Supplemental data

Supplemental Figure 1. Histology of accepting and rejecting lung allografts. (**A**) Histological appearance (H&E, scale bar 50µm) of Balb/c lung graft at least 30 days after transplantation into an immunosuppressed B6 host (n=8). (**B**) Histological appearance (H&E, scale bar 50µm) and (**C**) absent PNAd staining in Balb/c lung grafts that have acute cellular rejection 7 days after transplantation into non-immunosuppressed B6 recipients (n≥4).

Human A0

Foxp3 cells in human A0

Supplemental Figure 2. Histology of human A0 lung rejection. (**A**) Histological appearance of airway epithelium (arrow) in a human lung graft with A0 rejection (H&E, scale bar 100 μ m). (**B**) Foxp3 immunostaining of tissue from transbronchial biopsy of human lung recipient with A0 rejection showing lymphoid aggregates with accumulation of Foxp3⁺ cells (brown, scale bar 100 μ m) (n≥3).

Supplemental Figure 3. Induction and maintenance of systemic tolerance after lung transplantation is dependent on the presence of the pulmonary allograft. Histological appearance of Balb/c heart grafts after transplantation into non-immunosuppressed (**A**) wild-type B6 mice ($\mathbf{\nabla}$) (n=5) and (**B**) B6 hosts that have previously received and accepted Balb/c lungs ($\mathbf{\bullet}$)(n=8) (H&E, scale bars 100µm) as well as their (**C**) Kaplan-Meier survival curves. Histological appearance of CBA heart grafts after transplantation into non-immunosuppressed (**D**) wild-type B6 mice ($\mathbf{\nabla}$)(n=4) and (**E**) B6 hosts that have previously received and accepted Balb/c lungs ($\mathbf{\Theta}$)(n=7) (H&E, scale bars 100µm) as well as their (**F**) Kaplan-Meier survival curves.

Supplemental Figure 4. T cells within accepted lung allografts are of recipient origin. Contour plots depicting expression of CD45.2 (donor) vs. CD45.1 (recipient) on (**A**) CD4⁺ and (**B**) CD8⁺ T cells within Balb/c lungs (CD45.2⁺) at least 30 days after transplantation into immunosuppressed B6 (CD45.1⁺) recipients. Plots are gated on live CD90.2⁺CD4⁺ and CD90.2⁺CD8⁺ cells, respectively. Plots are representative of two independent experiments with similar results.

Supplemental Figure 5. Global elimination of Foxp3⁺ cells after treatment of Foxp3-DTR mice with DT. Balb/c lungs were transplanted into costimulatory blockade-treated B6 wildtype (no depletion) or B6 Foxp3-DTR mice (Foxp3 depletion). Recipient mice were treated with DT (1 μ g i.p.) on days 7 and 8 after transplantation. Frequencies of Foxp3-expressing live CD45⁺CD90.2⁺CD4⁺CD8⁻ cells were determined by flow cytometry in lung grafts, spleen, bone marrow and pooled peripheral lymph nodes 11 days after transplantation. Data are expressed as mean ± SEM (n=3).

Supplemental Figure 6. Majority of graft-resident Foxp3⁺ cells in tolerant lungs express CD4. (**A**) Plot and (**B**) quantification of CD4 vs. CD8 expression on Foxp3⁺ cells from primary (CD45.2) recipient in Balb/c lungs, transplanted into immunosuppressed wildtype B6 (CD45.2) mice and re-transplanted into DT-treated B6 (CD45.1) hosts \geq 30 days later. Grafts were analyzed by flow cytometry 7 days after re-transplantation. Plot is gated on live CD45.2⁺CD45.1⁻CD90.2⁺ cells (recipient). Data in (**B**) are expressed as mean ± SEM (n=4).

Supplemental Figure 7. Origin of Foxp3⁺ cells in lung grafts that are re-transplanted 72 hours after initial transplantation. (**A**) Plot and (**B**) quantification of distribution of CD45.1 vs. CD45.2 on live CD90.2⁺CD4⁺CD8⁻Foxp3⁺ cells in Balb/c lungs that were initially transplanted into immunosuppressed wildtype B6 CD45.2 mice and 72 hours later re-transplanted into B6 CD45.1 hosts. Lung grafts were analyzed by flow cytometry 7 days after re-transplantation. Data in (**B**) are expressed as mean \pm SEM (n=4).

Supplemental Figure 8. BALT in re-transplanted tolerant lungs without depletion of graftresident Foxp3⁺ cells. (**A**) PNAd (brown) (black arrow) and DAPI (blue) staining as well as (**B**) B220 (red), CD3 (green) and DAPI (blue) immunofluorescent staining in BALT (white arrow) in Balb/c lung grafts that were initially transplanted into immunosuppressed wildtype B6 mice and \geq 30 days later re-transplanted into DT-treated B6 CD45.1⁺ hosts. Scale bars 100µm. Immunostaining was performed 7 days after re-transplantation (n=4).

Supplemental Figure 9. Phenotype of graft-resident Foxp3⁺ T cells. Contour plots depicting (**A**) expression of CD25 and intracellular CTLA4, (**B**) expression of CD44 and CD62Ligand, (**C**) Ki-67 expression and (**D**) expression of PD1 and CXCR5 in CD45.2⁺CD45.1⁻ Foxp3⁺ T cells residing in Balb/c lung grafts that were initially transplanted into immunosuppressed B6 (CD45.2⁺) mice and at least 30 days later retransplanted into DT-treated B6 CD45.1⁺ hosts. Pulmonary grafts were examined 7 days after re-transplantation. Plots are gated on live CD45.2⁺CD45.1⁺CD90.2⁺CD4⁺CD8⁻ Foxp3⁺ cells (n≥3 each).

Supplemental Figure 10. Activated B cells in spleens of resting mice. (**A**) Plot and (**B**) quantification of $GL7^+Fas^+B$ cells in spleens of resting wildtype B6 mice. Plot is gated on live $CD45^+B220^+$ cells. Data in (**B**) are expressed as mean \pm SEM. (n=4).

Supplemental Figure 11. BALT in tolerant lungs after re-transplantation into muMt⁻ or AID/ μ S knockout mice after depletion of graft-resident Foxp3⁺ cells. (**A**) PNAd (brown) (black arrow) and DAPI staining as well as (**B**) B220 (red), CD3 (green) and DAPI (blue) immunofluorescent staining in BALT (white arrow) in Balb/c lung grafts that were initially transplanted into immunosuppressed wildtype B6 Foxp3-DTR mice and \geq 30 days later re-transplanted into DT-treated B6 muMt⁻ hosts. (**C**) PNAd (brown) (black arrow) and DAPI staining as well as (**D**) B220 (red), CD3 (green) and DAPI (blue) immunofluorescent staining in BALT (white arrow) in Balb/c lung grafts that were initially transplanted into DT-treated B6 muMt⁻ hosts. (**C**) PNAd (brown) (black arrow) and DAPI staining as well as (**D**) B220 (red), CD3 (green) and DAPI (blue) immunofluorescent staining in BALT (white arrow) in Balb/c lung grafts that were initially transplanted into immunosuppressed wildtype B6 Foxp3-DTR mice and \geq 30 days later re-transplanted into DT-treated B6 Foxp3-DTR mice and \geq 30 days later re-transplanted into immunosuppressed wildtype B6 Foxp3-DTR mice and \geq 30 days later re-transplanted into DT-treated B6 AID/ μ S knockout hosts. Scale bars 100 μ m. Immunostaining was performed 7 days after the re-transplantation procedures (n=4).

Supplemental Figure 12. IgG titers after re-transplantation into B cell-deficient mice. Donor-specific IgG titers 7 days after re-transplantation of Balb/c lungs into DT-treated wildtype (blue squares) or muMt⁻ (black triangles) B6 hosts \geq 30 days after initial engraftment into immunosuppressed B6 Foxp3-DTR mice (Foxp3 depletion). Data are expressed as mean ± SEM. Mann-Whitney U test was used to compare the means. (n=4).

Supplemental Figure 13. Expression of perforin and granzyme B in graft-infiltrating CD8⁺ T cells. (**A-D**) Plots and (**E**) quantification of granzyme B and perforin expression in graftinfiltrating CD8⁺ T cells from secondary recipients (CD45.1) in Balb/c lungs, transplanted into immunosuppressed wildtype B6 (CD45.2) (no Foxp3 depletion) ((**A**) isotype control staining; (**B**) perforin / granzyme B staining)) or Foxp3-DTR B6 (CD45.2) (Foxp3 depletion) ((**C**) isotype control staining; (**D**) perforin / granzyme B staining) mice and retransplanted into DT-treated B6 (CD45.1) hosts \geq 30 days later. Data in (**E**) are expressed as mean \pm SEM (n=4). Mann-Whitney U test was used to compare the means.

Supplemental Video 1. Foxp3⁺ cells form aggregates in tolerant lung grafts. Time-lapse intravital two-photon imaging of Foxp3⁺ cells (green) in Balb/c lung grafts 7 weeks after transplantation into B6 Foxp3 IRES-GFP recipient that was treated with peri-operative costimulatory blockade. Pulmonary vessels appear red after intravenous injection of non-targeted 655-nm quantum dots. Scale bar: 30 µm. Relative time is displayed in hrs:min:sec.

Supplemental Video 2. Graft-infiltrating CD4⁺ T cells and B cells interact with graftresident Foxp3⁺ cells in tolerant lungs. Balb/c lungs were transplanted into immunosuppressed B6 Foxp3 IRES-GFP (green) recipients. Six weeks after transplantation, 10⁷ CMTMR-labeled (red) CD4⁺ T cells and 10⁷ Cell Trace violet-labeled (blue) B cells, isolated from spleens of B6 mice, were injected into the recipient mice and lungs were imaged within 24 hours of cell injection. Time lapse imaging demonstrates interactions between Foxp3⁺ cells, CD4⁺ T cells and B cells. Scale bar: 10 µm. Relative time is displayed in hrs:min:sec.

Supplemental Video 3. Graft-infiltrating CD4⁺ T cells and B cells form stable interactions in Foxp3⁺ T cell-depleted lung grafts. Time-lapse intravital two-photon imaging of adoptively transferred CD4⁺ T (CFSE-labeled; green) and B (Cell Trace violet-labeled; blue) cells in Balb/c lung grafts which were initially transplanted into immunosuppressed B6 Foxp3-DTR recipients and 5 weeks later re-transplanted into secondary B6 hosts that were treated with DT and control-Ig. Pulmonary vessels appear red after intravenous

14

injection of non-targeted 655-nm quantum dots. Scale bar: 10 μm. Relative time is displayed in hrs:min:sec.

Supplemental Video 4. CXCL13 inhibition prevents graft-infiltrating CD4⁺ T cells and B cells from forming stable interactions in Foxp3⁺ T cell-depleted lung grafts. Time-lapse intravital two-photon imaging of adoptively transferred CD4⁺ T (CFSE-labeled; green) and B (Cell Trace violet-labeled; blue) cells in Balb/c lung grafts which were initially transplanted into immunosuppressed B6 Foxp3-DTR recipients and 5 weeks later re-transplanted into secondary B6 hosts that were treated with DT and anti-CXCL13 antibodies. Pulmonary vessels appear red after intravenous injection of non-targeted 655-nm quantum dots. Scale bar: 10 µm. Relative time is displayed in hrs:min:sec.