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SUPPLEMENTAL METHODS 
 
Reagents. 

LPA (1-oleoyl-LPA) was purchased from Avanti Polar Lipids (Alabaster, AL) and stored at 

-30 °C (10 mM stock in 50% ethanol). S1P was purchased from Cayman Chemical (Ann Arbor, 

MI) and stored at -30 °C (1 mM stock in methanol). ATP (10 mM stock in water stored at 

-30 °C), Ki16425 (10 mM stock in water stored at -30 °C), Y27632 (10 mM stock in water 

stored at -30 °C), and latrunculin A (10 mM stock in dimethyl sulfoxide [DMSO] stored at 

-30 °C) were from Wako (Osaka, Japan). Rho inhibitor I (0.1 µg/µl stock in water stored at 

4 °C) was from Cytoskeleton (Denver, CO).  

 

Mouse breeding and genotyping. 

Mice were housed under specific pathogen-free conditions in an air-conditioned room and fed 

standard laboratory chow ad libitum (CE-2; CLEA Japan, Tokyo, Japan), in accordance with 

institutional guidelines. During the mating of female mice (more than 8 weeks old), presence of 

the vaginal plug, as evidence of copulation, was checked every morning. Embryonic day (E) 0.5 

was defined as noon of the day when the vaginal plug was detected. Pups were weaned at 3-4 

weeks old. Mouse genotypes were determined by PCR analysis using genomic DNA samples 

from the tails and ExTaq DNA polymerase (Takara Bio, Ohtsu, Japan). The primer sequences 

were listed in Supplemental Table 8. 

 

Macroscopic observation and histological analysis. 

Yolk sac and embryo proper were surgically removed from pregnant females at the embryonic 

days indicated. After taking photographs for macroscopic observations, they were fixed in 10% 

formalin (Mildform 10N; Wako) and embedded in paraffin. Sections were either stained with 

hematoxylin and eosin or used for immunohistochemical analysis conducted by incubating the 

sections with rat monoclonal primary antibody directed against mouse PECAM-1 overnight at 

4 °C (diluted 1:50; clone SZ31, Dianova, Hamburg, Germany). As a secondary antibody, 

peroxidase-conjugated goat anti-rat IgG (diluted 1:100; Nichirei Biosciences, Tokyo, Japan) 

was used at room temperature for 30 min. 

 

Whole-mount immunohistochemical staining. 



Whole-mount embryo immunostaining was performed according to the method previously 

reported (1). Briefly, E10.5 yolk sac and embryo proper were fixed in 4% paraformaldehyde 

(PFA) in phosphate-buffered saline (PBS) overnight at 4 °C, dehydrated through a graded 

methanol series, incubated with 5% hydrogen peroxide in methanol for 1 h at 4 °C, and 

rehydrated through a graded methanol series into PBS. Samples were blocked with PBS 

containing 3% skim milk and 0.1% Triton X-100 at room temperature for 1 h and incubated in 

blocking buffer with a rat monoclonal primary antibody directed against mouse PECAM-1 

(diluted 1:200; clone MEC13.3, BD Biosciences, San Jose, CA) overnight at 4 °C. After 

washing with PBS, samples were then incubated with peroxidase-conjugated goat anti-rat IgG 

(diluted 1:100; Sigma-Aldrich, St. Louis, MO) in blocking buffer at room temperature for 1 h 

and stained with 3,3´-diaminobenzidine (Tokyo Chemical Industry, Tokyo, Japan) as a 

peroxidase substrate. 

 

Cell culture and transfection. 

HUVECs purchased from Lonza (Walkersville, MD) were cultured in collagen-coated 100-mm 

dishes at 37 °C in 5% CO2 with EGM-2 BulletKit (Lonza) containing fetal bovine serum (FBS) 

at a concentration of 2% (in experiments of Figure 3 and 8, and Supplemental Figure 3, 7, and 

9) or 20% (in experiments of Figure 4, 6, 7, 10, and 11, and Supplemental Figure 4-6, 8, 10, and 

11). The cells were used for assays between passages 4 and 7. For the RNAi experiments, 

SMARTpool ON-TARGETplus siRNAs targeting human LPA4, LPA6, Gα12, Gα13, YAP, and 

TAZ were purchased from GE Healthcare (Piscataway, NJ). These siRNAs as well as control 

siRNA (ON-TARGETplus Non-targeting Pool) were used at 12.5 nM. Silencer Select siRNAs 

targeting TEAD1, TEAD2, TEAD3, TEAD4, DLL4, β-catenin, and negative control No.1 were 

purchased from Invitrogen and used at 5 nM. Transfection of siRNAs was performed using 

DharmaFECT 1 or Lipofectamine RNAiMAX (both from Thermo Scientific) according to the 

manufacturer’s instructions. For the overexpression experiments, the expression vectors for 

human LPA1-6 were described previously (2). Transfection of these expression vectors was 

performed using Lipofectamine 2000 (Thermo Scientific) according to the manufacturer’s 

instructions. 

 

qRT-PCR analysis. 

For the preparation of cDNA templates, total RNA was isolated by using QIAzol lysis reagent 

and an RNeasy mini kit (both from Qiagen, Valencia, CA). cDNA was synthesized from 500 ng 



of total RNA using a PrimeScript RT Reagent Kit (TaKaRa Bio) with random hexamers. 

Quantitative PCR was performed using a LightCycler 480 instrument (Roche Diagnostics, 

Mannheim, Germany) with a KAPA SYBR Fast qPCR Kit (Kapa Biosystems, Wilmington, 

MA). The cycling conditions were as follows: initial denaturation at 95 °C for 30 sec, followed 

by 50 cycles of 95 °C for 5 sec, 60 °C for 20 sec, and 65 °C for 15 sec. The mRNA levels of the 

target genes were normalized to the standard housekeeping gene β-actin (ACTB) or 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in HUVEC samples and the endothelial 

marker gene Pecam1 in mouse tissue samples. The primer sequences used to detect gene 

expression for LPA receptors and angiogenesis factors are listed in Supplemental Table 9. 

 

Luciferase reporter assay. 

HUVECs (2 × 104) were seeded onto collagen-coated 24-well plates. Immediately after the 

medium change from EGM-2 BulletKit containing 2% FBS to EGM-2 BulletKit containing 

0.1% BSA, the cells were transfected with serum response factor response element 

(SRF-RE)-firefly luciferase-pGL4.34 (Promega, Madison, WI) and SV40-Renilla 

luciferase-pRL-SV40 (Promega) using Lipofectamine 2000. After a 4-h incubation at 37 °C, 

cells were treated with 10 µM LPA for 6 h and lysed using passive lysis buffer for the Dual 

Luciferase assay (Promega). In some experiments, cells were treated with 10 µM Y27632 or 

Ki16425 for 10 min before LPA stimulation. Firefly and Renilla luciferase activities in the cell 

extracts were determined with a MiniLumat LB9506 luminometer (Berthold, Bad Wildbad, 

Germany). Firefly luciferase values were standardized to Renilla ones. 

 

Intracellular calcium influx measurements. 

HUVECs (3 × 106) were seeded onto 10-cm collagen-coated dishes, cultured for 24 h in EGM-2 

BulletKit containing 2% FBS, and serum-starved for 8 h in EGM-2 BulletKit containing 0.1% 

BSA. Cells were detached with PBS containing 2 mM EDTA, washed with buffer A (Hanks’ 

balanced salt solution containing 25 mM HEPES-NaOH [pH 7.4], 1 mM CaCl2, 1 mM MgCl2, 

and 0.1% BSA), and loaded with 3 µM Fura-2 AM (Dojindo, Kumamoto, Japan) in buffer A 

with 0.01% pluronic acid (Molecular Probes, Eugene, OR) at 37 °C for 1 h. Then, cells were 

washed with buffer A and re-suspended in buffer A at a density of 1 × 106 cells/ml. The cell 

suspension (0.5 ml) was applied to a CAF-110 spectrofluorometer (Jasco, Tokyo, Japan). Upon 

adding 5 µl of 100 × ligand solution, the intracellular Ca2+ concentration was measured by 



determining the ratio of emissions at 500 nm after being excited by 340- and 380-nm light, as 

previously described (3). 

 

Measurement of cAMP production. 

HUVECs (1 × 104) were seeded onto collagen-coated 96-well plates, cultured for 24 h in 

EGM-2 BulletKit containing 2% FBS, and serum-starved for 16 h in EGM-2 BulletKit 

containing 0.1% BSA. Cells were washed with buffer A and incubated in 50 µl of buffer A with 

0.5 mM 3-isobutyl-1-methylxanthine (Sigma-Aldrich) for 15 min at room temperature. 

Reactions were initiated by adding 50 µl of 2 × ligand solution with or without 40 µM forskolin 

(Sigma-Aldrich; from a 10 mM stock in DMSO stored at -30 °C) for Gαi or Gαs protein 

activation, respectively. After a 30-min incubation at room temperature, reactions were 

terminated by adding 10 µl of 10% Tween-20, followed by overnight storage at 4 °C. The 

cAMP concentration in the cell lysate was determined using an AlphaScreen cAMP assay kit 

(PerkinElmer, Waltham, MA) as recommended by the manufacturer. 

 

Protein extraction and western blotting. 

HUVECs were lysed in lysis buffer (50 mM Tris HCl [pH 7.4], 150 mM NaCl, 1 mM EDTA, 

1% Triton X-100, 1% sodium dodecyl sulfate [SDS], and 1% sodium deoxycholate) containing 

phosphatase inhibitors (1 mM Na3VO4 and 1 mM NaF) and a protease inhibitor cocktail 

(cOmplete; Roche Diagnostics). Lysates were centrifuged at 10,000 × g for 5 min, and the 

supernatant was collected. Protein concentrations were determined by BCA assay (Thermo 

Scientific). The resultant protein samples were diluted in sample buffer (25 mM Tris HCl [pH 

6.5], 1% SDS, 5% glycerol, 0.05% bromophenol blue, and 5% 2-mercaptoethanol). Equal 

amounts of total proteins were electrophoresed on 8% SDS-polyacrylamide gels and then 

transferred onto polyvinylidene difluoride membranes. Gels containing phos-tag (Wako) were 

prepared according to manufacturer’s instructions. YAP proteins can be separated into multiple 

bands in the presence of phos-tag depending on differential phosphorylation levels, with 

phosphorylated proteins migrating more slowly. After blocking with 5% skim milk in TBS-T 

(20 mM Tris-buffered saline [pH 7.6] and 0.1% [v/v] Tween 20), the blots were incubated 

overnight at 4 °C with one of the following primary antibodies: Gα12 (#sc-409), Gα13 

(#sc-410), YAP (#sc-15407) (Santa Cruz Biotechnology, Santa Cruz, CA), TAZ (#4883), 

phospho-YAP (Ser127; #4911), Dll4 (#2589), β-catenin (#8480), pan-TEAD (#13295), and 

β-actin (#4967) (Cell Signaling Technology). The membranes were then washed with TBS-T 



and incubated with horseradish peroxidase-conjugated anti-rabbit IgG secondary antibody 

(Santa Cruz Biotechnology) for 1 h at room temperature. The proteins were visualized using 

ImmunoStar LD (Wako) and a C-DiGit blot scanner (LI-COR Biotechnology, Lincoln, NE). To 

evaluate phosphorylation of Akt, HUVECs transfected with YAP/TAZ siRNA or control siRNA 

were starved for 8 h, and stimulated with 50 ng/ml VEGF-A（PeproTech, Rocky Hill, NJ）, 400 

ng/ml Ang-1 (R&D Systems), or 10% FBS for 10 min. Cell were then washed with ice cold 

PBS and lysed in lysis buffer containing phosphatase inhibitors and a protease inhibitor cocktail. 

Aliquots of cell lysate were subjected to SDS-PAGE and western blotting with pan-Akt (#4691) 

and phospho-Akt (Ser473; #4060) (Cell Signaling Technology). 

 

Isolation of mouse lung ECs. 

Lungs were excised from 6-week-old male mice, minced well with a razor blade, and digested 

with 50 U/ml DNase I (Sigma-Aldrich) and 0.26 U/ml Liberase (Roche Diagnostics) in DMEM 

for 45 min at 37°C. Digested tissue was filtered through a 40-µm cell strainer (BD Biosciences). 

Lung ECs were purified from the cell suspension for 15 min at room temperature using positive 

selection with rat anti-mouse PECAM-1 antibody (#553370, BD Biosciences) that was 

preconjugated to sheep anti-rat IgG Dynabeads (Thermo Scientific) overnight at 4°C. Lung ECs 

were cultured on 0.2% gelatin-coated tissue culture dishes until they became confluent in 

DMEM supplemented with 20% FBS and Endothelial Mitogen (Biomedical Technologies, 

Stoughton, MA). Then, cells were further purified after trypsinization using the Dynabeads 

coupled to anti-PECAM-1 antibody. 

 

Flow cytometry. 

Cells were incubated with 2 µg/ml phycoerythrin-conjugated anti-mouse PECAM-1 antibody 

(clone MEC 13.3; BD Biosciences) in PBS containing 2% goat serum for 1 h at room 

temperature. After washing with PBS, cells were analyzed with a flow cytometer (BD Accuri 

C6, BD Biosciences). 

 

Immunofluorescence staining of YAP. 

HUVECs and mouse lung ECs were grown to confluence at 37 °C under 5% CO2 on 

collagen-coated glass-bottom dishes (Mat Tek Corporation, Ashland, MA), washed with PBS, 

and fixed with 4% PFA at room temperature for 10 min. To determine whether YAP was 

localized with internal compartments, cells were permeabilized with 20% permeabilization 



buffer (IntraPrep; Beckman Coulter, Fullerton, CA) at room temperature for 10 min, washed 

with PBS, and incubated with anti-YAP primary antibody (diluted 1:100; sc-15407, Santa Cruz 

Biotechnology) at room temperature for 1 h. After washing with PBS, cells were then incubated 

with Alexa Fluor 488-conjugated anti-rabbit IgG secondary antibody (diluted 1:200; Abcam) at 

room temperature for 1 h. Nuclei were stained with 4´,6-diamidino-2-phenylindole (DAPI; 

diluted 1:100,000; BioLegend, San Diego, CA). Fluorescent images of labeled cells were 

acquired using a laser scanning confocal microscope (LSM 510 META; Carl Zeiss). More than 

five microscopic fields were randomly chosen, and cells displaying preferential nuclear YAP 

localization, even distribution of YAP in nucleus and cytoplasm, or cytoplasmic YAP 

localization were counted. 

 

Proliferation assay. 

Forty-eight h after transfection with LPA4 and LPA6 siRNAs, HUVECs were trypsinized and 

seeded onto 96-well plates at 5.0 × 103 cells per well. Cell proliferation was analyzed using 

thiazolyl blue tetrazolium bromide (Sigma-Aldrich) according to the manufacturer’s 

instructions. 

 

Retrovirus infection. 

Retroviruses were produced by co-transfecting 293gp packaging cells (RIKEN BRC) with 

pCMV-VSV-G-RSV-Rev vector (RIKEN BRC) and either pQCXIH-empty vector (TaKaRa 

Bio), pQCXIH-Myc-YAP (Addgene), pQCXIH-Myc-YAP-5SA (Addgene), or 

pQCXIH-Myc-YAP-S94A (Addgene) vector using Lipofectamine 2000. Forty-eight hours after 

transfection, retroviral supernatant was collected and filtered through a 0.45-µm filter. The viral 

particles were precipitated by centrifugation with PEG-it virus precipitation solution (SBI 

System Biosciences, Mountain View, CA) for concentration. HUVECs were spin-infected with 

the concentrated retrovirus at 800 × g for 1 h in the presence of 10 µg/ml polybrene (Santa Cruz 

Biotechnology). After 2 days of recovery, infected cells were selected with 100 µg/ml 

hygromycin B (Wako), and the entire surviving population of cells was used. 
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Supplemental Figure 1. Vascular abnormalities and lethality by E11.5 of Lpa4;Lpa6 DKO yolk sac 
and embryo proper. (A and B) Gross morphologies of WT and Lpa4;Lpa6 DKO yolk sac (A) and embryo 
proper (B) from E8.5 to E11.5. At E8.5, Lpa4;Lpa6 DKO embryo proper appeared normal. However, at 
E9.5 and E10.5, some vascular abnormalities, such as pericardial effusion (yellow arrowhead), axial 
turning abnormality (red arrow), and developmental delay appeared. Scale bars: 1 mm. (C–L) Ratios of 
abnormal yolk sac and embryo proper. Figures in parentheses represent ratios of embryos with each 
abnormality to observed samples.

SUPPLEMENTAL FIGURE 1 (Continued)
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mean ± s.e.m. of triplicates. **P < 0.01, ***P < 0.001, one-way ANOVA followed by Dunnett’s (B and D). 
NS, not significant. Unprocessed original scans of western blots are shown in Supplemental Figure 17.
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Supplemental Figure 5. Isolation of lung ECs from Lpa4;Lpa6ΔEC mice. (A) Expression of 
Pecam-1 protein in lung ECs isolated from control and Lpa4;Lpa6ΔEC mice was examined by flow 
cytometry. (B) mRNA expression levels of Lpa4 and Lpa6 in lung ECs isolated from control and 
Lpa4;Lpa6ΔEC mice are shown. Data are mean ± s.e.m. of triplicates. ***P < 0.001, two-tailed unpaired 
Student’s t-test.
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Supplemental Figure 6. Attenuation of the LPA-induced YAP target gene induction in HUVECs by 
LPA4/LPA6 signaling blockade. (A) Effects of LPA4/LPA6 or Gα12/Gα13 siRNAs (96 h pre-treatment) on 
LPA (10 µM, 1 h)-induced mRNA expression of CTGF and CYR61. (B) Effects of Y27632 (10 µM, 10 min 
pre-treatment) or Ki16425 (10 µM, 10 min pre-treatment) on LPA (10 µM, 1 h)-induced mRNA expression 
of CTGF and CYR61. Data represent mean ± s.e.m. of triplicates. **P < 0.01, ***P < 0.001, one-way 
ANOVA followed by Tukey’s multiple comparisons test. NS, not significant.
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Supplemental Figure 7. Reduced proliferation of HUVECs by LPA4/LPA6 knockdown. Data 
represent mean ± s.e.m. of triplicates. ***P < 0.001, two-way repeated measures ANOVA followed by 
Bonferroni’s multiple comparisons test.
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Supplemental Figure 8. Reduced mRNA expression of DLL4 and Notch target genes by DAPT 
in HUVECs. Cells were treated with 10 µM DAPT for 2 h. Data represent mean ± s.e.m. of triplicates. 
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A

D

Supplemental Figure 9. Impaired EC sprouting by LPA4/LPA6-Gα12/Gα13-TAP/TAZ signaling blockade 
is ameliorated by DLL4 knockdown. (A) Blockade of DLL4 expression by specific siRNA was confirmed in 
HUVECs. Data are mean ± s.e.m. of triplicates. ***P < 0.001, two-tailed unpaired Student’s t-test. (B-D) 
siRNAs for LPA4/LPA6, Gα12/Gα13, or YAP/TAZ, or Y27632 (10 µM) suppressed the length and number of 
sprouts from the HUVEC-coated beads. DLL4 siRNA significantly ameliorated the sprouting defects caused by 
these treatments. Representative fluorescence images of sprouting are shown in (B). HUVECs are stained 
green with calcein. Scale bars, 100 µm. Quantitative analyses of total length (C) and number (D) of sprouts 
were performed. Data are mean ± s.e.m (n = 7-15 beads). *P < 0.05, **P < 0.01, ***P < 0.001, one-way ANOVA 
followed by Tukey’s multiple comparisons test. NS, not significant. Unprocessed original scans of western 
blots are shown in Supplemental Figure 17.
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Supplemental Figure 10. Reduction of YAP/TAZ target gene expression by TEAD1-4 siRNAs in HUVECs. 
(A) Blockade of TEAD1-4 mRNA expression by specific siRNAs was confirmed. HUVECs were transfected with 
TEAD1-4 siRNAs for 48 h. (B) TEAD1-4 knockdown significantly reduced the expression of CTGF and CYR61 
mRNA. Data are mean ± s.e.m. of triplicates. *P < 0.05, ***P < 0.001, two-tailed unpaired Student’s t-test.
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Supplemental Figure 11. β-catenin knockdown attenuated latrunculin A-induced DLL4 
expression. (A) Blockade of CTNNB1 mRNA expression by specific siRNA was confirmed. (B 
and C) β-catenin siRNA attenuated latrunculin A (1 µM, 3 h)-induced mRNA (B) and protein (C) 
expression of DLL4. (D-F) β-catenin siRNA attenuated latrunculin A (1 µM, 3 h)-induced mRNA of 
Notch target genes. Data are mean ± s.e.m. of triplicates. *P < 0.05, **P < 0.01, ***P < 0.001, 
one-way ANOVA followed by Tukey’s multiple comparisons test. NS, not significant. Unprocessed 
original scans of western blots are shown in Supplemental Figure 17.
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Supplemental Figure 12. Unprocessed original scans of western blots shown in Figure 4.
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Supplemental Figure 13. Unprocessed original scans of western blots shown in Figure 6 and 7.
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Supplemental Figure 15. Unprocessed original scans of western blots shown in Figure 11.
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Supplemental Figure 16. Unprocessed original scans of PCR genotyping shown in Supplemental Figure 2.
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Supplemental Figure 17. Unprocessed original scans of western blots shown in Supplemental 
Figure 3, 4, 9, and 11.
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Supplemental Table 1 
Genotype distributions of offspring of Lpa6 Het intercrosses (Lpa4+/y;Lpa6+/- male × Lpa4+/+;Lpa6+/- 

female). 

      Male        Female 

Genotype Number  Genotype Number 

Lpa4+/y;Lpa6+/+ 41  Lpa4+/+;Lpa6+/+ 37 

Lpa4+/y;Lpa6+/- 76  Lpa4+/+;Lpa6+/- 73 

Lpa4+/y;Lpa6-/- 38  Lpa4+/+;Lpa6-/- 41 

Numbers of offspring of each genotype at 4 weeks of age are shown. A total of 306 offspring of 44 litters 

were analyzed. Lpa6 KO mice were born at the expected Mendelian ratios.  

 

 

Supplemental Table 2 
Genotype distributions of offspring of Lpa4 KO;Lpa6 Het intercrosses (Lpa4-/y;Lpa6+/- male × 

Lpa4-/-;Lpa6+/- female). 

      Male        Female 

Genotype Number  Genotype Number 

Lpa4-/y;Lpa6+/+ 29  Lpa4-/-;Lpa6+/+ 31 

Lpa4-/y;Lpa6+/- 48  Lpa4-/-;Lpa6+/- 33 

Lpa4-/y;Lpa6-/- 0  Lpa4-/-;Lpa6-/- 0 

Numbers of offspring of each genotype at 4 weeks of age are shown. A total of 141 offspring of 40 litters 

were analyzed. No Lpa4;Lpa6 DKO mice were obtained. 

 

 

 

 

 

 

 

 

 

 



Supplemental Table 3 
Genotype distributions of offspring of Lpa4 KO;Lpa6 Het male and Lpa4 Het;Lpa6 Het female intercrosses 

(Lpa4-/y;Lpa6+/- male × Lpa4+/-;Lpa6+/- female). 

      Male        Female 

Genotype Number  Genotype Number 

Lpa4+/y;Lpa6+/+ 51  Lpa4+/-;Lpa6+/+ 49 

Lpa4+/y;Lpa6+/- 114  Lpa4+/-;Lpa6+/- 94 

Lpa4+/y;Lpa6-/- 54  Lpa4+/-;Lpa6-/- 31 

Lpa4-/y;Lpa6+/+ 42  Lpa4-/-;Lpa6+/+ 33 

Lpa4-/y;Lpa6+/- 38  Lpa4-/-;Lpa6+/- 34 

Lpa4-/y;Lpa6-/- 0  Lpa4-/-;Lpa6-/- 0 

Numbers of offspring of each genotype at 4 weeks of age are shown. A total of 540 offspring of 86 litters 

were analyzed. Numbers of Lpa4 KO;Lpa6 Het mice and Lpa4 Het;Lpa6 KO mice were 50% less than the 

values expected by Mendelian ratios. No Lpa4;Lpa6 DKO mice were obtained. 

 

 

Supplemental Table 4 
Genotype distributions of offspring of Lpa4 KO;Lpa5 Het intercrosses (Lpa4-/y;Lpa5+/- male × 

Lpa4-/-;Lpa5+/- female). 

      Male        Female 

Genotype Number  Genotype Number 

Lpa4-/y;Lpa5+/+ 18  Lpa4-/-;Lpa5+/+ 14 

Lpa4-/y;Lpa5+/- 32  Lpa4-/-;Lpa5+/- 30 

Lpa4-/y;Lpa5-/- 16  Lpa4-/-;Lpa5-/- 12 

Numbers of offspring of each genotype at 4 weeks of age are shown. A total of 122 offspring of 22 litters 

were analyzed. Lpa4;Lpa5 DKO mice were born at the expected Mendelian ratios and appeared normal. 

 

 

 

 

 

 



Supplemental Table 5 
Genotype distributions of offspring of Lpa5 Het;Lpa6 KO intercrosses (Lpa5+/-;Lpa6-/- male × 

Lpa5+/-;Lpa6-/- female). 

      Male        Female 

Genotype Number  Genotype Number 

Lpa5+/+;Lpa6-/- 16  Lpa5+/+;Lpa6-/- 13 

Lpa5+/-;Lpa6-/- 35  Lpa5+/-;Lpa6-/- 32 

Lpa5-/-;Lpa6-/- 19  Lpa5-/-;Lpa6-/- 17 

Numbers of offspring of each genotype at 4 weeks of age are shown. A total of 132 offspring of 16 litters 

were analyzed. Lpa5;Lpa6 DKO mice were born at the expected Mendelian ratios and appeared normal. 



Supplemental Table 6 
Genotype distributions of offspring of Lpa4 KO;Lpa6 Het male and Lpa4 Het;Lpa6 Het female intercrosses (Lpa4-/y;Lpa6+/- male × Lpa4+/-;Lpa6+/- female) at different 

stages of development. 

Numbers of embryos of each genotype and resorbed embryos of unknown genotype are shown. Figures in parentheses are numbers found dead. All Lpa4;Lpa6 DKO 

embryos died by E11.5. 

 

Stage of 
develop-

ment 

Total 
number 

of  
litters 

Total 
number 

of 
embryos 

Embryo genotype  

Lpa4+/y; 
Lpa6+/+ 

Lpa4+/y; 
Lpa6+/- 

Lpa4+/y; 
Lpa6-/- 

Lpa4-/y; 
Lpa6+/+ 

Lpa4-/y; 
Lpa6+/- 

Lpa4-/y; 
Lpa6-/- 

Lpa4+/-; 
Lpa6+/+ 

Lpa4+/-; 
Lpa6+/- 

Lpa4+/-; 
Lpa6-/- 

Lpa4-/-; 
Lpa6+/+ 

Lpa4-/-; 
Lpa6+/- 

Lpa4-/-; 
Lpa6-/- 

Number 
of 

embryos 
resorbed 

E8.5 3 32 1 5 0 1 4 2 2 7 2 1 5 1 1 

E9.5 19 178 12 24 13 16 22 11(2) 11 13 16(3) 5 20 5(1) 4 

E10.5 10 93 9 10 6 3(1) 11 2 6(1) 13 7(1) 2 5(1) 4(7) 4 

E11.5 5 44 5 8 3 2 3 (4) 0 2 (1) 4(1) 5(1) (3) 2 

E12.5 7 70 5 9 4 7 8 0 4 5 (1) 0 5 (1) 21 

E14.5 13 107 6 14 6 4 6 0 6 14 7 2 2(1) 0 39 

E18.5 3 25 1 4 0 4 1 0 0 3 0 2 0 0 10 



Supplemental Table 7 
The nucleotide sequence of the pflox vector. 

This vector was constructed based on a plasmid backbone of pBluescript2 KS+. Binding sites of the M13 

forward and reverse primers are written in italic with underline and italic, respectively. The sequences of 

LoxP, FRT, and multi-cloning site are highlighted in blue, green, and grey, respectively. 

 

CACCTAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTA

ACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGTT

GTTCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAACCG

TCTATCAGGGCGATGGCCCACTACGTGAACCATCACCCTAATCAAGTTTTTTGGGGTCGAGGTGCCG

TAAAGCACTAAATCGGAACCCTAAAGGGAGCCCCCGATTTAGAGCTTGACGGGGAAAGCCGGCGAA

CGTGGCGAGAAAGGAAGGGAAGAAAGCGAAAGGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGG

TCACGCTGCGCGTAACCACCACACCCGCCGCGCTTAATGCGCCGCTACAGGGCGCGTCCCATTCGC

CATTCAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCTGG

CGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTAACGCCAGGGTTTTCCCAGTCACGACGTT

GTAAAACGACGGCCAGTGAATTGTAATACGACTCACTATAGGGCGAATTGgagctccaccgcggtggcggccG

AAGTTCCTATACTTTCTAGAGAATAGGAACTTCtgggatccacgtttaaacATAACTTCGTATAGCATACATTAT

ACGAAGTTATggcgcgccaattcgatatcaagctATAACTTCGTATAGCATACATTATACGAAGTTATgcggccgcgaa

ttcGAAGTTCCTATACTTTCTAGAGAATAGGAACTTCtcgagggggggcccggtaccCAGCTTTTGTTCCCTTTAG

TGAGGGTTAATTGCGCGCTTGGCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCCGCT

CACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGC

TAACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGC

ATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCT

CACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAAT

ACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCC

AGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACA

AAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCC

TGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTC

CCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTC

GCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACT

ATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGAT

TAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACT

AGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTC



TTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGC

AGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAA

CTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAA

ATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGT

GAGGCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGAT

AACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAGACCCACGCTCA

CCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCA

ACTTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAA

TAGTTTGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTT

CATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGGTT

AGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGC

AGCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAAC

CAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGGGATAAT

ACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACTCTC

AAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCAT

CTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATA

AGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAGGGT

TATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACA

TTTCCCCGAAAAGTGC 

 

  



Supplemental Table 8 
Primer sequences used for genotyping. 

Allele Forward primer Reverse primer 

LPA4 WT ACCTAGCAGGCTCTCTGGGAAAA CCAGGTTGGTGATGAAAATAGCC 

LPA4 KO ACCTAGCAGGCTCTCTGGGAAAA AGGTCAAATTCAGACGGCAAAC 

LPA5 WT ATGTTTATCTGTACACCAGACAGCA TGGTGCACCTCTGCAATCTA 

LPA5 KO ATGTTTATCTGTACACCAGACAGCA TCTAGGACAAGAGGGCGAGAC 

LPA6 WT GTGACCACATCTGAATAGCAAAGG AAAAATCCGAAATGGCAAAGTAAA 

LPA6 KO GTGACCACATCTGAATAGCAAAGG TTCCGTAAACAACATCTCGGTTC 

LPA4 floxed CCCCTACACCTTAAACATGATTGGC GTACTTTCTTCCCAGCACAACCTCA 

LPA4 cKO GTTTCCTTGGTGTCTTGAAGGGA GTACTTTCTTCCCAGCACAACCTCA 

LPA6 floxed GTGACCACATCTGAATAGCAAAGG AAAAATCCGAAATGGCAAAGTAAA 

LPA6 cKO GTGACCACATCTGAATAGCAAAGG TTCCGTAAACAACATCTCGGTTC 

Tie2-Cre CCCTGTGCTCAGACAGAAATGAGA CGCATAACCAGTGAAACAGCATTGC 

Cdh5-CreERT2 GACTAGCTTACCATTCTGCTGGTGT GGACAGAAGCATTTTCCAGGTATG 

 

  



Supplemental Table 9 
Primer sequences used for qRT-PCR analysis. 

Target gene Forward primer Reverse primer 

ACTB CAGGATGCAGAAGGAGATCACTG TACTCCTGCTTGCTGATCCACAT 

GAPDH CAGGTGGTCTCCTCTGACTTCAA ACCCTGTTGCTGTAGCCAAATTC 

LPA1 GAATCGGGATACCATGATGAGTC GCACACGTCTAGAAGTAACAAAACC 

LPA2 CTGGTCAAGACTGTTGTCATCATCC AGGACTCACAGCCTAAACCATCC 

LPA3 TAGGGGCGTTTGTGGTATGCT ATGGGGTTCACGACGGAGTT 

LPA4 GCAAGCCTGCTACTCTGTCTCAA TTGCAAATCTTTCCAAAAAGCAA 

LPA5 CGTGTCCTGACTACCGACCTACC CAGCGAGAGGGTGAAGAGCA 

LPA6 TCATCTGCGTCCTCAAAGTCC CCAATTCCGTGTTGTGAAGTAAAA 

VEGFA GATGAGCTTCCTACAGCACAACAA TTTCGTTTTTGCCCCTTTCC 

VEGFR1 GGGACAGTAGAAAGGGCTTCATC TGGGCGTGGTGTGCTTATTT 

VEGFR2 CGCAGAGTGAGGAAGGAGGA GGATGATGACAAGAAGTAGCCAGAA 

VEGFR3 AGAGACTTTGAGCAGCCATTCATC GTCATCCCACACCACCTCCT 

NRP1 GGAAACACCAACCCCACAGA CATACCCAACATTCCAGAGCAAG 

TGFB1 CCTGGCGATACCTCAGCAAC GCTAAGGCGAAAGCCCTCAA 

PECAM1 CAGGACCGCGTTTTATCCTTC TGATGTGGAACTTGGGTGTAGAGA 

CDH5 CGCAATAGACAAGGACATAACACC CCGGTCAAACTGCCCATACTT 

PDGFB TTGGCTCGTGGAAGAAGGAG CGTTGGTGCGGTCTATGAGG 

TEK ACCTCTTCACCTCGGCCTTC TCACACGTCCTTCCCATAAACC 

ANGPT1 CAGAAAGCTGACAGATGTTGAGACC ACTCTTCCTTGTGTTTTCCTTCCA 

ANGPT2 GAACCAAACAGCGGAGCAAA TCGAGAGGGAGTGTTCCAAGAG 

DLL1 GAGCGTGGGGAGAAAGTGTG ACTTGCATTCCCCTGGTTTGT 

DLL4 ACCCTCTCCAACTGCCCTTC TGCTGGTTTGCTCATCCAATAAC 

JAG1 CAGATTTCCTTGTTCCCTTGCT CGTTGTTGGTGGTGTTGTCCT 

NOTCH1 CGACAACGCCTACCTCTGCT ACAGGCACACTCGTAGCCATC 

NOTCH4 TCTCGTCCTCCAGCTCATCC CATCACAACTCCATCCTCATCAAC 

RBPJK TACGAGTGTGGTTTGGGGATG GTAGGTAAAGGTAAGGCTGGTGGAA 

HES1 GCTACCCCAGCCAGTGTCAA TCTTGCTCTTCGTCTTTTCTCCA 

EFNB2 CAAGTCCCTTTGTAAAACCAAATCC GGCGAGTGCTTCCTGTGTCT 

PROX1 GGCTCTCCTTGTCGCTCATAAA GGAGCTGGGATAACGGGTATAAAAA 



NR2F2 AGTGGGCATGAGACGGGAAG GACAGGTACGAGTGGCAGTTGAG 

SOX18 TCATGGTGTGGGCAAAGGAC GTTCAGCTCCTTCCACGCTTT 

FOXC1 GGAGATGTTCGAGTCACAGAGGA GACGTGCGGTACAGAGACTGG 

FOXC2 GAGTCCCAGGTGAGTGGCAAT ATTTCGTGCAGTCGTAGGAGTAGG 

ERG CCAGCGTCCTCAGTTAGATCCTT CATCTTGAACTCCCCGTTGGT 

ETV2 CGATGCCCCAAAACTAACCA TAATTCATGCCCGGCTTTCTC 

MEF2C CAGGACAAGGAATGGGAGGA ACTGACTGAGGGCAGATGGTG 

ATX AGAGCAGAAGGATGGGAGGAAG TCACAGCGACAATCAGGAGGT 

LPP3 CTGCTCATCTGCCTCGACCT CACAGCGTCATTTATTGTCTCACC 

GNA12 AGTTCCGCGACACCATCTTC AACATCCCATGCTTCTCATTTTC 

GNA13 AGTTCCGCCCCACCATCTAC ACCCTTGTTTCCACCATTCCTT 

HEY1 AGGTTCCATGTCCCCAACTACA TGCAGGATCTCGGCTTTTTC 

HEY2 CGTCGGGATCGGATAAATAACA CAAGAGCGTGTGCGTCAAAG 

YAP CAGGTTGGGAGATGGCAAAG GGGCTGTGACGTTCATCTGG 

TAZ GTGCTGGAAAAAGAAGAGAGAAAGG GCAGGATGATGGGGTTGAGA 

CTGF TTCCAAGACCTGTGGGATGG GGGAGTACGGATGCACTTTTTG 

CYR61 TGCCGCCTTGTGAAAGAAAC CTCAAACATCCAGCGTAAGTAAACC 

TEAD1 GATGCTGGGGCTTTTTATGGT ACATTGGGGAGCGGTTTATTC 

TEAD2 CCGAAGGAAATCAAGGGAAA GAGATGAGCTGGGCAGAGGA 

TEAD3 CCCCTAATGCCTTCTTCCTTGT TCTCCACCTTCTCTACCACCTGTTT 

TEAD4 CCAGTATGAGAGCCCCGAGA CGGTGGATGCGGTAAGAGTAG 

CTNNB1 CTTGGACTTGATATTGGTGCCCA GGCCACCCATCTCATGTTCCATC 

Pecam1 CACAGATAAGCCCACCAGAGACA TTCACAGAGCACCGAAGTACCA 

Lpa4 ACGGCTATTTTCATCACCAACCT ATGGCTAGGAAACGATCCACAC 

Lpa6 GGTCATCTTCTGTTTCTGTTTTGTG TGAGTTCTGAATTGTGTCTGAGGTG 

Dll4 CCGGGAACCTTCTCACTCAAC GCCAAATCTTACCCACAGCAA 

Hey1 CCGACGAGACCGAATCAATAAC GTGCGCGTCAAAATAACCTTTC 
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