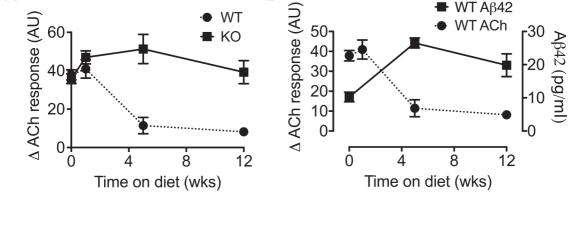
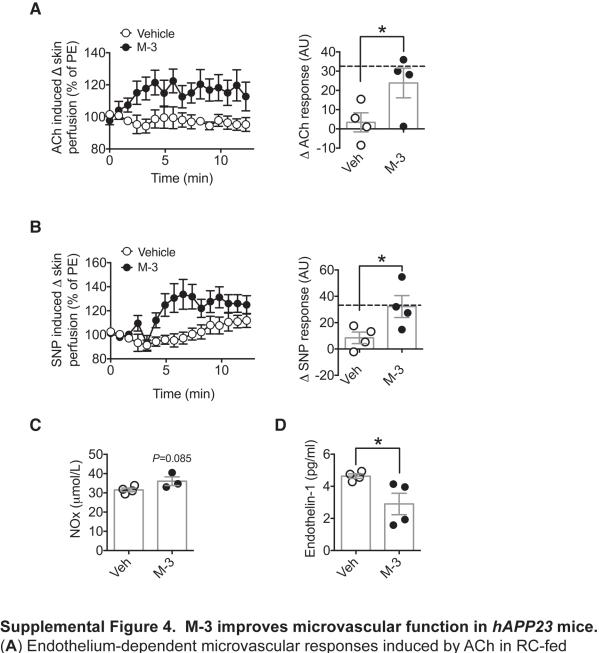


Supplemental Figure 1. High fat fed WT mice exhibit increased body weight, impaired glucose disposal higher fasted glucose and reduced insulin sensitivity.

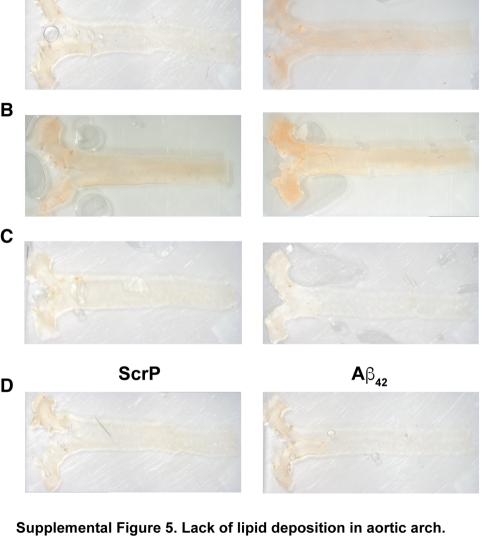

(A) Body weight curves of age-matched (8-10 weeks old) WT littermate mice following 20 weeks of regular chow

(RC: n=11) or high fat (HF: n=15) diet . (**B**) Intraperitoneal glucose tolerance on RC-fed (n=5) and HF-fed (n=12) WT mice performed on week 19 of dietary intervention. (**C**) Fasted blood glucose levels of WT mice on RC or HF diet for 19 weeks. (**D**) Intraperitoneal insulin tolerance on RC-fed (n=8) and HF-fed (n=6) WT mice performed on week 20 of dietary intervention. Data are means \pm SEM. ***P < 0.001 by 2-tailed unpaired Student's t-test.

Supplemental Figure 2. Internal mammary artery BACE1 mRNA expression as a function of diabetes and insulin resistance.


IR: insulin resistance (defined by HOMA-IR > 2.8). DM: diabetes mellitus. NS: non-significant. Data presented as means ± SD.

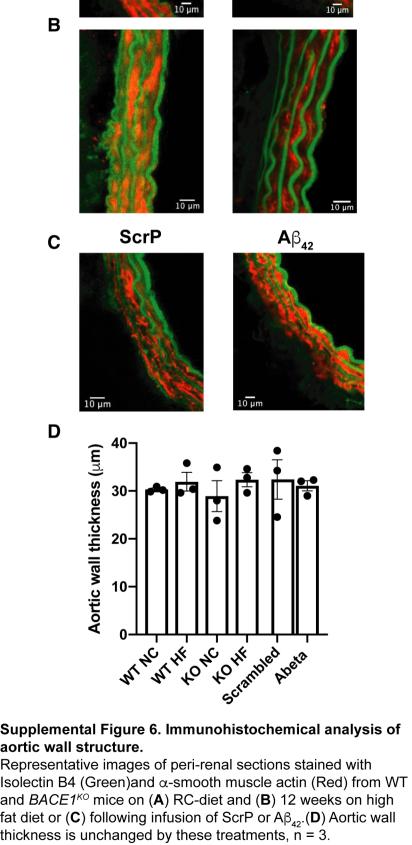
Supplemental Figure 3. ACh response size and plasma $A\beta_{42}$ with time on HF diet. (A) Endothelium-dependent microvascular responses induced by ACh in HF-fed WT and $BACE1^{KO}$ mice as a function of time on diet (n=6-18). (**B**) Endothelium-dependent


microvascular responses induced by ACh with corresponding plasma Abas levels in HF-fed

untreated WT mice as a function of time on diet (n=9-19). Data are means \pm SEM.

hAPP23 mice (n=4) after 4 weeks infusion of vehicle or M-3, with quantitative analysis of ACh response. The broken line denotes the RC-fed BACE1^{KO} ACh response. (B) after 4 weeks infusion of vehicle or M-3, with quantitative analysis of SNP response. The broken line denotes the RC-fed BACE1^{KO} SNP response. (C) Plasma NO levels

Endothelium-independent responses induced by SNP in RC-fed hAPP23 mice (n=4) in vehicle and M-3 treated hAPP23 mice (n=3-4). (D) Plasma ET-1 levels in vehicle and M-3 treated hAPP23 mice (n=4). Data are means \pm SEM. * P < 0.05 by 1-tailed unpaired Student's t-test.



BACE1KO

WT

Representative images of aortic arches stained with Oil Red O. No lipid deposition was detected in a rtic arch of WT and BACE1^{KO} mice on (A) regular chow or after (**B**) 5 weeks or (**C**) 12 weeks on high fat diet. (**D**)

Infusion of ScrP or $A\beta_{42}$ did not cause lipid deposition.

BACE1KO

WT

Α

Supplemental Table 1. Demographic characteristics of participants undergoing CABG surgery.

	Lean	Overweight	Obese
N	28	80	7
Age (years)	68.6 (10.8)	66.3 (9.9)	71.3 (7.2)
BMI (kg/m ²)	22.8 (2.0)	29.9 (2.3)	37.3 (2.6)
Diabetes (%)	14.3	5.7	42.8
Insulin (mIU/L)	7.4 (9.7)	10.9 (10.8)	11.1 (10.1)
Glucose (mg/dL)	97 (30.9)	109 (36.9)	125.7 (39.7)
HOMA-IR	1.9 (3.5)	2.0 (1.7)	3.6 (3.5)

Values are expressed as means with SD in brackets.

Supplemental Table 2.

(A) General composition of regular chow (RC) and high fat (HF) diets and (B) carbohydrate and fat composition of diets for mice.

Α

Kcal composition	RC (RM1)	HF (824053)
Crude fat (%)	7.4	45
Crude Protein (%)	17.5	20
Carbohydrate (%)	75.1	35

В

Carbohydrate/Fat composition	RC	HF
Rice starch (% w/w)	45	28.3
Mixed sugars (% w/w)	4.5	ı
Soya oil (% w/w)	2.71	4.3
Sucrose (% w/w)	-	10.5
Lard (% w/w)	-	17.9

Supplemental Table 3.

Source, catalogue number, species and dilution of antibodies used for immunoblots.

Primary Antibody	Species	Dilution	Source
Bace1	Rabbit	1:500 (IF)	Genetex
		1:3000 (IHC)	(GTX113319)
CD31	Mouse	1:25 (IHC)	Abcam
			(ab9498)
Smooth muscle actin	Mouse	1:1000 (IHC)	Abcam
(SMA)			(ab7817)
Smooth muscle actin	Rabbit	1:100 (IHC)	Abcam
(SMA)			(ab5694)
peNOS	Mouse	1:1000 (IB)	BD Transduction
(Ser1177)			(612392)
eNOS	Rabbit	1:1000 (IB)	Cell Signalling
			(32027)
pPKB	Rabbit	1:1000 (IB)	Cell Signalling
(Ser473)			(9271)
PKB	Rabbit	1:1000 (IB)	Cell Signalling
			(4691)
pAMPK	Rabbit	1:1000 (IB)	Cell Signalling
(Thr172)			(2535)
AMPK	Rabbit	1:1000 (IB)	Cell Signalling
			(5832)
PKG	Rabbit	1:1000 (IB)	Cell Signalling
			(3248)
pVASP	Rabbit	1:1000 (IB)	Cell Signalling
(Ser239)			(3114)
ICAM1	Mouse	1:1000 (IB)	R&D Systems
			(AF796)
Actin	Rabbit	1:5000 (IB)	Sigma Aldrich
			(A2066)