the IKBKGP exons also
have nucleotide sequences very similar to those of IKBKG (8,879 of
8,884 nucleotides are identical). The detection of IKBKG mutants
has therefore always been hindered by the presence of IKBKGP (7,
31-33). Sanger sequencing of the mRNA products of IKBKG typi-
cally overcomes this problem, as the related pseudogene is not
transcribed. However, this approach is most suitable for the detec-
tion of mutations within exons and their flanking regions, which
are likely to alter the mRNA structure. Consequently, noncoding
IKBKG mutations have not been reported, neither in families with
IP nor in families with EDA-ID. Deep intronic causal mutations
of other disease-causing genes were detected by a gene-specific
approach in patients without mutations of the exons of a specific
gene (e.g., B-thalassemia [refs. 34, 35], Duchenne muscular dys-
trophy [ref. 36], Usher syndrome [ref. 37], chronic granulomatous
disease [ref. 38]). Moreover, the genetic etiology of X-linked reces-
sive reticulate pigmentary disorder (XR-PDR), a syndromic pri-
mary ID, was recently determined through the identification of a
recurrent deep single-nucleotide mutation within 1 of the introns of
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the POLAI gene (39, 40). Disease-causing deep intronic mutations
typically create a pseudoexon (PE), which is rarely canonical, often
resulting in suboptimal splicing (37). Targeted genetic studies have
recently suggested that deep intronic disease-causing mutations
may be more common than previously thought, because at least
77 genes have been found to contain disease-causing mutations
of this type (41, 42). We studied 2 families, a European family in
which the mother had very mild IP and lost 2 sons to EDA-ID at the
ages of 1 and 9 months, and a Japanese family in which the mother
was healthy but lost a son to EDA-ID at the age of 6 months. In all
3 boys, the ID was much more severe than the manifestations of
EDA. No mutations were detected in the exons or flanking intronic
regions of IKBKG.

Results

A family with EDA-ID and IP without mutations in the exons of
IKBKG. We first investigated 2 brothers born to a European mother
with very mild IP (case report, Figure 1B, kindred A) at 36 and 37
weeks of gestation. P1 died at the age of 21 days from sepsis and
meningitis due to Klebsiella, with no antecedents, and his young-
er brother P2 died at the age of 9 months from respiratory syncy-
tial virus pneumonitis after a history of recurrent viral, bacterial,
and fungal infections in the absence of fever or biological signs of
inflammation (case report, Supplemental Table 1; supplemental
material available online with this article; https://doi.org/10.1172/
JCI124011DS1). P2 had mild signs of EDA, including dry skin
and sparse hair, whereas P1 was too young to be evaluated for
such features. A younger brother (A.IL.3), now aged 15 years, has
remained healthy, as has his newborn sister, who is now 6 months
of age (A.I1.4). Given the mild IP in the mother, signs of EDA in at
least 1 boy, and the early death from infection of 2 boys, an IKBKG
mutation was suspected. Skewed X-inactivation was observed in
the mother’s NK cells, monocytes, granulocytes, and, to a lesser
extent, dermal fibroblasts (Supplemental Figure 1). An analysis
of X-chromosome microsatellites and copy number variations
(CNVs) in the mother, P1, P2, and their healthy brother (A.I1.3)
confirmed that a haplotype on Xq28 encompassing IKBKG was
common to the 2 infants who died, but not to their healthy broth-
er, and was inherited from their mother (Supplemental Figure 2).
Sanger sequencing of the IKBKG exons at the genomic level (with-
out discrimination between the IKBKG and IKBKGP exons) (Figure
1A) and of the amplified IKBKG cDNA (including all 4 transcripts
encoding the only validated protein isoform) identified no rare or
private variants in the patients. Major genomic rearrangements
(translocations, large deletions or insertions) were also excluded
by Southern blotting (Supplemental Figure 3), high-density arrays
for CNV detection, and FISH (data not shown). Finally, whole-
exome sequencing (WES) identified no candidate mutations in
IKBKG or elsewhere on the X chromosome.

A recurrent deep mutation in an intron of IKBKG. We thus
sequenced the whole genome of P2 and his mother. Next-gen-
eration sequencing (NGS) software cannot call variants on long
stretches of repetitive DNA (43). The region of Xq28 contain-
ing the IKBKG locus is characterized by a 35-kb low-copy repeat
(LCR) (Figure 1A). Variants at the IKBKG locus are thus partly
uncalled. One solution for overcoming the problem posed by this
35-kb duplication (7, 17) is to mask the duplicated region contain-
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ing IKBKGP (chrX: 153,860,736-153,876,549) artificially, replac-
ing these nucleotides by a stretch of N nucleotides in the reference
genome. This results in the raw reads obtained with the modified
hg19-b37 reference human genome mapping only to the IKBKG
locus, making it easier for Genome Analysis Toolkit (GATK) soft-
ware to call the variants (Figure 2A; see Methods). The application
of this strategy to align whole-genome sequencing (WGS) raw data
for IKBKG for P2 and his mother revealed the presence of only 1
private variant at position X: 153,787,731 (IVS4+866 C>T) (Supple-
mental Figure 4, A and B). We then amplified the IKBKG and IKB-
KGP loci with specific PCR primers (Figure 2B), which confirmed
the hemizygous nature of IVS4+866 C>T in P2, its heterozygous
nature in his mother, and its absence from P2’s healthy brother
(Figure 2C). In parallel, specific amplification of the IKBKGP locus
and sequencing of the position equivalent to IVS4+866 C>T (X:
153,873,196 for IKBKGP) showed the sequence present to be WT
in P2, his mother, and all 3 healthy controls tested. No variants at
the IVS4+866 C>T position in IKBKG or the equivalent position
in IKBKGP were identified in public databases (1000 Genomes
[1kG], n = 2,504 individuals, gnomAD, n = 15,496 individuals,
Bravo, n = 62,784 individuals). We thus selected the deep intron-
ic variant IVS4+866 C>T as a candidate mutation at the IKBKG
locus in this family. We performed Sanger sequencing on intron
4 in 4 sporadic, genetically undiagnosed, unrelated cases involv-
ing 3 women with IP and a boy with severe ID and subtle signs of
EDA. We found the exact same mutation in the boy (P3). P3 was
from Japan and died of recurrent bacterial infections at the age
of 6 months (Figure 1B; see clinical report in the Supplemental
Data). His mother is healthy and displays no signs of IP. Familial
segregation patterns confirmed the presence of the IVS4+866
C>T mutation at the IKBKG locus and its de novo occurrence (Fig-
ure 2C). These findings therefore indicate that the IVS4+866 C>T
mutation of IKBKG is recurrent as a result of a hotspot rather than
a founder effect, providing further support for the hypothesis that
itis disease causing.

Identification of rare and common variants at the IKBKG locus
by WGS with 1kG Project data. Intriguingly, the specific amplifica-
tion of IKBKG also revealed the presence of another variant at X:
153,787,729,1VS4+864 A>G, in 2 of the 3 unrelated control genom-
ic DNA (gDNA) samples tested. The lack of reported variants at
positions X: 153,787,729 (IVS4+864 A>G) and X: 153,787,731
(IVS4+866 C>T) in the gnomAD and Bravo databases does not
necessarily imply that the apparently private mutation IVS4+866
C>T is not really a rare variant or even a polymorphism. Indeed,
only 65 variants were reported in gnomAD for the 12.6-kb dupli-
cated region of the genome encompassing IKBKG (from intron 2
to the 3'-UTR), whereas it is generally estimated that the mean
frequency of single nucleotide variants is 60/kb in the human
genome, based on 1kG Project data (Figure 1A) (44). We there-
fore assessed allelic diversity at the IKBKG locus. We applied the
strategy described above to the 1kG Project data for 2504 healthy
individuals, to reanalyze the IKBKG locus (Figure 2A). Using the
sex of the individuals, as recorded in the database, we estimated
the minor allele frequency (MAF) of all variants. We first validat-
ed our set of variants by comparing our calculated MAF with that
obtained from the 1kG data. Excluding the duplicated region con-
taining IKBKG and IKBKGP from this analysis, we found a very

jci.org  Volume129  Number2  February 2019


https://www.jci.org
https://www.jci.org
https://www.jci.org/129/2
https://www.jci.org/articles/view/124011#sd
https://www.jci.org/articles/view/124011#sd
https://www.jci.org/articles/view/124011#sd
https://doi.org/10.1172/JCI124011DS1
https://doi.org/10.1172/JCI124011DS1
https://www.jci.org/articles/view/124011#sd
https://www.jci.org/articles/view/124011#sd
https://www.jci.org/articles/view/124011#sd

RESEARCH ARTICLE

A X: 153,768,539-153,910,000
141 kb >
153,800 153,840 153,880
e e i ek L |
IKBKG IKBKGP
NPT H H OB W
FAM223A CTAG1A CTAG1B_FAM223B__ CTAG2
> ';‘
(=]
Q v
&
»
Qo
g |
<
(&)
- | I
(=2}
Q
S
»
[0
=
© i
c ‘i
g
<
I Duplication NG
[ ] ||
Unmasked Masked
B IKBKG IKBGKP
5 5 5z =
£33 ¢ £313: o
€ 002 Eo0 =
R 8388 FRE~SDD S
oo 2z 2 oo zZz2zZ2 2
F2-R8 pF2-R8
kb =
plaEEE 2 EEOEEREEDS
5]
2 -]
F2-R3 pF2-R3

12—
5—
2]

ol ade ol g - - - -

The Journal of Clinical Investigation

C IKBKG IKBKGP
AGCACAGTARGCGGTCAAGGTGC ~ AGCACAGTAGGCGGTCAAGGTGC
TL A ; '
fe?nale h‘ WV /ﬂ AN fﬁ
IM'M\HJWML YUYV LAY
AGCACAGTAGGCGGTCAAGGTGC ~ AGCACAGTAGGCGGTCAAGGTGC
CTL
male
P2's mother |, A "\
nWWWINA L\
AGCACAGTAAGTGGTCAAGGTGC
P2 R
Hy
AGCACAGTAAGCGGTCAAGGTGC
All3 |, |
| A‘A”Mﬁ A h‘ ”.\
AGCACAGTAAGCGGTCAAGGTGC  AGCACAGTAGGCGGTCAAGGTGC
P3’s mother [\ n
AGCACAGTAAGTGGTCAAGGTGC ~ AGCACAGTAGGCGGTCAAGGTGC
” gl

Figure 2. Genomic strategies to identify IKBKG variants. (A) Comparison of WGS mapping results between the classical and alternative (masking of the
IKBKGP locus) strategies. The red/blue reads are the mapped sequences that can be used for variant calls (mappy quality score [MQ] >20), and the gray/
white reads are the mapped sequences for which no variant could be called (MQ = 0). The duplicated region is indicated with a green bar and the masked
region with a black bar. (B) Specific amplification by PCR of the full-length (top) or partial (bottom) /KBKG locus. gDNA from 2 controls (CTL), a patient
(P2) and his mother, and from 2 NEM0O**™ (from 1 male and 1 female patient) SV40 immortalized fibroblast lines was used as the template. (C) IKBKG and
IKBKGP DNA sequence electropherograms for controls, SV40-immortalized fibroblasts from a patient (P2) and his mother and a healthy brother (A.11.3),

and for the leukocytes from a patient (P3) and his mother.

strong correlation (R? = 0.94) for all reported variants and for the
genes immediately upstream of IKBKG (FAM3; R? = 0.94) and
downstream of IKBKGP (GAB3; R? = 0.93) (Figure 3A). Focusing
onthe IKBKG region (X:153,784,100-153,799,445), we identified a
total of 509 variants (Supplemental Table 2). Only 24 of these vari-
ants were reported in the 1kG, ESP6500, and gnomAD databases
(Figure 3B). Forty-five variants reported in the 1kG, ESP6500, and
gnomAD databases were not identified in our analysis. We clas-
sified the 509 variants into groups on the basis of zygosity calls.
In total, 126 variants were hemizygous in males or homozygous in
females, or both, implying that the variants were carried by both

jci.org  Volume129  Number2  February 2019

IKBKG and IKBKGP (Supplemental Figure 5). Of the identified
variants, 51 were located in introns, 67 were downstream of the
last exon, or, more rarely, 6 were in the 3'-UTR, and 1 was within
a splicing region. We found only 1 missense (E355K) mutation to
be hemizygous, albeit with weak coverage (4 reads). However, we
found this variant in the heterozygous state in 2 unrelated females,
suggesting that it may be a true rare variant. The remaining 383
variants had been called as heterozygous in females or males or
both. In such cases, it was not possible to attribute the variant to
either IKBKG or IKBKGP by this approach. Of these variants, 189
were located in introns, 140 were downstream of the last exon, or,
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more rarely, 20 were in the 3'-UTR, and 1 was within the splicing
region. Surprisingly, however, 33 of these variants were located in
coding exons, and this group included 3 nonsense or indel frame-
shift variants, 21 missense variants, and 9 synonymous variants
(Supplemental Table 3). Given the clinical impact of deleterious
mutations of IKBKG, the 3 most deleterious variants (nonsense
and frameshift indels) identified were probably located in IKB-
KGP. We thus report what to our knowledge is the first compre-
hensive genetic analysis of the IKBKG locus, with a MAF for each
variant and population (with a factor 2 approximation) (Supple-
mental Figure 5 and Supplemental Table 2). In this analysis, we
did not find IVS4+866 C>T, whereas IVS4+864 A>G was clearly
shown to be a polymorphism, with a MAF of 0.51 in the general
population. This approach also confirmed that the 2 families with
EDA-ID carried a private IKBKG variant, consistent with this vari-
ant being an IP-causing one in the European mother and EDA-ID
causing in her sons and in P3.

The IVS4+866 C>T mutation creates a suboptimal donor site
for PE inclusion. We analyzed the functional consequences of
IVS4+866 C>T. In silico analyses with ESE Finder (45) and similar
software predicted potential splice donor sites following introduc-
tion of the IVS4+866 C>T mutation (Figure 4A and Supplemen-
tal Figure 6, A-C). We detected an acceptor site upstream of the
mutation (+817) that, in the presence of IVS4+866 C>T, resulted

in base pairing between the +861 to +867 stretch of IKBKG intron
4 and the UlsnRNA (Supplemental Figure 7), but with no pairing
at positions -1, -2, or -3. Exon trapping showed that the IVS4+866
C>T mutation led to the inclusion of a PE within intron 4 of IKB-
KG. Direct sequencing confirmed the presence of a 44-nt PE by
identification of the cryptic acceptor site with a conserved branch
point (YUNAY sequence) (46), polypyrimidine tract (PPT) (C/U
= 81.8%), and junction site (AG/A) (Supplemental Figures 7 and
8). Conversely, the A/G SNP at the IVS4+864 position had no
effect on pairing with the pseudouridine of UlsnRNA at the +4
position (Supplemental Figure 7) and thus had no effect on the
splicing of IKBKG intron 4 (Supplemental Figure 8). We then ana-
lyzed the consequences of IVS4+866 C>T in terms of the mRNA
present in the patients’ cells. We first analyzed the amounts of
IKBKG transcripts by Northern blotting. Immortalized mRNAs
from SV40-transformed fibroblasts from a healthy control, P2,
his mother, and a woman with IKBKG**'° were hybridized with
full-length IKBKG cDNA. P2 had 75% less mRNA than did the
controls, whereas his mother had only slightly less mRNA than
did the controls (Figure 4B). This result was confirmed by reverse
transcription quantitative PCR (RT-qPCR), which showed P2 to
have approximately 75% as much IKBKG mRNA as the controls
(Figure 4C). The whole-blood sample obtained from P3 contained
approximately 30% less IKBKG mRNAs than did a sample from a
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Figure 4. The IVS4+866 C>T intronic mutation causes aberrant IKBKG splicing. (A) Description of the impact of the mutation on the IKBKG transcript,
focusing on the junction of exons 4 and 5. The PE (blue rectangle) was found in P2 and P3 but not in the controls. White rectangles indicate exons 4

and 5, and black rectangles indicate the alternative donor site (exon 4A) or the alternative acceptor site (exon 5A) found in the patients and controls.

The IVS4+866 C>T mutation is indicated by a red arrow. (B) Northern blot analysis of purified mRNA from a control, P2 and his mother, and NEMQA40/Y
SV40-immortalized fibroblasts. The mRNAs were hybridized with a full-length 3P-labeled IKBKG or ACTB cDNA. (C) RT-gPCR analysis of total cDNA from
controls, P2 and his mother, and NEM04'%/Y SV40-immortalized fibroblasts, and of whole-blood cells from a control and P3. Data are expressed as AACt
normalized against GAPDH. The mean + SD of the data obtained from 8 independent experiments is shown for the fibroblasts. The mean of triplicate
experiments is shown for whole-blood cells and is representative of 2 independent experiments. (D) Full-length IKBKG amplification of purified mRNA
from control and P2 SV40-immortalized fibroblasts as well as from whole-blood cells from a control and P3. (E) Schematic representation of IKBKG
transcripts obtained after TA cloning experiments on controls, P2, and P3 from D. Approximately 100 clones were sequenced, and the results are expressed
as percentages. (F) Sashimi plot of the RNA-Seq data from SV40-immortalized control (CTL1and CTL2) and P2 fibroblasts. The red arrow indicates the
position of [IVS4+866 C>T and the new exon. Black and red numbers indicates the number of reads overlapping 2 consecutive exons. E1, E2, etc., exon 1,

exon 2, etc.; M, molecular weight ladder; MW, molecular weight.

healthy control (Figure 4C). We then analyzed the entire coding
sequence (CDS) of IKBKG using cDNA prepared from the fibro-
blasts of P2 and whole-blood cells from P3 and healthy controls.
This analysis confirmed the lower levels of normal transcripts and
the presence of aberrant transcripts in the patients’ cells (Figure
4D). We identified and quantified IKBKG mRNA structures by TA
cloning and Sanger sequencing of molecular clones of these ampl-
icons from the controls, P2, and P3. In control SV40-immortalized
fibroblasts, 65% of the cDNAs obtained were full length and 32%
had skipped exon 5 (Supplemental Table 4). In SV40-immortal-
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ized fibroblasts from P2, we detected not only the WT transcript
but also new aberrant transcripts, accounting for approximately
one-third of the total mRNA from this gene. All these new aber-
rant transcripts contained the 44-nt PE (Figure 4A), either alone
or with the 3" or 5’ end of intron 4 (depicted as exons 4A and 5A
in Figure 4A, Figure 4E, Supplemental Figure 7B, Supplemental
Figure 9, and Supplemental Table 4). The same approach showed
a whole-blood sample from P3 to contain only 1% full-length WT
transcript, strongly contrasting with the 58% detected in a sample
from a healthy donor (Figure 4E and Supplemental Table 4). RNA-
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Figure 5. The level of aberrant IKBKG splicing caused by IVS4+866 C>T mutation is cell type dependent. (A) RT-gPCR analysis of total cDNA from iPSCs,
iPSC-MLs, and iPSC-NPs obtained from a control and P3. Data were obtained in triplicate and are expressed as AACt normalized against GAPDH. Represen-
tative results of 2 independent experiments are shown. (B) RT-gPCR amplification of full-length /KBKG from RNA extracted from control and P3-derived
iPSCs, iPSC-MLs, and iPSC-NPs. (C) Percentage of IKBKG transcripts obtained after TA cloning experiments on P3-derived iPSCs, iPSC-MLs, and iPSC-NPs
from B. (D-F) NEMO protein levels in total cell extracts from (D) SV40-immortalized fibroblasts established from controls, P2, a patient with a hypomorphic
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iPSCs, iPSC-MLs, or iPSC-NPs with 3 independent clones. Numbers indicate the expression levels of NEMO relative to GAPDH (D and E) or B-actin (F).

Seq data analysis of the mRNAs extracted from the immortalized
fibroblasts of P2 and 2 controls confirmed the lower levels of
IKBKG mRNA (approximately 50% lower) in P2, together with the
presence of these new transcripts (Figure 4F). The fibroblasts and
whole-blood cells from P2 and P3 contained mutant IKBKG tran-
scripts (carrying a 44-nt PE) encoding proteins with a premature
stop codon, with moderate and profound decreases, respectively,
in WT full-length transcript levels

Cell type-dependent effect of IVS4+866 C>T on aberrant IKBKG
splicing. We investigated in greater detail the cell type dependence
of WT IKBKG expression in the context of the IVS4+866 C>T
mutation. Our previous results were highly consistent with the cell
type-dependent pattern of the X-skewing inactivation observed
in the affected mother of P1 and P2, as some leukocyte subsets
(monocytes, NK cells, and granulocytes) displayed greater skew-
ing than others (B and T cells) and than fibroblasts (Supplemen-
tal Figure 1). We hypothesized that the intensity of the alternative
splicing generated by IVS4+866 C>T might be dependent on cell
type. We tested this hypothesis by using induced pluripotent stem
cell (iPSC) lines established from the leukocytes of P3. We mea-
sured the levels of WT and alternative IKBKG transcripts in undif-
ferentiated iPSCs, iPSC-derived myeloid cells (iPSC-MLs), and
iPSC-derived neuronal precursor cells (iPSC-NPs) (Supplemental
Figure 10). RT-qPCR on IKBKG revealed that transcript levels in

P3iPSC-MLs were one-half those in control cells (Figure 5A). The
amplification of IKBKG cDNA demonstrated the presence of aber-
rant products in iPSC-MLs (Figure 5B). TA cloning revealed that
the ratio of full-length WT to aberrant IKBKG transcripts differed
markedly between undifferentiated iPSCs, iPSC-MLs, and iPSC-
NPs (Figure 5C). iPSCs from P3 produced approximately 17% WT
transcripts, whereas P3-derived iPSC-NPs produced approximate-
ly 35% WT transcripts, a level similar to that obtained with dermal
fibroblasts from P2 (Figure 4E). WT transcript levels were as low
as 3% in P3-derived iPSC-MLs, a level similar to that reported for
whole-blood cells from P3 (Figure 4E). Interestingly, transcripts
containing the PE plus exon 5A were abundant in whole-blood
cells from P3 and in iPSC-MLs (Figure 4A and Supplemental Table
4), suggesting that the alternative acceptor site for exon 5A was
better recognized in whole-blood cells and iPSC-MLs than in the
other cell types tested. We also quantified the NEMO protein lev-
elsin these cell lines, confirming lower (approximately 25% lower)
but detectable levels of WT protein in SV40-immortalized fibro-
blasts from P2, whereas this protein was almost undetectable in
PBMCs from P3 (Figure 5, D and E). Quantification of NEMO pro-
tein levels against B-actin showed them to be approximately 40%
lower in iPSC-MLs from P3 than in undifferentiated iPSCs and
approximately 6.6 times higher in iPSC-NPs (Figure 5F). NEMO
protein levels therefore depended on cell type and were correlat-
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ed with WT mRNA levels (Figure 5C). Collectively, these findings
indicate that the IVS4+866 C>T mutation affects NEMO protein
levels in a cell type-specific manner, with a more pronounced
defect in hematopoietic (leukocytes, iPSC-MLs) than nonhema-
topoietic (fibroblasts, iPSCs, iPSC-NPs) cells. These findings are
consistent with the clinical phenotypes of the 3 boys, the affected
mother of P1 and P2, and the documented skewing of X inactiva-
tion in the cells of this woman.

Impaired NF-xB activation in mutant fibroblasts and iPSC-
derived macrophages. Cells from P2 and P3 had low to unde-
tectable levels of WT NEMO protein and no detectable mutant
NEMO protein. We assessed the functional consequences of
this profound and purely quantitative defect by analyzing NF-«xB
activation in SV40-immortalized fibroblasts from P2 upon TNF
receptor (TNFR) and IL-1 and TLR stimulation (Figure 6A and
Supplemental Figure 11A). We found that IxkBa degradation was
normal, despite the very low levels of IKKa/p phosphorylation in
response to stimulation with either TNF-a or IL-1f (Figure 6A). In
P3iPSC-derived macrophages (iPSC-M¢), we observed that NF-«kB
activation upon stimulation with LPS was impaired (Figure 6B).
The JNK and p38 MAPK pathways, which are TAK1 dependent and
NEMO independent, were normally activated, whereas the ERK/
MAPK pathway, which is NEMO dependent, was strongly affected
(Figure 6B). We then measured p65 translocation to the nucleus
by analyzing immunofluorescence in both cell types. Fibroblasts
from P2 displayed abnormally low levels of p65 nuclear translo-
cation (Figure 6C and Supplemental Figure 11B), and these levels
were even lower in iPSC-M¢ from P3 (Figure 6D and Supplemen-
tal Figure 11C). We then used fibroblasts from P2 and performed
an EMSA to determine the amounts of nuclear and DNA-binding
NF-«kB dimers in response to TNF-o, or IL-1B. The cells from P2
showed abnormally low levels of DNA-binding dimers in response
to high concentrations of either agonist (Supplemental Figure 11D).
We then performed ELISA to measure IL-6 and IL-8 production in
cells treated with IL-1B, TNF-a, TNF-B, IL-17, poly (I:C), and PMA
(Figure 6E, Supplemental Figure 11E). The production of IL-6 in
response to all these stimuli was weaker in cells from P2, and this
decrease was most marked in response to IL-1B. The impairment
we saw in P2’s cells was similar to that observed in X420W-hemi-
zygous cells from a patient with a severe form of EDA-ID (9). Sim-
ilarly, in P3-derived iPSC-M¢, we found that TLR4 stimulation
was impaired, as demonstrated by the quantification of TNF-u
production (Figure 6F). Complementation of iPSCs from P3 with
WT NEMO, but not empty plasmid, followed by differentiation
into M¢ (Supplemental Figure 11F), fully restored NF-kB pathway
activation in terms of the phosphorylation of ERK (p-ERK) and
p65 (p-p65) (Figure 6B) and p65 nuclear translocation (Figure 6D,
and Supplemental Figure 11G), while it partially restored TNF-a
production (Figure 6F) upon LPS stimulation. The activation of
P3-derived PBMCs by LPS confirmed the inability of leukocytes
to produce TNF-o in response to LPS stimulation (Supplemental
Figure 11H). Flow cytometric analysis of the leukocytes from P3
revealed that monocytes (CD14") responded poorly to LPS in terms
of TNF-a production (Supplemental Figure 11I). Overall, NF-xB
responses to various stimuli were impaired in fibroblasts from P2,
which had 25% of the normal level of WT NEMO protein, a pheno-
type similar to that of another EDA-ID patient with expression of
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only the X420W-mutated NEMO protein (9). We observed a simi-
lar but more pronounced defect in P3-derived iPSC-M¢, which had
very low levels of WT NEMO expression. Collectively, these find-
ings suggest that the presence of 25% less of the normal levels of
WT NEMO severely impairs but does not abolish NF-«B activation
in fibroblasts, leukocytes, and iPSC-M¢. The mutation found in the
2 kindreds studied here is therefore severely hypomorphic but not
loss of function, even in hematopoietic cells, in which the protein
was barely, if at all, detectable, accounting for both the severe form
of EDA-ID seen early in the lives of the 3 boys who died and the
mild IP seen in the European mother.

CDC-like kinase inhibitor restores the normal splicing of IKBKG.
We analyzed the mechanisms underlying the PE inclusion caused
by the mutation IVS4+866 C>T. RNA-pulldown assays showed the
PE donor to have a greater affinity for UlsnRNP, with the detec-
tion of U1-70k, Ul-A, Ul-C, and SmB/B’ subunits following the
introduction of IVS4+866 C>T (Figure 7, A and B). However, the
absence of base pairing to UlsnRNA at positions -1, -2, and -3
renders this donor suboptimal (Supplemental Figure 7A) and sug-
gests that its recognition is assisted by a splicing enhancer. Serine/
arginine-rich splicing factor (SRSF) belongs to a major family of
trans-acting splicing factors that act as exonic splicing enhancers
(ESEs), facilitating spliceosomal complex formation at suboptimal
cassette exons (47, 48). RNA-binding assays for the identification
of the SRSF-binding site revealed a high affinity of SRSF6 for the
PE sequence (Figure 7C), suggesting the presence of an SRSF6-de-
pendent cis regulatory element. We therefore hypothesized that
the inhibition of SRSF6 activity might repress PE inclusion and
restore the expression of functional IKBKG. We observed a partial
restoration of NEMO expression in iPSC-M¢ from P3 following the
siRNA-mediated depletion of SRSF6 (Figure 7D), but we observed
no such effect with depletion of SRSF1 protein, which was used as
a control because it does not associate with the PE (Figure 7D).
Accordingly, the impaired ability of P3-derived iPSC-M¢ to pro-
duce TNF-a was partially rescued by the knockdown of SRSF6,
but not SRSF1 (Figure 7E and Supplemental Figure 12). We then
assessed the therapeutic potential of small-molecule inhibitors
of the CDC-like kinases (CLKs) and SR protein kinases (SRPKs)
responsible for the phosphorylation and activation of SRSFs (49).
We used the SPREADD (splicing reporter assay for disease genes
with dual color) splicing reporter system (50) for quantitative mon-
itoring of the inclusion of the IKBKG PE. The GFP signal indicated
exon 4"5 splicing, whereas the red fluorescent protein (RFP) sig-
nal identified the PE inclusion product (Figure 7F). By comparing
splice-regulating compounds with the SPREADD reporter system,
we were able to confirm the dose-dependent suppression of the
IKBKG PE by the CLK inhibitor TG003 (51, 52), but not by its inac-
tive analog, TGO09 (51) (Figure 7, G and H, and Supplemental Fig-
ure 13). Conversely, we found that the SRPK inhibitor SRPIN340
(53) had no effect on IKBKG PE inclusion or skipping (Figure 7G),
indicating a dominant role for CLKs in the regulation of the IKBKG
PE. Finally, we investigated the consequences of CLK inhibition
in iPSC-M¢ from P3 and showed that TGOO03 treatment partially
restored NEMO expression (Figure 7I) and TNF-a production in
response to stimulation with LPS and IFN-y (Figure 7]). Collec-
tively, these results indicate that SRSF6-dependent ESEs facilitate
recognition of the suboptimal PE donor created by the IVS4+866
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Figure 7. The CLK inhibitor TG0O3 suppresses IVS4+866 C>T-induced PE
inclusion to restore the production of a functional NEMO protein. (A)
Genomic sequence surrounding the 44-bp PE of IKBKG. Black bars indicate
the RNA sequences used for the pulldown assays (PE-5' and PE-3', WT,
and IVS4+866 C>T). (B) Western blot of RNA-pulldown products (WT and
IVS4+866 C>T) for UsnRNP subunits (U1-70k, U1-A, U1-C, and SmB/B’).
(C) Western blot of RNA-pulldown products (PE-5', PE-3', WT, and
IVS4+866 C>T) for phosphorylated SR proteins. (D) Western blot of
P3-derived iPSC-M¢ transfected with nonspecific siRNA or SRSF1-spe-
cific or SRSF6-specific siRNA. B-Actin served as the internal control. (E)
TNF-o production by P3-derived iPSC-M¢ transfected with nonspecific,
SRSF1-specific, or SRSF6-specific siRNA for 72 hours was evaluated 4
hours after stimulation with LPS and IFN-y (n = 3). (F) Diagram of the
SPREADD reporter for IKBKG exons 4-5 with the IVS4+866 C>T muta-
tion. The GFP signal indicates IKBKG exon 4”5 splicing, whereas the RFP
signal indicates inclusion of the 44-nt PE. (G) The intensities of green
and red fluorescence were quantified in Hela cells transfected with the
IKBKG (IVS4+866 C>T) SPREADD vector and treated with small-molecule
compounds (TGOO3, TGOOY, and SRPIN340) or not (0.1% DMSO) for 24
hours. Dot plots represent the GFP/RFP ratio of 6 random fields (80-100
fluorescence-positive cells/field) from a single experiment. **P < 0.001.
(H) Representative fluorescence micrographs of cells treated with 10 uM
TGOO3 or 0.1% DMSO following transfection with the IKBKG (IVS4+866
C>T) SPREADD vector. Nuclei were counterstained with Hoechst 33342.
Scale bars: 200 um. (I) Western blot of NEMO and B-actin for protein
extracts from P3-derived or control iPSC-M¢. (J) TNF-a production by
P3-derived iPSC-M¢ stimulated with LPS and IFN-y for 4 hours, with or
without TGOO3 pretreatment. Data are presented as the mean + SD of 3
independent experiments using a representative clone. *P < 0.05, by 1-way
ANOVA followed by Dunnett’s test.

C>T mutation and that the CLK inhibitor TGOO03 exerts its thera-
peutic effects by restoring the normal splicing of IKBKG.

Discussion

We report what to our knowledge is the first deep intronic vari-
ant of IKBKG as a genetic etiology of mild XD-IP in a mother
and severe XR-EDA-ID in 3 boys from 2 unrelated families. IKB-
KG mutations were first reported in families with IP or EDA-
ID in 2000, but no genetic etiology has yet been identified for a
small but significant proportion of these individuals (10%) (7, 18).
IVS4+866 C>T is located deep enough in the intron to be missed
by classical approaches, including WES and the Sanger sequencing
of exons and flanking intronic regions. We believe this is the first
disease-causing mutation of IKBKG to be identified outside the
exons and flanking intronic regions. This mutation is also located
outside the intronic regions covered by WES. Moreover, the new-
ly created mRNA was not detectable by Sanger sequencing of the
cDNA obtained from patients’ fibroblasts, given the nonsense-
mediated decay of the mutant transcripts, which were present at
much lower levels than were WT transcripts. These findings con-
trast with those of all previous reports concerning IKBKG muta-
tions or their impact on mRNA structure based on Sanger sequenc-
ing after cDNA-PCR (8-10, 13, 19-22, 24-27, 54-59). IVS4+866
C>T underlies a purely quantitative defect of the NEMO protein,
given both the suboptimal nature of the new splicing donor site and
the nonsense-mediated decay of the mutant transcripts, resulting
in a detectable expression of the WT protein and a total absence
of the mutant protein. We provide what we believe to be the first
description of EDA-ID due to a purely quantitative NEMO defect
(IP often being caused by a complete lack of NEMO protein). These
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findings provide insight into the levels of human NEMO proteins
required for correct canonical NF-kB activation. The most closely
related known mutation is located in the 5'-UTR encoding exon
1b, the expression of which is selectively impaired (transcript 1b)
(27). Interestingly, patients with this 5'-UTR mutation develop ID
without EDA (27, 28), as previously reported for a few other muta-
tions of the IKBKG coding sequence (12, 21-23, 60). Little is known
about how expression of the 4 main transcripts of IKBKG generated
by alternative splicing of the first exon is regulated (61).

The detection and validation of disease-causing mutations
located deep within introns is challenging (43). WGS is the best
approach for identifying such mutations, particularly given the
size and number of introns in the human genome (62). WES is
not a good alternative, because it is designed to capture exons and
flanking regions and to filter out duplicated regions and tandem
repeats (63, 64). RNA-Seq is a possible alternative but is subject
to several limitations: (a) mutations creating a new splice site are
typically absent from the encoded mRNAs; (b) mutant mRNAs
can be difficult to detect because of their instability (42); and (c)
WT mRNA levels may be only slightly lower than usual in the test-
ed cells, in which the splicing mutation may be more leaky than
in untested cell types underlying the disease phenotype. Careful
quantification of WT mRNA levels by RNA-Seq and RT-qPCR
may suggest a deep regulatory mutation, provided that the most
appropriate cell type is studied, as shown here. Overall, WGS has
the advantage of an unbiased capture of the entire genome, pro-
vided that the region studied is analyzed thoroughly (63, 65), as
illustrated here for IKBKG. Moreover, WGS can be used to com-
pare any candidate variant with a revised list of existing variants
(66-68). Indeed, we used the raw WGS data from the 1kG Project
(66) to define an initial list of rare and common variants of IKB-
KG, with estimated MAFs, population by population. This work
provides a simple platform for estimating the potential impact
of any variant of IKBKG. For example, we found that 3 variants
previously reported to be disease causing (E57K, D113N, and
Q183H) (16, 69-71) are actually present in the general population
and are therefore unlikely to be responsible for IP or EDA-ID. Two
of these variants have not been found in the homozygous state in
females or in the hemizygous state in males. However, E57K is
frequent (MAF = 1.1 x 107%) and has been found in 67 hemizygous
males, strongly suggesting that this variant does not cause EDA-
ID, despite having been described as hypomorphic (69, 70, 72).

This and other reports (e.g., for Usher syndrome; ref. 37) high-
light the importance of searching for deep intronic mutations by
WGS before considering alternative genetic etiologies, particular-
ly for conditions in which most patients are found to have muta-
tions of a single gene, as is the case for IKBKG (42). AD EDA-ID
due to IkBa GOF mutations is very rare (29, 30). The discovery of a
novel genetic etiology may itself require searches for deep intronic
mutations, as illustrated by XR-PDR (39, 40). This approach may
also be of interest for other known disease-causing loci, which,
like IKBKG, are part of a single, long duplicated region (e.g., neu-
rofibromatosis 1 [NFI] [ref. 73] and Charcot-Marie-Tooth disease
[CMTIA] [refs. 74 and 75]). The number of variants in such dupli-
cations is typically underestimated. As much as 5.4% of the human
genome is duplicated (=1 kb and 290% identity) (75, 76 ). At least
1 gene associated with a primary ID (NCF1, encoding P47-phox)
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(76) and 29 genes associated with other diseases are completely or
partially duplicated in the human genome, resulting in a scarcity
of reliable information concerning these loci (76). In the present
work, we provide proof of principle that the paucity of information
for duplicated regions can be overcome by reanalyzing NGS data,
not only to facilitate the detection and selection of disease-caus-
ing mutations, but also to identify common and rare variants in
specific populations. Pre-mRNAs contain 10 times as many non-
coding nucleotides, mostly in introns, than do coding nucleotides,
but the potential impact of intronic mutations is probably underes-
timated. Damage other than interference with the splicing process
may also occur. In this respect, one of the difficulties in the identi-
fication of deep intronic variants is the paucity of software capable
of reliably predicting the impact of such mutations. For example,
the IVS4+866 C>T mutation is considered benign by Mutation-
Taster (77) and has a combined annotation-dependent depletion
(CADD) score of only 1.02, well below the mutation significance
cutoff (MSC) of IKBKG and the CADD score of all other proven
disease-causing IKBKG mutations (78-80). Moreover, none of the
splicing software used to annotate the new splice site created by
IVS4+866 C>T can be used to scan WGS data. Overall, our find-
ings argue for the development of computational and experimen-
tal approaches for the detection and validation of deep intronic
mutations in patients with unexplained genetic disorders.

This study is also interesting in terms of the cell type-depen-
dent variability in aberrant splicing levels observed, hinting at
potential therapeutic approaches. Indeed, residual WT IKBKG
mRNA levels ranged from barely detectable in leukocytes, to 3% in
iPSC-M¢, and up to 35% in iPSC-NPs. We found that a NEMO pro-
tein level of approximately 25% was insufficient for correct NF-«xB
activation in fibroblasts. However, the clinical consequences, in
terms of IP and EDA, were mild. The WT NEMO levels in leuko-
cytes and iPSC-M¢ were lower and more detrimental. This unequal
distribution probably explains the severity of the ID in the 3 boys
who died from infection in their first year of life. This observation
has interesting implications in terms of human genetics. Coding
nonsynonymous mutations or mutations that impair canonical
splice sites are more likely to have similar consequences across cell
types, in terms of protein levels, than mutations that create nonca-
nonical or suboptimal splice sites in the middle of introns, as shown
in this work. Deep intronic mutations that create splice sites prob-
ably generate a considerable diversity of cellular and clinical phe-
notypes. In this case, it is possible to draw conclusions, thanks to a
unique feature of the IVS4+866 C>T mutation, which is recurrent
because of a hotspot, in 2 families of different ancestries (British
and Japanese). Both the cellular and clinical phenotypes can be
attributed, with confidence, to the mutation itself. It has a robust
impact, as it was detected in the context of 2 different genetic back-
grounds. The rest of the patients’ genetic makeup is unlikely to be
the main driver of this particular phenotype.

We have also determined the mechanisms underlying the
creation of the IKBKG PE. The IVS4+866 C>T mutation creates
a suboptimal donor site by improving base pairing to UlsnRNA,
and CLK-regulated SRSF6 provides the ESE activity required for
PE donor recognition. However, the differences in aberrant IKB-
KG splicing between cell types (Figure 4E and Figure 5C) cannot
be explained solely by the level of SRSF6 expression, as no clear
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inverse correlation was found between the expression levels of
WT IKBKG and SRSF6 in iPSCs, iPSC-M¢, or iPSC-NPs (data not
shown). Instead, this observation suggests that variations in the
expression levels and/or activity of various CLK isoforms medi-
ate the cell type-dependent pattern of IKBKG splicing. Indeed, we
found that the levels of IKBKG transcripts generated varied con-
siderably between cell types in the healthy controls (Figure 4E,
Figure 5C, and Supplemental Table 4). Furthermore, the aberrant
splicing caused by IVS4+886 C>T was more common in hemato-
poietic cells, which produce smaller numbers of WT full-length
IKBKG transcripts. This variation in IKBKG splicing highlights
the importance of using appropriate cell types for mRNA analysis,
whether for diagnostic purposes or for the evaluation of therapeu-
tic compounds. This observation also suggests that deep intronic
mutations that create suboptimal splice sites probably underlie a
considerable diversity of cellular and clinical phenotypes, includ-
ing some involving known disease-causing loci. For example, the
IVS4+866 C>T mutation underlies a very severe ID with very mild
developmental phenotypes, whereas other deep intronic muta-
tions in IKBKG might underlie severe developmental phenotypes
in the absence of overt ID.

These findings led us to develop a therapeutic strategy that
involves the use of a CLK inhibitor to overcome the PE inclusion
caused by IVS4+886 C>T. The restoration of NEMO protein pro-
duction and function, with normal responses to LPS in patients’
iPSC-M¢, as shown by assessments of cytokine production, pro-
vided a first demonstration of proof of concept for this approach.
In addition to the IVS4+866 C>T mutation of IKBKG, recent WGS
studies have suggested that many disease-causing deep intronic
mutations have gone undiscovered in WES studies (41, 42, 81, 82).
As highlighted by the IVS4+866 C>T mutation of IKBKG, those
PEs often result from weak or suboptimal splice sites (donor and/
or acceptor), as the sites used are not authentic or canonical splice
sites in most cases (42). PE recognition also depends on splicing
enhancers in cis and their corresponding trans-acting factors, such
as SRSF6, for the IVS4+866 C>T-dependent PE. These factors
facilitate the splicing reaction by promoting the recruitment of
spliceosomal components. In this respect, other genetic disorders
attributable to similar PEs would also benefit from the CLK-tar-
geting strategy described here. Indeed, we have confirmed similar
therapeutic effects for small-molecule compounds targeting CLK
and other factors by preventing the recognition of pathogenic PEs
in other genetic disorders (our unpublished observations). More-
over, the target selectivity of CLK inhibitors, each of which affects
only a subset of SR protein-dependent exons, with minimal effects
on transcriptome profiles (ref. 83 and our unpublished observa-
tions), is also a considerable advantage over conventional spliceo-
somal inhibitors, which target constitutive splicing factors (e.g.,
spliceostatin A and E7107 for SF3B) (84-86), resulting in a general
toxicity due to a global arrest of splicing reactions (87-89). Collec-
tively, our findings pave the way for novel treatments of PE-asso-
ciated human genetic diseases through the selective manipulation
of splicing with rationally designed small-molecule compounds.

Methods

A complete description of the methods is provided in the Supplemen-
tal Methods.
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Statistics. A 1-way ANOVA followed by Turkey’s post test was used
for comparisons between multiple groups. Dunnett’s test was used for
comparisons between a reference and multiple treatment groups. For
comparisons of 2 groups, an unpaired, 2-tailed Student’s ¢ test was used.
For all analyses, a P value of less than 0.05 was considered significant.

Study approval. All experiments involving human subjects were
conducted in accordance with local, national, and international reg-
ulations and were approved by the French ethics committee ANSM
(the French National Agency for the Safety of Medicines and Health
Products) and the French Ministry of Research (protocol C10-16), by
the ethics commitee of Rockefeller University (protocol JCA-0698),
and by the ethics committee of Kyoto University Hospital (protocols
R0O091, G0259, and G0457). Informed consent was obtained from all
participants included in this study.
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