BLOCKING EXPRESSION OF INHIBITORY RECEPTOR NKG2A OVERCOMES TUMOR RESISTANCE TO NK CELLS

Takahiro Kamiya,¹ See Voon Seow,¹ Desmond Wong,¹ Murray Robinson,² Dario Campana^{1*}

¹Department of Pediatrics and National University Cancer Institute Singapore, National University of Singapore, Singapore; ²Medisix Therapeutics, Singapore

Supplemental Material

(Tables S1-S3; Figures S1-S11)

Table S1. Correlation between *HLAE* and *NKG2A* (*KLRC1*) in tumor samples ranked in decreasing order of partial correlation conditioned on tumor purity, as computed by TIMER (<u>https://cistrome.shinyapps.io/timer/</u>)

Tumor	No. of	Spearman	Р	Partial	partial P
UCS	samples	0 639759	1 91E-07	0.614773	9 71E-07
BLCA	408	0.664542	2 28E-48	0 592958	2 58E-36
	501	0.571922	8.05E-44	0.572556	1 10F-43
THVM	120	0.56264	0.03E-44	0.57104	1.10E-45
	520	0.586848	4.92E-11	0.535045	1.40E-10
DDCA	1002	0.580848	9.92E-47	0.549009	3.17E-40
DRCA	1093	0.040113	8.20E-110	0.545157	2.34E-//
MESO	8/	0.571058	9.39E-09	0.540148	9.54E-08
ESCA	184	0.576203	2.12E-17	0.517918	9.65E-14
CESC	304	0.537006	3.61E-22	0.498892	7.73E-19
UVM	80	0.503179	2.66E-06	0.496368	4.41E-06
LUSC	501	0.554403	7.20E-40	0.495129	7.20E-31
SARC	259	0.555556	3.05E-21	0.47781	2.54E-15
PAAD	178	0.474812	4.68E-11	0.473787	5.95E-11
0V	303	0.530072	1.63E-19	0.455941	3.47E-14
PRAD	497	0.522134	1.54E-30	0.425062	1.11E-19
UCEC	545	0.442045	1.71E-15	0.417492	8.71E-14
COAD	457	0.412147	4.03E-18	0.386089	7.00E-16
READ	166	0.404677	7.08E-07	0.36426	1.04E-05
SKCM	368	0.509191	1.39E-31	0.350375	1.20E-14
KIRP	290	0.317387	1.80E-07	0.30775	4.60E-07
LUAD	515	0.372958	9.49E-18	0.291222	4.30E-11
STAD	415	0.319021	1.95E-10	0.290942	7.90E-09
TGCT	150	0.504074	7.12E-11	0.272816	0.000828
LIHC	371	0.343504	5.12E-11	0.268856	3.99E-07
PCPG	179	0.351822	2.92E-06	0.26609	0.00051
KICH	66	0.307074	0.012144	0.246865	0.047427
CHOL	36	0.327578	0.051142	0.231082	0.181678
ACC	79	0.329788	0.004113	0.147983	0.211504
KIRC	533	0.162317	0.000461	0.109744	0.018422
GBM	153	0.205698	0.015505	0.107176	0.212559
LGG	516	0.103658	0.023277	0.104027	0.02293
DLBC	48	0.258935	0.097757	0.097519	0.54414

Gene	Control $(n = 3)$	PEBL $(n = 3)$	P value ^b
KLRC1 (NKG2A)	8.52±0.07 ^a	8.55±0.18	0.879914969
KLRD1 (CD94)	5.48±0.49	5.85±0.60	0.079232835
KLRC2 (NKG2C)	6.65±0.22	6.71±0.23	0.790320945
NCR1 (NKp46)	6.33±0.24	6.27±0.47	0.781390192
NCR2 (NKp44)	5.34±0.29	5.35±0.65	0.980977191
NCR3 (NKp30)	4.77±0.22	4.71±0.28	0.669292002
KLRK1 (NKG2D)	8.12±0.14	8.20±0.19	0.401781215
HCST (DAP10)	8.89±0.09	8.91±0.05	0.629724466
TYROBP (DAP12)	8.93±0.07	9.00±0.20	0.397876119
KIR2DS4 (CD158I)	8.37±0.80	8.57±0.85	0.037107068
KIR2DL4 (CD158D)	6.71±0.55	6.92±0.44	0.090116881
FCGR3A (CD16)	8.83±0.25	9.16±0.49	0.336689673
KLRF1 (NKp80)	5.84±0.58	5.74±0.83	0.73335572
CD226 (DNAM-1)	5.56±0.22	5.65±0.03	0.49369214
CD224 (2B4)	4.41±0.23	4.18±0.28	0.504191049
TNFRSF9 (4-1BB)	3.09±1.52	4.44±0.71	0.301927207
SLAMF6 (NTB-A)	5.00±0.24	4.51±0.76	0.294794482
SLAMF7 (CRACC)	8.27±0.07	8.31±0.17	0.802970115
TNF (TNF-Alpha)	4.33±0.05	4.48±0.22	0.449061736
IFNG	7.35±0.21	7.75±0.44	0.349550432
IL2	0.07±0.01	0.08±0.01	0.325209432
IL2RA (CD25)	5.29±0.74	6.22±0.34	0.158207541
IL15RA	3.11±0.16	3.39±0.21	0.237430485
PRF1	10.27±0.13	10.30±0.32	0.868789001
GZMA	10.96±0.24	11.10±0.42	0.366999504
GZMB	10.63±0.30	11.35±0.65	0.105310714
GZMK	6.25±0.97	6.55±0.67	0.295470155
GNLY	12.08±0.05	12.67±0.25	0.034123485
PDCD1 (CD279)	0.14±0.08	0.03±0.03	0.185979478
CD96 (TACTILE)	8.11±0.12	7.93±0.09	0.200873293
TIGIT	6.92±0.18	7.14±0.16	0.204239319
SIGLEC9	0.66±0.32	0.57±0.16	0.444419986
SIGLEC7	4.04±0.48	3.73±0.58	0.265743191
CEACAM1	2.53±1.09	2.88±0.69	0.554490653
KLRB1 (CD161)	8.61±0.32	8.78±0.39	0.540636323
KLRG1 (CLEC15A)	3.32±0.09	3.41±0.36	0.640834977
LAIR1 (CD305)	4.86±0.27	4.58±0.65	0.327738109
LILRB1 (ILT2)	2.88±0.38	3.20±0.30	0.056556101

Table S2. RNA sequencing analysis of NK-related genes expressed in NK cells from 3 donors transduced with either GFP alone (Control) or anti-NKG2A PEBL

KIR3DL2 (CD158K)	6.94±1.08	7.27±1.03	0.009378299
KIR3DL1 (CD158E)	6.72±0.32	7.06±0.26	0.010501278
KIR2DL3 (CD158B2)	6.65±0.29	7.10±0.34	0.141731828
KIR2DL1 (CD158A)	6.89±0.41	7.22±0.18	0.137724738
TGFBR1	4.94±0.12	4.97±0.05	0.606382879
TGFBR2	5.55±0.18	5.56±0.22	0.953662914

^a Values represent mean Log 2 of $[FPKM + 1] \pm SD$ ^b By paired *t*-test. Controlling for false discovery rate was done using the 2-stage linear step-up procedure of Benjamini, Krieger and Yekutieli with a Q of 1%. No P values were marked as "discoveries".

Table S3. Antibodies	used for	cell marker	analysis
			2

Antibody	Clone	Conjugation	Manufacturer
CD159a (NKG2A)	Z199	PE	Beckman Coulter
CD159a (NKG2A)	REA110	APC	Miltenyi Biotec
CD56	B159	V450	BD Biosciences
CD16	L78	PE-Cy7	BD Biosciences
CD25	2A3	PE-Cy7	BD Biosciences
CD57	NK-1	PE	BD Biosciences
CD69	L78	PE	BD Biosciences
CD94	HP-3D9	APC	BD Biosciences
CD159c (NKG2C)	REA205	APC	Miltenyi Biotec
CD159c (NKG2C)	REA205	PE	Miltenyi Biotec
CD314 (NKG2D)	149810	PE	R&D systems
CD335 (NKp46)	9E2	APC	Miltenyi Biotec
CD336 (NKp44)	Z231	PE	Beckman Coulter
CD337 (NKp30)	Z25	PE	Beckman Coulter
CD226 (DNAM-1)	DX11	APC	Miltenyi Biotec
CD158a (KIR2DL1)	143211	APC	R&D systems
CD158b (KIR2DL2/3)	CH-L	PE	BD Biosciences
CD158e (KIR3DL1)	DX9	PerCP	Miltenyi Biotec
Perforin	B-D48	PE	BioLegend
Granzyme A	CB9	PE	BioLegend
Granzyme B	QA16A02	APC	BioLegend
HLA-E	3D12	PE	BioLegend
HLA-E	3D12	APC	ThermoFisher Scientific

PE: Phycoerythrin, PerCP: Peridinin-chlorophyll proteins, PE-Cy7: Phycoerythrin-Cyanine7, APC: allophycocyanin

Figure S1. Log2 normalized expression of *HLAE* with markers expressed by genes expressed by immune cells and control genes (*GAPDH*, *G6PD*, *YWHAX*) in 9520 tumors. Pearson correlation coefficient and linear regression line are shown.

Figure S2. Correlation between *HLAE* and *KLRC1* (*NKG2A*) conditioned on tumor purity. The correlation was computed by TIMER (<u>https://cistrome.shinyapps.io/timer/</u>). Shown are data for 4 tumor types, with Spearman correlation, partial correlation conditioned on tumor purity, and estimated statistical significance. Full set of data shown in Table S1.

Figure S3. Log2 normalized expression of *KLRC1* (*NKG2A*) with genes expressed by immune cells and control genes (*GAPDH*, *G6PD*, *YWHAX*) in 9520 tumors. Pearson correlation coefficient and linear regression line are shown.

Figure S4. Anti-NKG2A PEBLs are retained intracellularly. Anti-NKG2A PEBL1-4 were transduced in the NK92 cell line, resulting in NKG2A downregulation (See Fig. 2B); cells were also transduced with a vector containing GFP only ("Control"), or containing the anti-NKG2A scFv linked to the CD8 α hinge and transmembrane domains ("mb") which served as positive control. Flow cytometry histograms show surface expression of scFv, as detected by a goat anti-mouse IgG F(ab')2 antibody conjugated to biotin followed by streptavidin APC (Jackson ImmunoResearch).

Figure S5. CD94 is expressed intracellularly in NK cells with downregulated NKG2A. NK cells transduced with anti-NKG2A PEBL or GFP only ("Control") were labeled with a non-reactive murine IgG antibody conjugated to PE, permeabilized with 8E (a cell membrane permeabilization reagent developed in our laboratory), and then labelled with a non-reactive murine IgG antibody conjugated to APC (top row). Another aliquot of the same cells was labelled with anti-NKG2A PE and anti-CD94-APC using the same method (bottom row). Cells were analyzed with Accuri C6 and the contour plots prepared with FlowJo after gating on GFP-positive NK cells. Percentage of cells in each quadrant is shown.

Figure S6. Cell marker profile and proliferative capacity of NKG2A^{null} NK cells. **A.** Percentage of NK cells transduced with anti-NKG2A PEBL2 or GFP alone ("Control") expressing the indicated markers. Cell markers were analyzed by flow cytometry 9 days after transduction. Antibodies were from BD Biosciences (CD56 v450, CD16 PE-Cy7, CD25 PE-Cy7, CD69 PE, CD57 PE, CD158b

PE), Beckman Coulter (CD159a, CD336 PE, CD337 PE), Miltenyi Biotech (CD335 APC, CD226 PE, CD158e PerCP,), R&D Systems (NKG2D PE, CD158a APC), Biolegend (CD137 APC, Perforin PE, Granzyme A PE, Granzyme B APC). Bars indicate the mean percentage of measurements in NK cells from 2 donors for all markers except for perforin, granzyme A, and granzyme B, where 3 donors were tested. **B.** Proliferative capacity of NK92 cells transduced with anti-NKG2A PEBL1, anti-NKG2A PEBL2, or GFP alone ("Control"). **C.** Percentage CD107a expression, detected by flow cytometry with anti-CD107a PE-Cy7 (BioLegend), in anti-NKG2A PEBL-transduced or control NK cells after a 4-hour co-culture with K562. Shown are results of triplicate experiments with NK cells from 4 donors. **D.** Percentage IFNγ expression, detected with anti-IFNγ PE (BD Biosciences), in anti-NKG2A PEBLtransduced or control NK cells after 8-hour co-culture with K562. Shown are results of triplicate from 4 donors.

Figure S7. Expression of HLA-E plus HLA-G signal peptide induces resistance to NKG2A+ NK cells. **A.** Expression of HLA-E in cell lines transduced with HLA-E plus HLA-G signal peptide ("GpHLA-E") or non-transduced ("wt") by flow cytometry. Cells were labelled with anti-HLA-E-APC (ThermoFisher; blue) or APC-isotype-matched non-reactive antibody (BD Biosciences; gray). **B.**

Expression of CD107a in unselected NK cells after 4-hour co-culture with K562 cells either non-transduced or transduced with GpHLA-E. CD107a expression was measured by flow cytometry on all NK cells ("NKG2A +&-"), and in NK cells expressing or not expressing NKG2A. Shown are mean (\pm SD) of 4 experiments with NK cells from 2 donors; **C**. Four-hour cytotoxicity with NKG2A+ purified, GFP-transduced, NK cells against tumor cell lines non-transduced ("wt") or transduced with HLA-E plus HLA-G signal peptide ("GpHLA-E"). Target cell lines also expressed luciferase; BrightGlo (Promega) was added after 4 hours of co-culture, and luminescence was measured using a Flx 800 plate reader (BioTek). NKG2A+ NK cells from 11 donors were tested with K562, 6 with U2OS, 8 with ES8 and 5 with EW8, all in triplicate. (The data for GpHLA-E is also shown in Fig.3A for the comparisons between mock-and PEBL-transduced NK cells, as the experiments were performed in parallel). **, P<0.01; ***, P<0.001; ****, P<0.001.

Figure S8. Downregulation of NKG2A does not increase NK cell cytotoxicity against non-transformed cells. **A.** Downregulation of NKG2A does not increase cytotoxicity against autologous activated T lymphocytes. CD4+ T cells were selected with anti-CD4 magnetic beads, expanded for 6 days by culture with anti-CD3 and -CD28 beads and then used as targets in 4-hour cytotoxicity assays with autologous PEBL-transduced or control NK cells as effectors at the indicated E:T. Shown is mean (\pm SD) cell killing measured by flow cytometry at the indicated E:T, using target cells cultured without NK cells as reference. Cells from 2 donors were tested in triplicate (P >0.05 for all comparisons). HLA-E expression by flow cytometry in the CD4+ T cells of both donors is also shown. Cells were labelled with anti-HLA-E-APC (ThermoFisher; blue) or APC-isotype-matched non-reactive antibody (BD Biosciences; gray). **B.** Results of similar experiments using bone marrow-derived mesenchymal stromal cells (MSC), with or without prior exposure for 12 hours to IFN γ (300 ng/mL). NK cells from 2 donors were tested in triplicate (P >0.05 for all comparisons).

Figure S9. Spheroid tumors formed with U2OS-GpHLA-E cells transduced with mCherry were co-cultured with PEBL-transduced or control NK cells at an 2:1 and 1:1 E:T in triplicate. Symbols correspond to mean (\pm SD) red calibrated unit (RCU)/ μ M². Images were collected with the IncuCyte Zoom System. Images for 2:1 E:T at 1, 24 and 48 hours after addition of NK cells are shown in Fig. 4E. **, P <0.01, ****, P <0.0001 by *t*-test.

Figure S10. Expression of HLA-E in cell lines unstimulated or exposed to either IFN γ (300 ng/mL) of NK conditioned medium (C.M.) for 12 hours. The latter was obtained from 24-hour co-cultures of NK cells with the respective cell line, and used after centrifugation and filtering with a 0.22 μ M filter. Flow cytometric histograms correspond to cells labelled with anti-HLA-E-APC (ThermoFisher; blue) or APC-isotype-matched non-reactive antibody (BD Biosciences; gray).

Figure S11. Antitumor capacity of anti-NKG2A PEBL-transduced NK cells in immunodeficient mice. **A.** U2OS cells (2 x 10⁵) transduced with GpHLA-E and luciferase were injected intraperitoneally (i.p.) in 15 NOD/scid IL2RGnull mice. Three days later,

mice were treated with 1 x 10⁷ expanded NKG2A⁺ NK cells transduced with either GFP alone ("Control"), or with anti-NKG2A PEBL (n = 5 for each group); another group of mice received tissue culture medium instead ("no NK"; n = 5). One additional injection of NK cells or medium was given 7 days later. All mice received i.p. injections of IL-2 (20,000 IU each) 3 times per week. Bioluminescence was measured with a Xenogen IVIS Spectrum system, with imaging beginning 5 minutes after i.p. injection of D-luciferin (150 µg/g body weight), and analyzed with Living Image 3.0 software. Ventral and dorsal images of mice are shown. **B**. Luminescence measurements of tumor cell growth. Each symbol corresponds to the sum of bioluminescence measurements by ventral and dorsal imaging in each mouse. **C**. Kaplan-Meier curves and log-rank test for overall survival. Mice were euthanized when the sum of ventral and dorsal bioluminescence signal reached 2 x 10¹⁰ photons per second; *, P = 0.014; **, P < 0.01.