Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Antibiotic therapy–induced collateral damage: IgA takes center stage in pulmonary host defense
Juergen Lohmeyer, Rory E. Morty, Susanne Herold
Juergen Lohmeyer, Rory E. Morty, Susanne Herold
View: Text | PDF
Commentary

Antibiotic therapy–induced collateral damage: IgA takes center stage in pulmonary host defense

  • Text
  • PDF
Abstract

The use of broad-spectrum antibiotics in empirical antimicrobial therapy is a lifesaving strategy for patients in intensive care. At the same time, antibiotics dramatically increase the risk for nosocomial infections, such as hospital‑acquired pneumonia caused by Pseudomonas aeruginosa, and other antibiotic-resistant bacteria. In this issue of the JCI, Robak and colleagues identified a mechanism by which depletion of resident gut and lung microbiota by antibiotic treatment results in secondary IgA deficiency and impaired anti–P. aeruginosa host defense. Impaired defenses could be improved by substitution of polyclonal IgA via the intranasal route in a mouse model of pneumonia. Importantly, antibiotic treatment caused lung IgA deficiency that involved reduced TLR-dependent production of a proliferation-inducing ligand (APRIL) and B cell–activating factor (BAFF) in intensive care unit patients. These patients might therefore benefit from future strategies to increase pulmonary IgA levels.

Authors

Juergen Lohmeyer, Rory E. Morty, Susanne Herold

×

Figure 1

Broad-spectrum antibiotic treatment exerts severe collateral damage by inhibiting microbiota-induced secretory IgA synthesis and IgA-dependent lung host defense toward P. aeruginosa.

Options: View larger image (or click on image) Download as PowerPoint
Broad-spectrum antibiotic treatment exerts severe collateral damage by i...
The lung and gut commensal microbiota induce IgA production at mucosal surfaces involving TLR-, APRIL-, and BAFF-dependent signaling. Lung secretory IgA (sIgA) binds P. aeruginosa and reduces host susceptibility to P. aeruginosa pneumonia. ABx treatment destroys luminal microbiota and severely reduces sIgA production by lung IgA-secreting plasma cells, thereby impairing anti-pseudomonas host defense, which can be reestablished by transnasal administration of sIgA.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts