Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

Immune synapses between mast cells and γδ T cells limit viral infection
Chinmay Kumar Mantri, Ashley L. St. John
Chinmay Kumar Mantri, Ashley L. St. John
Published December 18, 2018
Citation Information: J Clin Invest. 2019;129(3):1094-1108. https://doi.org/10.1172/JCI122530.
View: Text | PDF
Research Article Immunology Infectious disease

Immune synapses between mast cells and γδ T cells limit viral infection

  • Text
  • PDF
Abstract

Mast cells (MCs) are immune sentinels, but whether they also function as antigen-presenting cells (APCs) remains elusive. Using mouse models of MC deficiency, we report on MC-dependent recruitment and activation of multiple T cell subsets to the skin and draining lymph nodes (DLNs) during dengue virus (DENV) infection. Newly recruited and locally proliferating γδ T cells were the first T cell subset to respond to MC-driven inflammation, and their production of IFN-γ was MC dependent. MC–γδ T cell conjugates were observed consistently in infected peripheral tissues, suggesting a new role for MCs as nonconventional APCs for γδ T cells. MC-dependent γδ T cell activation and proliferation during DENV infection required T cell receptor (TCR) signaling and the nonconventional antigen presentation molecule endothelial cell protein C receptor (EPCR) on MCs. γδ T cells, not previously implicated in DENV host defense, killed infected targeted DCs and contributed to the clearance of DENV in vivo. We believe immune synapse formation between MCs and γδ T cells is a novel mechanism to induce specific and protective immunity at sites of viral infection.

Authors

Chinmay Kumar Mantri, Ashley L. St. John

×

Usage data is cumulative from August 2021 through August 2022.

Usage JCI PMC
Text version 1,438 216
PDF 212 55
Figure 352 1
Supplemental data 93 13
Citation downloads 34 0
Totals 2,129 285
Total Views 2,414

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts