Abstract

Esophageal atresia (EA/TEF) are common congenital abnormalities of the gastrointestinal tract. The etiology of EA/TEF is not well understood. We hypothesized that EA/TEF may be the direct consequence of abnormal expression of Noggin (NOG) signaling cascade. Here we showed that, in neonates with EA/TEF, NOG was missing from the atretic esophagus, resulting in immature esophagus that contains respiratory glands, and cilia. When using mouse esophageal organoid units (EOUs) or tracheal organoid units (TOU) as a model of foregut development in vitro, NOG determined the fate of foregut progenitors by allowing expression of esophageal epithelium proteins. When NOG was present in the culture of mTOU, it altered the cell morphology of the organoid unit epithelium, allowing expression of squamous cell proteins normally found in esophagus. On the other hand, when NOG was inhibited in mEOU, the organoid epithelium began to express respiratory markers mimicking the phenotype seen in pathology samples of human EA/TEF. Moreover, human EOU derived from EA/TEF patients were small, fibrotic and lack esophageal epithelium, but when NOG was added, the EOU grew larger, healthier and express esophageal proteins. These results indicate that Noggin is a critical regulator of cell fate decisions between esophageal and pulmonary morphogenesis.

Authors

Carolina Pinzon-Guzman, Sreedhara Sangadala, Katherine M. Riera, Evgenya Y. Popova, Elizabeth Manning, Won Jae Huh, Matthew S. Alexander, Julia S. Shelton, Scott D. Boden, James R. Goldenring

×

Download this citation for these citation managers:

Or, download this citation in these formats:

If you experience problems using these citation formats, send us feedback.

Advertisement