

Zika virus infects human testicular tissue and germ cells

Giulia Matusali, Laurent Houzet, Anne-Pascale Satie, Dominique Mahé, Florence Aubry, Thérèse Couderc, Julie Frouard, Salomé Bourgeau, Karim Bensalah, Sylvain Lavoué, Guillaume Joguet, Louis Bujan, André Cabié, Gleide F. Avelar, Marc Lecuit, Anna Le Tortorec, Nathalie Dejucq-Rainsford

J Clin Invest. 2018. <https://doi.org/10.1172/JCI121735>.

Research In-Press Preview **Virology**

Zika virus (ZIKV) is a teratogenic mosquito-borne flavivirus which can be sexually transmitted from man to woman. High viral loads and prolonged viral shedding in semen suggest that ZIKV replicates within the human male genital tract, but its target organs are unknown. Using ex vivo infection of organotypic cultures, we demonstrated here that ZIKV replicates in human testicular tissue and infects a broad range of cell types, including germ cells, which we also identified as infected in the semen from ZIKV-infected donors. ZIKV had no major deleterious effect on the morphology and hormonal production of the human testis explants. Infection induced a broad antiviral response but no interferon up-regulation and minimal pro-inflammatory response in testis explants, with no cytopathic effect. Finally, we studied ZIKV infection in mouse testis, and compared it to human infection. This study provides key insights into how ZIKV may persist in semen and alter semen parameters, as well as a valuable tool for testing antiviral agents.

Find the latest version:

<https://jci.me/121735/pdf>

1 Zika virus infects human testicular tissue and germ cells

2 Giulia Matusali¹, Laurent Houzet¹, Anne-Pascale Satie¹, Dominique Mahé¹, Florence Aubry¹,
3 Thérèse Couderc^{2,3}, Julie Frouard¹, Salomé Bourgeau¹, Karim Bensalah⁴, Sylvain Lavoué⁵,
4 Guillaume Joguet⁶, Louis Bujan⁷, André Cabié⁸, Gleide Avelar⁹, Marc Lecuit^{2,3,10}, Anna Le
5 Tortorec¹, Nathalie Dejucq-Rainsford^{1*}

6
7 ¹ Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) -
8 UMR_S1085, F-35000 Rennes, France

9
10 ² Institut Pasteur, Biology of Infection Unit, Paris, France

11 ³ Inserm U1117, Paris, France

12 ⁴ Service d'Urologie, Centre Hospitalier Universitaire de Rennes, F-35000 Rennes, France

13 ⁵ Unité de coordination hospitalière des prélèvements d'organes et de tissus, Centre Hospitalier
14 Universitaire de Rennes, F-35000 Rennes, France

15 ⁶ Centre Caribéen de Médecine de la Reproduction-CECOS CHU de Pointe à Pitre Guadeloupe,
16 France

17 ⁷ Research Group on Human Fertility EA 3694, University Paul Sabatier Toulouse III-CECOS,
18 Hôpital Paule de Viguier, CHU Toulouse, Toulouse, France

19 ⁸ Inserm Centre d'Investigation Clinique 1424, Centre Hospitalier Universitaire de Martinique,
20 France; Service de maladies infectieuses, Centre Hospitalier Universitaire de Martinique, France

21 ⁹ Department of morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil

22 ¹⁰ Paris-Descartes University, Department of Infectious Diseases and Tropical Medicine,
23 Necker-Enfants Malades University Hospital, Paris, France

24 *Corresponding author:

25 Nathalie DEJUCQ-RAINSFORD

26 IRSET-Inserm U1085

27 9 avenue du Pr Léon Bernard

28 F-35000 Rennes, France

29 E-mail : nathalie.dejucq-rainsford@univ-rennes1.fr

30 Phone : +33 2 2323 5069

31

32

33

34 The authors declare no conflict of interest.

35

36 Word count: 10686

37

38 **ABSTRACT**

39 Zika virus (ZIKV) is a teratogenic mosquito-borne flavivirus which can be sexually transmitted
40 from man to woman. High viral loads and prolonged viral shedding in semen suggest that ZIKV
41 replicates within the human male genital tract, but its target organs are unknown. Using ex
42 vivo infection of organotypic cultures, we demonstrated here that ZIKV replicates in human
43 testicular tissue and infects a broad range of cell types, including germ cells, which we also
44 identified as infected in the semen from ZIKV-infected donors. ZIKV had no major deleterious
45 effect on the morphology and hormonal production of the human testis explants. Infection induced a
46 broad antiviral response but no interferon up-regulation and minimal pro-inflammatory response in
47 testis explants, with no cytopathic effect. Finally, we studied ZIKV infection in mouse testis, and
48 compared it to human infection. This study provides key insights into how ZIKV may persist in
49 semen and alter semen parameters, as well as a valuable tool for testing antiviral agents.

50

51

52

53

54 **Keywords:** Zika virus; sexual transmission; semen; human testis; organotypic culture; tropism;
55 germ cells; macrophages; Sertoli cells; peritubular cells; Leydig cells; innate immune response;
56 interferons; inflammation; mouse testis.

57

58 **INTRODUCTION**

59 Zika virus (ZIKV) is a teratogenic arthropod-borne flavivirus, which recently emerged in the Pacific
60 (2007), Oceania (2013) and the Americas (2015).

61 While ZIKV's primary mode of transmission is through mosquito bites, male-to-female
62 sexual transmission has been reported by cohort studies (1, 2), and by case reports in non-endemic
63 countries (3). Importantly, male-to-female sexual transmission in animal models was found to
64 enhance viral dissemination in the female genital tract and transmission to the fetus (4–8). In
65 humans, high viral loads and prolonged shedding of viral RNA (vRNA) and infectious virus (up to
66 1 year and 69 days, respectively) in the absence of viremia have been found in semen (9–11),
67 strongly suggesting a tropism of ZIKV for the male genital tract. Studies in immunodeficient mice
68 evidenced high levels of ZIKV infection within the testis, leading to orchitis and impaired
69 testosterone and sperm production (12–15). However, these mouse models do not reflect the
70 pathophysiology in humans: unlike humans, mice only become infected following abrogation of
71 type I interferon (IFN) signaling and die of infection in most cases. This defective antiviral response
72 may enhance the susceptibility and pathogenicity of ZIKV. In sharp contrast, ZIKV infection in
73 macaque models either spared the testis or led to a moderate infection, with no deleterious effects
74 observed (16–18). Interestingly, a recent study on 15 ZIKV-infected men reported a lower total
75 sperm count at day 30 post symptoms onset compared with day 7, suggesting an effect of the
76 infection on the testis or epididymis (19).

77 Here, by infecting with ZIKV testicular tissue explants from healthy donors, we show that
78 ZIKV replicates and produces infectious viral particles in human testis. We evidence infection of a
79 broad range of testicular cell types, including resident macrophages and the germ cell line, and
80 confirm the latter in patients' semen. Infection had no effect on basal testosterone and inhibin B
81 production or overall cell viability *ex vivo*. ZIKV triggered a wide range of antiviral genes in
82 human testes, but up-regulation of types I, II and III IFN was not observed and pro-inflammatory

83 response was minimal. Finally, our data on IFNAR-/- mice points at similarities and differences
84 between mouse and human testis to ZIKV infection.

85

86 **RESULTS**87 **ZIKV replicates in human testicular tissue**

88 Testis explants from 8 uninfected donors were exposed to ZIKV ex vivo and maintained in culture
89 medium as previously described (20). We first assessed the replication rate of a ZIKV strain derived
90 from the 2015 outbreak in the Americas, by measuring viral release over 3-day-culture periods at
91 day 3, day 6 and day 9 post-infection (p.i.). A significant increase in the levels of vRNA release rate
92 was observed between days 3-6 (median 5.85×10^7 copies/ml) and 6-9 (median 8.28×10^7
93 copies/ml) compared to days 0-3 p.i. (median 5.29×10^6 copies/ml) (Figure 1A), while vRNA was
94 below the detection threshold in mock-infected testes (not shown).

95 Testis ability to produce infectious ZIKV particles was tested on reporter VeroE6 cells. A
96 significant increase in supernatants infectivity was observed between days 0-3 (median 3×10^2
97 TCID₅₀/ml) and days 6-9 p.i. (median 7.50×10^4 TCID₅₀/ml), demonstrating the infectivity of viral
98 progeny (Figure 1B). The highest cumulative titer at day 9 (i.e. reflecting infectious viral production
99 throughout culture) was 2×10^6 TCID₅₀/ml (Figure S1), with a median of 3.16×10^5 TCID₅₀/ml.
100 Similarly, vRNA and infectious virion release rates increased during the culture of testis explants
101 exposed to another ZIKV strain isolated during the 2013 outbreak in French Polynesia (Figure S2).

102 Altogether, these data demonstrate that ZIKV efficiently infects and replicates in the human testis
103 ex vivo, producing infectious viral particles.

104

105 **ZIKV infects somatic and germ cells in human testis explants**

106 To determine ZIKV's the target cells in the human testis, mock or ZIKV-infected testis explants
107 were submitted to RNAscope in situ hybridization (ISH) using probes specific for ZIKV RNA
108 (Figure 2A-H, controls in Figures 2A and S3), and to immunohistochemistry using an antibody
109 against the non-structural NS1 viral protein (Figure 2I-M)Figure FigureFigure. Infected testes

110 displayed strong vRNA staining of the interstitial tissue cells and within the extracellular matrix
111 bordering the seminiferous tubules, along with a more diffuse staining in some interstitial areas
112 (Figure 2B-F). A weaker dotty staining was also observed inside a few seminiferous tubules (Figure
113 2G-H), suggestive of association of the ZIKV with germ cells (Figure 2G) and Sertoli cells (Figure
114 2H). NS1 antibody (Figure 2I-M) similarly labeled cells within the seminiferous tubule wall (Figure
115 2I) and the interstitium (Figure 2J), demonstrating ZIKV replication in these target cells. Within the
116 tubules, different germ cell categories including spermatogonia (identified based on their position in
117 the seminiferous epithelium, nucleus size and distinctive morphological features) (Figure 2K) and a
118 few Sertoli cells (identified based on distinctive nucleus shape) (Figure 2L), stained positive for
119 NS1. Infected cells (vRNA+ or NS1+) displayed similar localization at the different time points of
120 infection (days 3, 6 and 9) for the two ZIKV strains tested (Figure S4 and data not shown).

121 To further identify the nature of the infected cells, we combined ISH for vRNA with fluorescent
122 immuno-labelling for specific cell markers, and undertook quantification of infected cells in
123 testicular tissue from 4 donors. Interstitial infected cells were primarily CD68/CD163+ testicular
124 macrophages (median 12.7 cells/mm²), and to a lesser extent CYP11A1+ Leydig cells (median 3
125 cells/mm²) (Figure 3A, B, G). Staining for α smooth actin (α SMA) demonstrated the infection of
126 myoid peritubular cells bordering the seminiferous tubules (median 10 cells/mm²) (Figure 3C, G).
127 Within the tubules, dotty fluorescent ZIKV staining close to the lumen histologically co-localized
128 with late germ cells (Figure 3D). Such staining was also present at the base of the tubules, where
129 co-labeled DDX4+ early germ cells were evidenced (DDX4 being a specific marker expressed by
130 most of the germ cells) (Figure 3E). Staining was never observed when using a vRNA probe on
131 mock-infected negative controls (Figure 3F). Infected cells in seminiferous tubules were mostly
132 germ cells (median 11 cells/mm²), while infected Sertoli cells represented a median of 3.5
133 cells/mm² (Figure 3G).

134 Collectively these data indicate that ZIKV has a tropism for germ cells and somatic cells within the
135 human testis.

136 **ZIKV replicates in human testicular germ cells in vitro and in vivo**

137 We exposed freshly-isolated seminiferous tubules cells to ZIKV to investigate their ability to
138 produce infectious viral particles which might be released into semen. In 3 independent primary
139 cultures, vRNA increased in cells from a median of 2.82×10^3 to 2.09×10^7 copies/ μ g total RNA
140 between 6h and 120h p.i. (Figure 4A). ZIKV RNA in culture supernatants significantly increased of
141 about 4 log10 between 6h and 120h p.i. (median values of 1.26×10^4 and 5.01×10^7 copies/ml
142 respectively) (Figure 4B). Infectious virus titers also rose between 48h and 120h, reaching a median
143 of 4×10^5 TCID₅₀/ml and maximum titer of 4×10^6 TCID₅₀/ml (Figure 4C). ZIKV replicated in
144 DDX4+ germ cells, FSH receptor+ Sertoli cells and α SMA+ peritubular cells (Figure 4D). ZIKV
145 envelope (ZIKV-E) was detected in undifferentiated spermatogonia (MAGEA4+ Stra8-) and in
146 MAGEA4+ Stra8+ cells, corresponding to differentiated spermatogonia up to preleptotene
147 spermatocytes stage (Figure 4D).

148 To further explore the germ cells' productive infection and since primary testicular germ cells
149 cannot be cultured without somatic support, we used the seminoma-derived germ cell line T-cam2,
150 which displays characteristics of fetal germ cells (21). In 3 independent experiments, vRNA in T-
151 cam2 cells rose from below detection at 6h to a median of 6.31×10^5 copies/ μ g total RNA at 72h
152 p.i., reaching up to 1×10^6 copies/ml in culture supernatants (Figure S5A, B). ZIKV-E was
153 evidenced in T-cam2 by immunofluorescence (Figure S5C). The production of infectious viral
154 particles was evidenced in the two cultures showing the highest viral loads, with a maximum titer of
155 8.2×10^3 TCID₅₀/ml (Figure S5D).

156 These findings were corroborated in vivo by analyzing the semen cell smear from two ZIKV-
157 infected donors, in which we revealed the presence of ZIKV-E or NS1+ germ cells exfoliated from

158 the testis 7 days and 11 days post-symptoms onset (Figure 4E). A subset of spermatozoa also
159 labelled for ZIKV-E (Figure S6).

160 Altogether, these data indicate that ZIKV replicates in human germ cells at different stages of
161 differentiation and infects testicular germ cells in ZIKV-infected men.

162

163 **ZIKV infection ex vivo has no major impact on human testis morphology or hormonal
164 production**

165 We next assessed the impact of ZIKV on human testis morphology, viability and function during
166 the ex vivo culture time frame. The tissue architecture and histology of infected testes were similar
167 to that of mock-infected testes all throughout the culture period (Figure 5). In both infected and
168 mock-infected testes we observed conserved interstitial tissue (comprising groups of Leydig cells,
169 mast cells, and blood vessels), seminiferous basement membrane of similar thickness (increased
170 thickness being a sign of injury), and seminiferous tubules encompassing Sertoli cells and early and
171 late germ cells (Figure 5 A, D). Caspase-dependent apoptosis evidenced by cleaved caspase 3
172 immunostaining was similar in infected and mock-infected testis and, as expected, primarily
173 affected isolated germ cells (Figure 5B). The measurement of LDH release confirmed that the
174 overall viability of the organ was not affected by the infection (Figure 5C). Testosterone
175 concentrations were not different in infected versus mock-infected testes (Figure 5E), and the
176 expression of genes encoding steroidogenic enzymes unmodified by ZIKV (Figure S7 A). Sertoli
177 cells positively stained for the tight junction marker protein ZO-1 in both infected and mock-
178 infected testis until day 9 p.i., suggesting an intact barrier (Figure 5 F). Inhibin B (a marker of
179 Sertoli cell function) protein and mRNA levels showed no significant differences between infected
180 and mock-infected testis up to day 9 p.i. (Figure 5G and Figure S7 B). Finally, the levels of
181 peritubular cells (Acta2), early meiotic (PGK2) and late post-meiotic (PRM2) germ cells transcripts
182 were unchanged by the infection (Figure S7 B).

183 Overall, although actively replicating within the testis, ZIKV did not appear to affect testis
184 morphology, induce cell death, or trigger any drastic effect on the testis functions during the 9-day
185 culture.

186

187 **ZIKV triggers a broad antiviral response but no IFN-up-regulation and a minimal pro-**
188 **inflammatory response in human testicular tissue**

189 To investigate the immune response to ZIKV infection, we assessed the concentration of a panel of
190 antiviral and pro-inflammatory cytokines (IFN β , IFN α 2, IFN λ 1, IFN λ 2/3, IFN γ , IL1 β , IL6,
191 TNF α , IL8, IL-12p70, CXCL10, IL-10 and GM-CSF) in testis explant supernatants. Type I, II and
192 III IFN concentrations in testis culture supernatants were unchanged by the infection at days 3 and 6
193 p.i. in 7 independent testis cultures tested (Figure 6A and S8). Among pro-inflammatory cytokines,
194 only CXCL10 was significantly increased (Figure 6A and S8), and its induction positively
195 correlated with vRNA load (Figure 6B).

196 We then analysed the transcripts of 11 of these cytokines (IFN β , IFN α 1, IFN α 2, IFN α 4, IFN λ 1,
197 IFN λ 2, IFN λ 3, IL-1 β , IL-6, TNF α , and CXCL10) by RT-qPCR on ZIKV-infected versus mock-
198 infected testes. Type I, II and III IFN transcripts in uninfected testis tissues were below the
199 measurement threshold irrespective of infection (data not shown), while CXCL10 was increased
200 (median fold change (FC) 43.4 at day 9, range 7.7-227.8) in the testis from 4 out of 6 donors
201 (Figure 6C).

202 Extending the analysis to a wider range of genes involved in pathogen sensing (RIG-I, MDA5),
203 antiviral response (IFN ϵ , IFI27, IFIT1, IFITM1, IRF7, ISG15, Mx1, Mx2, OAS1, OAS2, RSAD2),
204 inflammation (CCR7, CD14, CD64, HLA-DR, MCSF), chemoattraction (CCL2, CCL5, CXCL1,
205 CXCL2,), and control of inflammation (IL-10, TGF β , CD163, SOCS1, SOCS3), we observed the
206 induction of a broad range of antiviral genes from day 3 onwards in the testis from 3 out of 6 donors
207 and at day 9 in one other donor (Figure 6C).

208 A strong induction of ISG15 (FC 12.2, range 5.2-45.6), IFIT-1 (FC 12.8, range 9.7-29.6), OAS1
209 (FC 22.9, range 6.4-32.5), OAS2 (FC 7.1, range 4.2-21.6), Mx1 (FC 9.8, range 5.1-35.1), Mx2 (FC
210 9.5, range 3.7-25.3) and RSAD2 (FC 31.5, range 3.7-66.8) was measured at day 9 in these 4 donors,
211 along with a relatively more moderate induction of IFI27 (FC 3.1, range 2.2-10.6), IFITM1 (FC 1.8,
212 range 1.5-6.2), IRF7 (FC 2.7, range 1.8-6), MDA5 (FC 1.9, range 1.6-8.5) and RIG-1 (FC 2.8,
213 range 1.8 to 9.4) (Figure 6C).

214 The fold change of these genes at day 9 correlated one to another, except for IFITM1 and MDA5
215 (Figure S9). The fold increase at day 9 of a number of genes involved in the antiviral response
216 (RSAD2, IFIT1, ISG15, OAS1, OAS2, Mx1, Mx2, IFI27, IRF7), pathogen sensing (RIG1), and
217 CXCL10 positively correlated with the level of infection (shown in Figure 6B) in the corresponding
218 testis supernatant at days 3 and 6 (Figure 6E and Figure S9).

219 Finally, we assessed expression levels of all transcripts, including type I, II and III IFN, at earlier
220 time points (4h, 18h, 48h p.i.) in two testis explants, and did not observe any up-regulation (Figure
221 S10 and data not shown).

222 Altogether, these results are consistent with ZIKV infection inducing a broad antiviral and minimal
223 pro-inflammatory response in the absence of detectable IFN stimulation in human testis explants.

224

225 **Innate immune response to ZIKV infection in the testis from IFNAR^{-/-} mouse**

226 To support our hypothesis of a type I IFN independent antiviral response induced by ZIKV in testis
227 and compare our findings on ZIKV tropism and initial antiviral/pro-inflammatory responses in
228 human testis explants versus that in a widely-used animal model, we analysed the testis of type I
229 IFN receptor-defective (IFNAR^{-/-}) [mice using similar techniques and viral strain](#).

230 ZIKV RNA measurement in testes from IFNAR^{-/-} mice infected for 5 and 9 days showed high viral
231 loads in this organ (Figure 7A). Despite differences in intensity and sequence of infection, ZIKV
232 tropism in the mouse testis *in vivo* was comparable overall to that in human testis *ex vivo*. At day 5,

233 testicular infection localized primarily within the interstitial tissue and the peritubular cells, while
234 seminiferous tubules were spared (Figure 7B). Co-labeling of ZIKV RNA with cell markers showed
235 infection of STAR+Leydig cells and F4/80+ macrophages (Figure 7C). At day 9 p.i. (a time at
236 which some mice started to die), strong labeling for vRNA became prominent within Sertoli and
237 germ cells (Figure 7B). We did not observe modifications of testicular morphology at these early
238 time points, in agreement with previous studies (12, 22).

239 We next examined the induction of genes involved in antiviral response and inflammation in mouse
240 testis (Figure 7D). Similar to human testis explants, and despite a lack of type I IFN signaling, a
241 strong induction of ISG15 (FC 11.7, range 7.7-15.6 at day 5 and FC 7.4, range 4.7-15.1 at day 9),
242 RSAD2 (FC 24.6, range 13.7-45.6 at day 5, and FC 10.1, range 2.21-30.39 at day 9), IFIT1 (FC
243 36.0, range 19.5-42.6 at day 5, and FC 10.1, range 6.2-27.3 at day 9) and CXCL10 (FC 17.5, range
244 9.4-39.2 at day 5, and FC 9.0, range 4.2-14.6 at day 9) was measured in infected mice testis (Figure
245 7D). In contrast to human testis, Mx1, MDA5 and RIG-1 were not induced at either day 5 or day 9
246 (Figure 7D). These results suggest that ZIKV induces a type I IFN signaling-independent antiviral
247 response in both humans and mice. In contrast to human testis, in which CXCL10 was the only pro-
248 inflammatory gene increased by the infection, TNF α (median fold change 48.0, range 32.6-122.6 at
249 day 5, and median 6.9, range 2.6-12.3 fold at day 9), IL-1 β (median 7.7, range 1.8-13.8 fold at day
250 5 only) and IL-6 (median 10.7, range 4.9-27.5 fold at day 5 only) were up-regulated in infected
251 mouse testis (Figure 7D), while IFN γ (produced by NK and T cells) was maximally increased at day
252 9 (median 11.2, range 6.2-30.8 fold) over day 5 (median 6.2, range 4.0-12.7 fold). IFN β was the
253 most dramatically-stimulated innate immune gene at day 5 (median 236.7, range 130.2-353.4 fold),
254 while IFN α 1, 2, 4 genes were modestly and transiently up-regulated at day 5 and IFN λ 2/3 mRNAs
255 levels were unchanged (Figure 7D). When looking at markers of immune cell subtypes, a transient
256 increase in transcripts encoding the myeloid cell marker CD14 was observed at day 5, whereas
257 transcripts encoding CD3 (T cell marker) and CD8 (cytotoxic T cell marker) were maximally up-

258 regulated at day 9, in line with the IFN γ expression pattern. The markers for B cells (CD19 and
259 CD20), regulatory T cells (FoxP3) and macrophages (CD68) were unchanged, while CD4
260 (expressed by T helper and myeloid cells) was down-regulated (Figure 7D). The infiltration of T
261 lymphocytes in infected mouse testis was confirmed by CD3 immunostaining and quantification of
262 positive cells (Figure S11), further demonstrating mouse testis inflammation. Overall, the induction
263 of an antiviral response in human and IFNAR^{-/-} mice testis supports the existence of a type I IFN
264 signaling independent response to ZIKV infection in testis.

265

266 **DISCUSSION**

267 We show that Asian ZIKV replicates in the human testis ex vivo. . Infected somatic cells
268 within testis explants were mostly macrophages and peritubular cells, while a lower number of
269 Leydig cells and Sertoli cells were observed. Considering the relative proportion of these different
270 cell types in human testicular tissue (approximately one macrophage for 10 Leydig cells, 36
271 peritubular cells, 40 Sertoli cells and 400 germ cells) (23, 24), macrophages are likely the cell type
272 most susceptible to ZIKV infection within the testis. Importantly, we demonstrate that ZIKV
273 replicates within testicular germ cells, from stem cell (spermatogonia) to spermatozoa precursors
274 (spermatids). In agreement, Robinson et al. lately reported on the infection of male germ cells after
275 3 days exposure of human seminiferous tubules to African ZIKV (25). Our detection of infected
276 germ cells in semen from ZIKV-infected men confirms these in vitro and ex vivo findings.. The
277 presence of ZIKV in ejaculated spermatozoa adds to previous findings of ZIKV antigen, RNA and
278 infectious particles in spermatozoa (19) (26). Spermatozoa and immature germ cells may be
279 infected during epididymal transit (duration 1 to 21 days) or within the testis. To infect these cells,
280 the virus has to cross the blood testis barrier formed by the Sertoli cell tight junctions. Direct
281 infection of the Sertoli cells is supported by our results in primary cells and that of other authors in
282 commercial Sertoli cells (27, 28). Sertoli cells were showed to release ZIKV particles on their
283 adluminal side, whereas the tight and adherens junction protein expression was not altered by
284 infection (27). In agreement with these data, the ZO-1 labelling we observed in human explants
285 suggested intact Sertoli cell barrier despite infection. In contrast, Sertoli cell exposure to
286 inflammatory mediators produced by ZIKV-infected blood-derived macrophages (which phenotype
287 differs from that of the anti-inflammatory testicular macrophages) altered their barrier function (27).
288 Thus, the alteration of the blood-testis-barrier by testis-infiltrating macrophages may provide an
289 additional way for the virus to reach seminal lumen and late germ cells. Altogether, our data show

290 that ZIKV replicates in germ cells and suggest that the virus might be able to bypass the blood testis
291 barrier by infecting Sertoli cells.

292 In our ex vivo model, testosterone and inhibin B release were not modified by infection, nor
293 were their related gene expression. This is not a limitation of our culture system since it is
294 successfully used to assess the hormonal production of human testis (29). This lack of effect might
295 be linked to low infection levels of Leydig and Sertoli cells ex vivo, as supported by relatively low
296 number of infected cells. In ZIKV-infected mouse testis, testosterone and inhibin B levels were
297 preserved at day 7 p.i. while testis integrity was still maintained, whereas they decreased after
298 orchitis (12, 13), suggesting that inflammation rather than testis infection caused altered hormone
299 secretion. In a 4-month follow-up of a cohort of 15 ZIKV-infected men, testosterone levels were not
300 significantly affected, whereas slightly lower inhibin B levels were reported at day 7 post-symptoms
301 onset compared with later time points (19). Such transient imbalance of reproductive hormones can
302 be related to fever or other systemic effects (30). However, we did not study the effect of ZIKV on
303 LH- and FSH-stimulated hormone secretion, and a systemic impact on testicular hormones in vivo
304 cannot be ruled out. Moreover, we cannot exclude effects at the single cell level that cannot be
305 detected when analyzing the whole tissue.

306 Our findings suggest that ZIKV could affect sperm production. Beside germ cell infection,
307 somatic cell infection might disrupt the paracrine control of spermatogenesis (31, 32), and the
308 infection of the contractile peritubular cell (33) might decrease the expulsion of spermatozoa from
309 tubules into the epididymis. Infected men showed a decrease in sperm count and an increase in
310 spermatozoa abnormalities during the 2 months post clinical onset (19, 34). Our results suggest that
311 direct infection of germ and/or testicular somatic cells might be involved in such altered sperm
312 parameters, although fever and/or immune response could be involved (35, 36).

313 The infection had no significant effects on testis explants morphology nor viability. This is
314 in contrast to findings in mouse models where damaging effects of ZIKV infection on testis became
315 evident after leukocytes' infiltration (12–14). Since the ex vivo testis model lacks the presence of an
316 intact immune system, we cannot rule out an effect of acquired immunity on the testis from ZIKV-
317 infected men. However, testicular atrophy or orchitis have never been reported in clinical cases or
318 non-human primate studies, and immune infiltrations were not observed in the latter (16–18),
319 suggesting the absence of massive inflammation. The lack of cell death induction in our ex vivo
320 model could be linked to culture conditions (e.g. viral strains/doses used, duration of infection) or to
321 the limited number of infected cells. However, it might also reflect the ability of the virus to
322 replicate in testicular cells in a non-cytopathic manner. Non or minimal cytopathic infection and
323 persistence of ZIKV has been reported in different cell types, including human placental
324 macrophages (37), brain microvascular endothelial cells (38), and lately, male mouse germ cells
325 (25). Absence of cytopathic effect was also reported in Sertoli cells infected with ZIKV (27, 39). In
326 contrast, high cytotoxicity was reported in ZIKV-infected human testis organoids (40). However, in
327 this organoid system, the architecture of the testis is not preserved and physiological cellular
328 interactions lost. Altogether, we hypothesize that non-lytic infection, in combination with evasion
329 from immune responses, may allow viral persistence in the human testis.

330 . A broad range of antiviral genes was induced by ZIKV in testis explants. Several of these
331 classically-defined Interferon-Stimulated Genes (ISGs), such as ISG15 (41), RSAD2 (42), IFITM1
332 (43), OAS1 (44), Mx1 (45) and IFIT gene family members (46) have an inhibiting activity on
333 flaviviruses and/or ZIKV replication. Most interestingly, ZIKV did not increase type I, II or III
334 IFNs secretion by testicular explants, and their transcripts consistently remained below detection at
335 all time points. A level of IFN production below the sensitivity of our assays, or an active inhibition
336 of IFN production by ZIKV, could explain these results. Thus, ZIKV non-structural proteins inhibit
337 different steps of type I IFN induction cascade (47, 48). Alternatively, the absence of IFN up-

338 regulation in testis explants might reflect a specificity of this immune-suppressed organ, in which
339 sustained high concentrations of type I IFN trigger germ cell apoptosis and sterility (49). Detection
340 of ISGs over-expression in the testis from ZIKV-infected IFNAR^{-/-} mice further suggest IFN-
341 independent induction of ISGs in the testis. The increased level of RIG-1 mRNA in infected testis
342 suggests it may be involved in the direct induction of ISGs, although other effectors could be in
343 play (50). However, the broad induction of ISGs may fail to control ZIKV replication in the testis in
344 the absence of increased type I IFN secretion to amplify and stabilize the antiviral response. In
345 contrast to antiviral genes, ZIKV infection of the human testis did not affect any of the classic pro-
346 inflammatory cytokines, except for CXCL10 which secretion was modestly increased. Interestingly,
347 the level of antiviral transcripts at day 9 p.i. positively correlated with the level of infection at days
348 3 and 6, suggesting that the initial level of infection influenced the intensity of the antiviral
349 response. Accordingly, antiviral genes were not induced in explants showing lower levels of
350 infection. Thus host factors other than those we have studied may play a role in susceptibility to
351 ZIKV. Altogether, our results indicate that ZIKV induces a broad induction of antiviral effectors but
352 no IFN up-regulation and minimal pro-inflammatory response in ex vivo infected human testis. We
353 hypothesize that such innate immune response, along with a lack of cytopathic effect, might
354 facilitate the persistence of ZIKV for extended periods in the testis, and contribute to the prolonged
355 release of ZIKV in semen.

356 Animal models are crucial for mechanistic studies and the in vivo testing of antiviral
357 strategies. Cross-validation with human data is essential to assess their similarities and differences.
358 Discrepant results on the interstitial (13, 22, 51) and/or intratubular localization of ZIKV (15, 17,
359 67, 68, 69) were reported in mouse testis from IFN-signaling deficient mice. Our results in the
360 IFNAR^{-/-} mouse model reconciled these results since ZIKV infection was exclusively located in
361 interstitial cells and peritubular cells at day 5 p.i., whereas by day 9 the infection had progressed to
362 the seminiferous tubules where it became prominent. In human testis, seminiferous tubule cell

363 infection was consistently weaker than that in the mouse and that in human interstitial cells.. This
364 was not modified when increasing the infective viral dose 10 times (not shown). The difference in
365 seminiferous tubule infection level in mice versus humans might reflect differences in the
366 susceptibility of mouse-versus-human Sertoli and germ cells to ZIKV infection and/or in their
367 innate immune response.

368 Like in human testis, we evidenced several ISG mRNA induction in the testis from IFNAR^{-/-}
369 mice, indicating a type I IFN-signaling independent induction that corroborates our results in human
370 testis explants. Interestingly, in contrast to the human testis, the pathogen sensor RIG-1 was not up-
371 regulated in the mouse testis, which may suggest different sensing mechanism. Unlike human testis
372 also, type I IFNs and a number of pro-inflammatory genes were upregulated in mice. We previously
373 showed that unlike their rodent counterparts, which produced large amounts of IFN, primary human
374 Leydig cells did not produce IFN in response to paramyxovirus infection or double strand RNA
375 stimulation (54, 55). This key difference between mouse and human testis in terms of IFN
376 production may explain why in IFN-signaling competent mice, ZIKV tropism has been reported as
377 essentially restricted to germ cells (25), whereas a broad tropism for both somatic and germ cells is
378 observed in human testis explants and in IFNAR^{-/-} mice. Indeed, we previously showed in rodents
379 that meiotic and post-meiotic male germ cells lack the functional type I IFN receptor (49), and do
380 not express ISGs after viral or IFN stimulation, unlike testicular somatic cells (56, 57). Differences
381 in antiviral (e.g. sensing pathways and ISG induction patterns) and pro-inflammatory immune
382 responses in human versus mouse testis may explain the testis pathogenicity observed in type I IFN-
383 signaling deficient mouse models (along with differences in infection levels). Differences in type I
384 IFN up-regulation following ZIKV infection may also explain the restricted tropism of ZIKV in the
385 testis from immunocompetent mice (25) when compared to human testis explants. Whether these
386 differences derive from intrinsic differences between human and mouse testicular cells, differential
387 escape mechanisms mediated by ZIKV (e.g. specific counteracting of type I IFN by ZIKV in human

388 cells but not in immunocompetent mouse cells), or ex vivo/in vivo differences (e.g. infiltrating cells
389 pro-inflammatory activity) requires further investigation.

390 To date, ZIKV is the only arbovirus known to be sexually transmitted within the human
391 population. RNA from other arboviruses such as dengue, yellow fever and chikungunya viruses
392 were recently evidenced in semen from infected men for a prolonged period (58–60), but no cases
393 of sexual transmission have been documented so far. Dengue virus did not productively infect/alter
394 testicular cells in mouse models (12, 13, 25, 51) and poorly infected human Sertoli cells. Although
395 the neuro-tropic West Nile virus (WNV) replicated to levels similar to ZIKV in a Sertoli cell line
396 (27), testis from men with neuro-invasive WNV tested negative, except for one immune-suppressed
397 patient (61). Interestingly, Japanese encephalitis virus, another mosquito-borne neuro-tropic
398 flavivirus, infects the testis of boars and their semen for a long period of time, disrupts
399 spermatogenesis and can be transmitted through semen (62).

400 Of note, other male genital organs may be involved in ZIKV shedding in human semen, as
401 suggested by ZIKV prolonged sexual transmission from vasectomized men (63), and by ZIKV
402 replication in human prostate cell lines and cell lines based organoids (64). Interestingly, we
403 recently demonstrated in SIV-infected cynomolgus macaques that depending on the individuals,
404 different male genital organs may be the source of the virus in semen (65). Nevertheless, the
405 significant reduction of ZIKV titers and shorter infectivity window in semen from vasectomized
406 mice indicates the importance of testis/epididymis contributions to infectious virus shedding (4).

407 In conclusion, we demonstrated that ZIKV replicates in the human testis ex vivo and infects
408 a range of somatic cells and germ cells. Replication of ZIKV in testicular germ cells was evidenced
409 in semen from ZIKV-infected men, along with ZIKV association with spermatozoa. ZIKV had no
410 major deleterious effect on the morphology and hormonal production of the human testis in culture.
411 Despite a broad induction of antiviral genes, the absence of IFN up-regulation and minimal pro-

412 inflammatory response of the human testis *ex vivo*, along with the lack of ZIKV cytopathic effect
413 on testicular cells, might favour the prolonged ZIKV infection observed in this organ, and account
414 for the absence of orchitis in men infected by ZIKV. Overall, our results suggest that ZIKV
415 infection of the human testis may be involved in the persistence of the virus in semen and in altered
416 semen parameters. These results call for further investigation on the impact of ZIKV on the
417 reproductive health of ZIKV-infected men and warn against the potential horizontal and vertical
418 transmission of ZIKV through the infected germ line. Finally, the *ex vivo* model of ZIKV infection
419 of the human testis we developed provides a valuable tool for the testing of antiviral agents.

420

421

422 **MATERIAL AND METHODS**

423

424 **Cells lines and viruses**

425 Asian Zika virus strains isolated during the 2015 outbreak in the French Caribbean
426 (MRS_OPY_Martinique_PaRi-2015, passaged once in Vero cells) and during the 2013 outbreak in
427 Polynesia (H/PF/2013, passaged three times in Vero cells) were obtained from the European Virus
428 Archive (EVA) and further propagated in VeroE6 cells for 2 additional passages. VeroE6 cells
429 (African green monkey kidney epithelial cells) were maintained in DMEM supplemented with 10%
430 FCS, Glutamine (2mM) and 1% penicillin/streptomycin at 37°C with 5% CO₂ (all reagents from
431 GIBCO). To produce viral stocks, VeroE6 cells were infected at an MOI of 0.01 in serum-free
432 medium for 2 hours, then complete medium was added to reach a final serum concentration of 5%.
433 When cytopathic effect was evident, supernatant was centrifuged, filtered (0,45 µm), aliquoted and
434 frozen at -80°C. The human testicular germ cell tumor (seminoma) cell line Tcam-2 (66) was kindly
435 provided by Dr Janet Shipley (The Institute of Cancer Research, London).

436

437 **Organotypic culture of human testis explants and infection**

438 Testes were dissected into 3 mm³ sections transferred onto 24 well plates (2 sections/well)
439 containing 500µl of medium (DMEM/F12 supplemented with 1X nonessential amino acids, 1X
440 ITS, 100U/ml penicillin, 100µg/ml streptomycin, 10% FCS, all from GIBCO) in the presence or
441 absence of 10⁵ TCID₅₀ of ZIKV (corresponding to 2.2.10⁷ to 2.9.10⁷ vRNA copies for
442 MRS_OPY_Martinique_PaRi-2015 and 8.10⁷ vRNA copies for H/PF/2013). After overnight
443 incubation, tissue fragments were washed 3 times with PBS and transferred onto a polyethylene
444 terephthalate insert (3µm high density pores) in 12 well plates containing 1 ml of medium. 8 hours
445 later, the medium was changed again to further wash away potential residual virus input (time 0 for
446 sample collection). For each experimental condition, a minimum of two wells were tested. The

447 culture was maintained up to 9 day p.i. in a humidified atmosphere containing 5% CO₂ at 37°C with
448 medium collected and fully changed every 3 days, in order to thoroughly wash input virus and
449 assess viral production dynamic. . Media were stored frozen at -80°C for vRNA and titer
450 measurement. Tissue fragments were either fixed in neutral buffered 4% formaldehyde or frozen
451 and stored at -80°C.

452

453 **Isolation and infection of testicular cells**

454 Testis fragments were incubated in digesting medium (2mg/ml hyaluronidase, 2mg/ml collagenase
455 I, 20µg/ml in DMEM/F12) for 60 minutes at 37°C under agitation (110 rpm) to dissociate
456 interstitial tissue from seminiferous tubules. After centrifugation, the seminiferous tubule pellet
457 digested by trypsin (0.25%, 5ml/g, 20 minutes at 37°C). Trypsin was inactivated and cells filtered
458 (60µm) and cultured overnight in DMEM/F12 medium supplemented with 1X nonessential amino
459 acids, 1X ITS (human insulin, human transferrin, and sodium selenite), 100U/ml penicillin,
460 100µg/ml streptomycin and 10% FCS (all from GIBCO). Primary TGCs and Tcam-2 cells were
461 incubated with ZIKV diluted in serum-free medium at a multiplicity of infection (MOI) of 1
462 (corresponding to 1.43 x 10⁶ TCID₅₀/million cells) for 2 hours at 37°C 5% CO₂. Virus was
463 removed by washing and trypsin treatment for 5 minutes at 37°C. Primary testicular cells were
464 cultured at a density of 0.5 million cells/ml in supplemented StemPro-34 (Invitrogen) as described
465 elsewhere (67). T-cam2 cells were cultured at a density of 0.1 million cells/ml in RPMI1640
466 supplemented with P/S, Glutamine (2mM) and 10% FCS (all reagents from GIBCO).

467 **Semen samples**

468 Semen was liquefied at 37°C for 30 minutes and 10µl spread on a glass slide and dried at room
469 temperature. Smears were fixed in 4% formaldehyde and stored at -20° C. Viral loads for ZIKV in
470 seminal plasma and seminal cells were 7,25 log copies/ml and 6,7 log copies/µg total RNA
471 respectively for the donor at day 7, and 7,8 log copies/ml and 7,8 log copies/2x10⁶ cells respectively

472 for the donor at day 11. Patients' serology for dengue was negative and semen samples tested
473 negative for dengue in RT- PCR.

474

475 **Mice**

476 Mice lacking the type 1 interferon receptor (68) were backcrossed >10 times onto the C57BL/6
477 background (referred to as IFNAR^{-/-} mice). 7-week-old male IFNAR^{-/-} mice were infected through
478 the intra-peritoneal route with 10⁴ TCID₅₀/100 µl of ZIKV (H/PF/2013) or with PBS. 5 and 9 days
479 after infection, mice were sacrificed with carbon dioxide and collected tissue either frozen at -80°C
480 or fixed in PFA 4%.

481

482 **Real-time quantitative RT-PCR**

483 Total RNA was extracted using the QIAamp vRNA (for supernatants) or RNeasy isolation kit (for
484 tissue/cells) and treated with DNase (all from Qiagen). Extracted RNA from explant supernatants
485 was subjected to RT-qPCR using GoTaq Probe 1-step RT-qPCR System (Promega). Primers and
486 probes for ZIKV described in (69) were adapted as follows: ZIKV primer forward
487 ccgctgccaaacacaag, ZIKV primer reverse ccactaacgtttgcagacat, ZIKV probe
488 agcctacttgacaagcaatcagacactcaa. A standard curve with serial dilution of a known number of
489 copies of vRNA was systematically run. The relative quantification of steroidogenesis enzymes
490 mRNA (STAR, steroidogenic acute regulatory protein; CYP11A1, cytochrome P450 family 11
491 subfamily A member 1; HSD3B2, hydroxy-delta-5-steroid dehydrogenase 3 beta- and steroid delta-
492 isomerase 2; HSD17B3, hydroxysteroid 17-beta dehydrogenase 3; CYP17A1, cytochrome P450
493 family 17 subfamily A member 1) and testicular cells markers mRNA (Inhibin B; Acta2, actin alpha
494 2 smooth muscle aorta; PGK2, phosphoglycerate kinase 2; PRM2, protamine 2) was performed as
495 previously described (29).

496 Primers for innate immune response effector genes (Supplementary Table 1) were designed using
497 Primer-BLAST tool (70). Total RNA was reverse-transcribed using the Iscript cDNA Synthesis Kit

498 (Bio-Rad). QPCR reactions were performed on a Bio-Rad Laboratories CFX384 instrument using
499 iTaq SYBR green mix (BioRad) and 40 cycles of 15 seconds at 95°C and 1 minute at 60° C,
500 followed by melt-curve analysis. Gene expression fold changes were calculated with the $2^{-\Delta\Delta Ct}$
501 method normalized to beta-actin and mock-infected samples expression levels.

502

503 **Determination of viral titer**

504 Vero E6 cells seeded in opaque-walled 96 well plates at a final concentration of $1,5 \times 10^5$ cells/ml in
505 DMEM with 5% FCS were put in contact the next day with serial dilutions of supernatant . Median
506 tissue culture infective dose (TCID₅₀)/ml was measured at day 5 post-infection using the Viral
507 ToxGlo Assay (Promega).

508

509 **Histology, RNAscope in situ hybridization (ISH) and immunohistochemistry (IHC)**

510 Tissues or cell pellets were fixed in 4% formaldehyde and embedded in paraffin. RNA ISH was
511 performed using RNAscope 2.5 (Advanced Cell Diagnostics) according to the manufacturer's
512 instructions, as previously described (15, 87). RNAscope ISH is a highly specific and sensitive
513 technique, with the ability to detect single molecules (73). Formaldehyde fixed paraffin-embedded
514 tissue sections or cell pellets were deparaffinized in xylene and deshydrated in ethanol. with for 10
515 min at room temperature. Slides deparaffinized and H₂O₂ quenched for endogenous peroxidases
516 were boiled in RNAscope Target Retrieval Reagents (citrate buffer10mM, pH6, 15 minutes) and
517 incubated in RNAscope Protease Plus (40°C, 20 minutes), prior to probe hybridization. Sections
518 were incubated with target probes (2 hours, 40°C), washed in buffer and incubated with
519 amplification reagents. Chromogenic detection was performed using Fast Red as substrate for
520 alkaline phosphatase to generate red signal. Slides were counterstained with hematoxylin and
521 mounted in Eukitt (O. KINDLER) before observation using bright-field microscopy. The "double
522 Z" probes targeting ZIKV RNA (consensus sequence, target region 219-5443, catalog #467771),
523 positive (targeting the 2514-3433 region of human *POLR2A* gene, catalog #310451) and negative

524 (targeting the 414-862 region of bacterial *dapB* gene, catalog #310043) control probes were all
525 obtained from Advanced Cell Diagnostics. Staining specificity was verified as showed in Figure S3.
526 FigureSections of ZIKV-infected Vero cell pellets and mock-infected testis tissues were
527 systematically used as positive and negative controls.

528 Dual fluorescent ISH-IHC experiments was performed essentially as we previously described (74).
529 Briefly, tissue sections were first submitted to ISH, then blocked in PBS/BSA 2% and incubated
530 overnight at 4°C with primary antibody, Sections were washed, incubated with either anti-mouse or
531 anti-rabbit Alexa-488 fluorescent secondary antibodies diluted 1/500 (chicken anti-mouse 488 ref
532 A21200, chicken anti-rabbit 488 ref A21441, Life Technologies), and counterstained with Prolong
533 medium containing DAPI before observation with a Zeiss Axio Imager M1 fluorescence
534 microscope connected to a digital camera (Carl Zeiss) using Zen software. Fluorescent Fast Red
535 signal was read at 550 nm.

536 Single immunohistochemistry was performed as described (75). For immunofluorescence
537 experiments, Alexa 488 or 594-coupled secondary antibodies diluted 1/500 (goat anti-mouse 594
538 ref A11032, chicken anti-rabbit 594 ref A21442, donkey anti-rat 488 ref A21208, all from Life
539 Technologies) were used and sections mounted with Prolong DAPI to stain the nuclei. Cell staining
540 was never observed for isotypic controls or mock-infected samples. Primary antibodies used :
541 mouse anti-NS1 (Biofront Technologies, clone 0102136, 4 μ g/ml), anti-CD68 (DAKO, clone KP1,
542 1,85 μ g/ml), anti-CD163 (LEICA Novocastra, clone 10D6, 1/100), anti- α SMA (DAKO, clone 1A4,
543 1,4 μ g/ml), anti-DDX4 (GENETEX, clone 2F9H5, 1/200), anti-ZO-1 (THERMO FISHER, clone
544 ZO1-1A12, 10 μ g/ml); rabbit anti-Cyp11A1 (Sigma, 1/250), anti-cleaved caspase 3 (Cell Signaling,
545 Asp175, 1/50), anti-DDX4 (Abcam, 2 μ g/ml), anti-STAR (Cell signalling, 1/200), anti-CD3 (Dako,
546 #A0452, 10 μ g/ml); rat anti-mouse F4/80 (Abcam, clone BM8, 1/20).

547 The number of ZIKV RNA+ CD68/CD163+ macrophages, CYP11A+ Leydig cells, α SMA+
548 peritubular cells, germ cells and Sertoli cells (identified on morphological criteria in light

549 microscopy) in testis explants was assessed in 4 donors and at least 3 whole testis tissue
550 sections/donors (corresponding to about 12 mm²/ testis donor). Quantification of CD3+ cells in
551 mouse testis was performed in 3 mock-infected animals, 4 animals at day 5 p.i. and 4 animals at day
552 9 p.i., in at least 5 mm²/testis. Slides were scanned with a NanoZoomer slide scanner (Hamamatsu
553 Photonics, France, at Plateforme H2P2, Biosit, Rennes, France). Immunostained positive cells were
554 counted with ImageJ free software.

555

556 **Immunocytofluorescence**

557 Semen smears from donors and cell pellets from testicular cell cultures put onto polylysine-coated
558 glass coverslips were fixed in 4% PAF for 20 minutes at RT. After permeabilization (0,2% Triton
559 X-100, 10 minutes), the slides were incubated in blocking buffer (0,2% Triton X-100, 1% goat
560 serum, 2 hours) and stained with antibodies against ZIKV NS1 (1:1000, Biofront Technologies) or
561 flavivirus envelope Ab 4G2 (1:1000, Millipore). NS1 antibody was either directly coupled to Alexa
562 Fluor 647 (Zenon labeling kit, Molecular Probes) or revealed using Alexa-fluor 555 goat anti-
563 mouse (Life Technologies). Infected cell characterization was performed using rabbit anti-DDX4
564 (5 μ g/ml, Abcam), anti-Stra8 (9,6 μ g/ml, ThermoFisher Scientific) and anti-FSHR (10 μ g/ml,
565 Origene), detected using Alexa-fluor 488 (Invitrogen) or Alexa-fluor 647 goat anti-rabbit (Jackson
566 Immunoresearch), mouse anti-MageA4 (clone 57B, 4 μ g/ml) coupled to Alexa Fluor 647 (Zenon
567 labeling kit, Molecular Probes), and mouse anti- α SMA (clone 1A4, 0,5 μ g/ml, Dako) detected using
568 Alexa-fluor 555 goat-anti mouse antibody. Isotype control antibodies or non- infected cells were
569 used as negative controls. Slides were counterstained with Prolong medium containing DAPI
570 (Molecular Probes). Images were acquired with the SP8 confocal system (Leica) connected to LAS
571 software or with DMRXA wide field microscope (Applied Precision), and analyzed using Fiji
572 software.

573

574 **Testosterone and inhibin B immunoassays**

575 Testosterone was assayed using a specific radioimmunoassay (Immunotech, Beckman Coulter).

576 Inhibin B was assayed using a commercial enzyme-linked immunosorbent assay (ELISA) kit (DSL-

577 10-84100 Active, Beckman Coulter).

578

579 **Viability assay**

580 Cell viability was assessed by measuring the release of lactate dehydrogenase (LDH) using the

581 enzymatic fluorimetric assay CytoTox-ONE™ Homogeneous Membrane Integrity Assay

582 (Promega).

583

584 **Cytokine release measurement**

585 A bead-based multiplex flow cytometry Legendplex assay (Biolegend, Ozyme) was used.

586 Fluorescence was read using the BD LSRII Fortessa flow cytometer.

587

588 **Statistics**

589 Data were analyzed with non-parametric paired Friedman-Dunn's or unpaired Kruskal-Wallis-

590 Dunn's test when more than 2 sets of samples were compared, as specified in figure legends. The

591 non-parametric Mann-Whitney test was used to analyze differences in viral load of mice testis at

592 day 5 and 9 post infection. Correlations were calculated using the Spearman test. Values were

593 considered significant when $P < 0.05$. Statistical analyses were performed using commercially-

594 available software (GraphPadPrism 6, GraphPad Software, Inc., La Jolla, California, USA).

595

596 **Study approval**

597 Normal testes were obtained either after orchidectomy from prostate cancer patients who had not

598 received any hormone therapy or at autopsy, and processed within 2 hours of surgery. The

599 procedure was approved by a local ethics committee (authorization #DC-2016-2783) and the French
600 national agency for biomedical research (authorization #PF S09-015).

601 Semen samples were obtained by masturbation from two ZIKV-infected donors living in the French
602 Caribbean at 7 and 11 days post-symptoms onset respectively, after informed consent was obtained,
603 in the French Cohort of Patients Infected by an Arbovirus (CARBO; ClinicalTrials.gov identifier
604 NCT01099852).

605 Mice were housed at the Institut Pasteur Animal Facility accredited by the French Ministry of
606 Agriculture for performing experiments on live rodents. Work on animals was performed in
607 compliance with French and European regulations on care and protection of laboratory animals (EC
608 Directive 2010/63, French Law 2013-118, February 6th, 2013). All experiments with IFNAR^{-/-}
609 mice were approved by the Ethics Committee #89 and registered under the reference #2016-0018.

610

611

612 **AUTHOR CONTRIBUTIONS**

613 GM performed experiments, analyzed data, co-wrote the paper and contributed to data
614 interpretation and study design. LH, APS, DM, FA and ALT performed experiments, analyzed data
615 and contributed to writing the paper. LH designed primers and interpreted PCR array results. JF and
616 SB performed experiments. GA interpreted data. KB and SL contributed testis tissues. GJ, LB and
617 AC contributed semen samples. TC and ML performed IFNAR mouse infection and tissue
618 collection. NDR designed experiments, interpreted the data and wrote the paper.

619 All authors read, edited and approved the manuscript.

620

621 **ACKNOWLEDGEMENTS**

622 This project received funding from the European Union's Horizon 2020 research and innovation
623 program under grant agreement no. 733176, ZIKAPLAN (grant agreement no. 734584) and
624 ZIKALLIANCE (grant agreement no. 734548) and was funded in part by the LabEx IBEID, Institut
625 Pasteur and Inserm. GM received support from REACTing. GA and NDR received funding from
626 CAPES-COFECUB. GJ and LB received funding from Agence de la Biomédecine and Agence
627 Régionale de santé Guadeloupe for the collection of semen from infected men. AC received funding
628 from the French Ministry of Health (Soutien Exceptionnel à la Recherche et à l'Innovation) and
629 support from REACTing. Experiments were conducted in part on L3, MRic and H2P2 platforms at
630 Biosit federative structure (Univ Rennes, CNRS, Inserm, BIOSIT [(Biologie, Santé, Innovation
631 Technologique de Rennes)] - UMS 3480, US_S 018). This publication was supported by the
632 European Virus Archive goes Global (EVAg) project that has received funding from the European
633 Union's Horizon 2020 research and innovation program under grant agreement N°653316. We
634 thank Xavier Montagutelli for his help with animal experiment and Laurianne Lesné and Christèle
635 Desdoits for their assistance in hormonal assays.

636

637

638 REFERENCES

639 1. Coelho FC et al. Higher incidence of Zika in adult women than adult men in Rio de Janeiro
640 suggests a significant contribution of sexual transmission from men to women. *Int. J. Infect. Dis.*
641 2016;51:128–132.

642 2. Yakob L, Kucharski A, Hue S, Edmunds WJ. Low risk of a sexually-transmitted Zika virus
643 outbreak. *Lancet Infect. Dis.* 2016;16(10):1100–1102.

644 3. Moreira J, Peixoto TM, Siqueira AM, Lamas CC. Sexually acquired Zika virus: a systematic
645 review. *Clin. Microbiol. Infect.* 2017;23(5):296–305.

646 4. Duggal NK et al. Frequent Zika Virus Sexual Transmission and Prolonged Viral RNA Shedding
647 in an Immunodeficient Mouse Model. *Cell Rep.* 2017;18(7):1751–1760.

648 5. Haddow AD et al. High Infection Rates for Adult Macaques after Intravaginal or Intrarectal
649 Inoculation with Zika Virus. *Emerg. Infect. Dis.* 2017;23(8):1274–1281.

650 6. Carroll T et al. Zika virus preferentially replicates in the female reproductive tract after vaginal
651 inoculation of rhesus macaques. *PLOS Pathog.* 2017;13(7):e1006537.

652 7. Tang WW et al. A Mouse Model of Zika Virus Sexual Transmission and Vaginal Viral
653 Replication. *Cell Rep.* 2016;17(12):3091–3098.

654 8. Duggal NK, McDonald EM, Ritter JM, Brault AC. Sexual transmission of Zika virus enhances in
655 utero transmission in a mouse model. *Sci. Rep.* 2018;8(1):4510.

656 9. Epelboin S et al. Zika virus and reproduction: facts, questions and current management. *Hum.*
657 *Reprod. Update* 2017;23(6):629–645.

658 10. Barzon L et al. Virus and Antibody Dynamics in Travelers With Acute Zika Virus Infection.
659 *Clin. Infect. Dis.* 2018;66(8):1173–1180.

660 11. Mead PS et al. Zika Virus Shedding in Semen of Symptomatic Infected Men. *N. Engl. J. Med.*
661 2018;378(15):1377–1385.

662 12. Govero J et al. Zika virus infection damages the testes in mice. *Nature* 2016;540(7633):438–
663 442.

664 13. Ma W et al. Zika Virus Causes Testis Damage and Leads to Male Infertility in Mice. *Cell*
665 2016;167(6):1511–1524 e10.

666 14. Griffin BD et al. DNA vaccination protects mice against Zika virus-induced damage to the
667 testes. *Nat. Commun.* 2017;8:15743.

668 15. Shan C et al. A single-dose live-attenuated vaccine prevents Zika virus pregnancy transmission
669 and testis damage. *Nat. Commun.* 2017;8(1):676.

670 16. Osuna CE et al. Zika viral dynamics and shedding in rhesus and cynomolgus macaques. *Nat.*
671 *Med.* 2016;22(12):1448–1455.

672 17. Hirsch AJ et al. Zika Virus infection of rhesus macaques leads to viral persistence in multiple
673 tissues. *PLOS Pathog.* 2017;13(3):e1006219.

674 18. Koide F et al. Development of a Zika Virus Infection Model in Cynomolgus Macaques. *Front.*
675 *Microbiol.* 2016;7:2028.

676 19. Joguet G et al. Effect of acute Zika virus infection on sperm and virus clearance in body fluids:
677 a prospective observational study. *Lancet Infect. Dis.* 2017;17(11):1200–1208.

678 20. Roulet V et al. Human testis in organotypic culture: application for basic or clinical research.
679 *Hum Reprod* 2006;21(6):1564–1575.

680 21. Young JC et al. TCam-2 seminoma cell line exhibits characteristic foetal germ cell responses to
681 TGF-beta ligands and retinoic acid. *Int. J. Androl.* 2011;34(4pt2):e204–e217.

682 22. Uraki R et al. Zika virus causes testicular atrophy. *Sci. Adv.* 2017;3(2):e1602899.

683 23. Xia Y, Zhu WJ, Hao SF, Liang WB, Li J. Stereological analysis of age-related changes of
684 testicular peritubular cells in men. *Arch. Gerontol. Geriatr.* 2012;55(1):116–119.

685 24. Nieschlag E, Behre HM (eds). *Andrology*. Verlag Berlin Heidelberg: Springer; 2010.

686 25. Robinson CL et al. Male germ cells support long-term propagation of Zika virus. *Nat. Commun.*
687 2018;9(1):2090.

688 26. Mansuy JM et al. Zika virus in semen and spermatozoa. *Lancet Infect. Dis.* 2016;16(10):1106–
689 1107.

690 27. Siemann DN, Strange DP, Maharaj PN, Shi P-Y, Verma S. Zika Virus Infects Human Sertoli
691 Cells and Modulates the Integrity of the *In Vitro* Blood-Testis Barrier Model. *J. Virol.*
692 2017;91(22):e00623-17.

693 28. Kumar A et al. Human Sertoli cells support high levels of Zika virus replication and persistence.
694 *Sci. Rep.* 2018;8(1):5477.

695 29. Kristensen DM et al. Ibuprofen alters human testicular physiology to produce a state of
696 compensated hypogonadism. *Proc. Natl. Acad. Sci.* 2018;115(4):E715–E724.

697 30. Adamopoulos DA, Lawrence DM, Vassilopoulos P, Contoyannis PA, Swyer GI. Pituitary-
698 testicular interrelationships in mumps orchitis and other viral infections. *Br-Med-J*
699 1978;1(6121):1177–1447.

700 31. Potter SJ, DeFalco T. Role of the testis interstitial compartment in spermatogonial stem cell
701 function. *Reproduction* 2017;153(4):R151–R162.

702 32. Cheng CY, Wong EW, Yan HH, Mruk DD. Regulation of spermatogenesis in the
703 microenvironment of the seminiferous epithelium: new insights and advances. *Mol Cell Endocrinol*
704 2010;315(1–2):49–56.

705 33. Mayerhofer A. Human testicular peritubular cells: more than meets the eye. *Reproduction*
706 2013;145(5):R107–R116.

707 34. Huits R et al. Zika virus in semen: a prospective cohort study of symptomatic travellers
708 returning to Belgium. *Bull. World Health Organ.* 2017;95(12):802–809.

709 35. Sergerie M, Mieusset R, Croute F, Daudin M, Bujan L. High risk of temporary alteration of
710 semen parameters after recent acute febrile illness. *Fertil. Steril.* 2007;88(4):970.e1-7.

711 36. Evenson DP, Jost LK, Corzett M, Balhorn R. Characteristics of human sperm chromatin
712 structure following an episode of influenza and high fever: a case study. *J. Androl.* 2000;21(5):739–
713 46.

714 37. Quicke KM et al. Zika Virus Infects Human Placental Macrophages. *Cell Host Microbe*
715 2016;20(1):83–90.

716 38. Mladinich MC, Schwedes J, Mackow ER. Zika Virus Persistently Infects and Is Basolaterally
717 Released from Primary Human Brain Microvascular Endothelial Cells. *MBio* 2017;8(4):e00952-17.

718 39. Strange DP, Green R, Siemann DN, Gale M, Verma S. Immunoprofiles of human Sertoli cells
719 infected with Zika virus reveals unique insights into host-pathogen crosstalk. *Sci. Rep.*
720 2018;8(1):8702.

721 40. Strange DP et al. Human testicular organoid system as a novel tool to study Zika virus
722 pathogenesis. *Emerg. Microbes Infect.* 2018;7(1):82.

723 41. Singh PK et al. Zika virus infects cells lining the blood-retinal barrier and causes chorioretinal
724 atrophy in mouse eyes. *JCI insight* 2017;2(4):e92340.

725 42. Van der Hoek KH et al. Viperin is an important host restriction factor in control of Zika virus
726 infection. *Sci. Rep.* 2017;7(1):4475.

727 43. Savidis G et al. The IFITMs Inhibit Zika Virus Replication. *Cell Rep.* 2016;15(11):2323–2330.

728 44. Perelygin AA et al. Positional cloning of the murine flavivirus resistance gene. *Proc. Natl.*
729 *Acad. Sci.* 2002;99(14):9322–9327.

730 45. Chen J et al. Outcomes of Congenital Zika Disease Depend on Timing of Infection and
731 Maternal-Fetal Interferon Action. *Cell Rep.* 2017;21(6):1588–1599.

732 46. Schoggins JW et al. A diverse range of gene products are effectors of the type I interferon
733 antiviral response. *Nature* 2011;472(7344):481–485.

734 47. Ngono AE, Shresta S. Immune Response to Dengue and Zika. *Annu. Rev. Immunol.*
735 2018;36(1):annurev-immunol-042617-053142.

736 48. Xia H et al. An evolutionary NS1 mutation enhances Zika virus evasion of host interferon
737 induction. *Nat. Commun.* 2018;9(1):414.

738 49. Satie AP et al. Excess type I interferon signaling in the mouse seminiferous tubules leads to

739 germ cell loss and sterility. *J Biol Chem* 2011;286(26):23280–23295.

740 50. Hasan M et al. Trex1 regulates lysosomal biogenesis and interferon-independent activation of
741 antiviral genes. *Nat. Immunol.* 2012;14(1):61–71.

742 51. Sheng Z-Y et al. Sertoli Cells Are Susceptible to ZIKV Infection in Mouse Testis. *Front. Cell.*
743 *Infect. Microbiol.* 2017;7:272.

744 52. Chan JF-W et al. Zika Virus Infection in Dexamethasone-immunosuppressed Mice
745 Demonstrating Disseminated Infection with Multi-organ Involvement Including Orchitis Effectively
746 Treated by Recombinant Type I Interferons. *EBioMedicine* 2016;14:112–122.

747 53. Winkler CW et al. Adaptive Immune Responses to Zika Virus Are Important for Controlling
748 Virus Infection and Preventing Infection in Brain and Testes. *J. Immunol.* 2017;198(9):3526–3535.

749 54. Dejucq N, Lienard MO, Guillaume E, Dorval I, Jegou B. Expression of interferons-alpha and -
750 gamma in testicular interstitial tissue and spermatogonia of the rat. *Endocrinology*
751 1998;139(7):3081–3087.

752 55. Le Tortorec A et al. Antiviral responses of human Leydig cells to mumps virus infection or poly
753 I:C stimulation. *Hum Reprod* 2008;23(9):2095–2103.

754 56. Dejucq N, Lienard MO, Jegou B. Interferons and interferon-induced antiviral proteins in the
755 testis. *J Reprod Immunol* 1998;41(1–2):291–300.

756 57. Dejucq N, Chousterman S, Jegou B. The testicular antiviral defense system: localization,
757 expression, and regulation of 2'5' oligoadenylate synthetase, double-stranded RNA-activated
758 protein kinase, and Mx proteins in the rat seminiferous tubule. *J Cell Biol* 1997;139(4):865–873.

759 58. Lalle E et al. Prolonged detection of dengue virus RNA in the semen of a man returning from
760 Thailand to Italy, January 2018. *Eurosurveillance* 2018;23(18). doi:10.2807/1560-
761 7917.ES.2018.23.18.18-00197

762 59. Barbosa CM et al. Yellow Fever Virus DNA in Urine and Semen of Convalescent Patient,
763 Brazil. *Emerg. Infect. Dis.* 2018;24(1):176–178.

764 60. Bandeira AC et al. Prolonged shedding of Chikungunya virus in semen and urine: A new
765 perspective for diagnosis and implications for transmission. *IDCases* 2016;6:100–103.

766 61. Armah HB et al. Systemic distribution of West Nile virus infection: postmortem
767 immunohistochemical study of six cases. *Brain Pathol.* 2007;17(4):354–62.

768 62. Guérin B, Pozzi N. Viruses in boar semen: detection and clinical as well as epidemiological
769 consequences regarding disease transmission by artificial insemination. *Theriogenology*
770 2005;63(2):556–72.

771 63. Stassen L, Armitage C, van der Heide D, Beagley K, Frentiu F. Zika Virus in the Male
772 Reproductive Tract. *Viruses* 2018;10(4):198.

773 64. Spencer JL et al. Replication of Zika Virus in Human Prostate Cells: A Potential Source of
774 Sexually Transmitted Virus. *J. Infect. Dis.* 2018;217(4):538–547.

775 65. Houzet L et al. Seminal SIV in chronically-infected cynomolgus macaques is dominated by
776 virus originating from multiple genital organs. *J. Virol.* 2018;JVI.00133-18.

777 66. Mizuno Y, Gotoh A, Kamidono S, Kitazawa S. [Establishment and characterization of a new
778 human testicular germ cell tumor cell line (TCam-2)]. *Nihon Hinyokika Gakkai Zasshi.*
779 1993;84(7):1211–8.

780 67. Sadri-Ardekani H et al. Propagation of Human Spermatogonial Stem Cells In Vitro. *JAMA*
781 2009;302(19):2127.

782 68. Müller U et al. Functional role of type I and type II interferons in antiviral defense. *Science*
783 1994;264(5167):1918–21.

784 69. Lanciotti RS et al. Genetic and Serologic Properties of Zika Virus Associated with an Epidemic,
785 Yap State, Micronesia, 2007. *Emerg. Infect. Dis.* 2008;14(8):1232–1239.

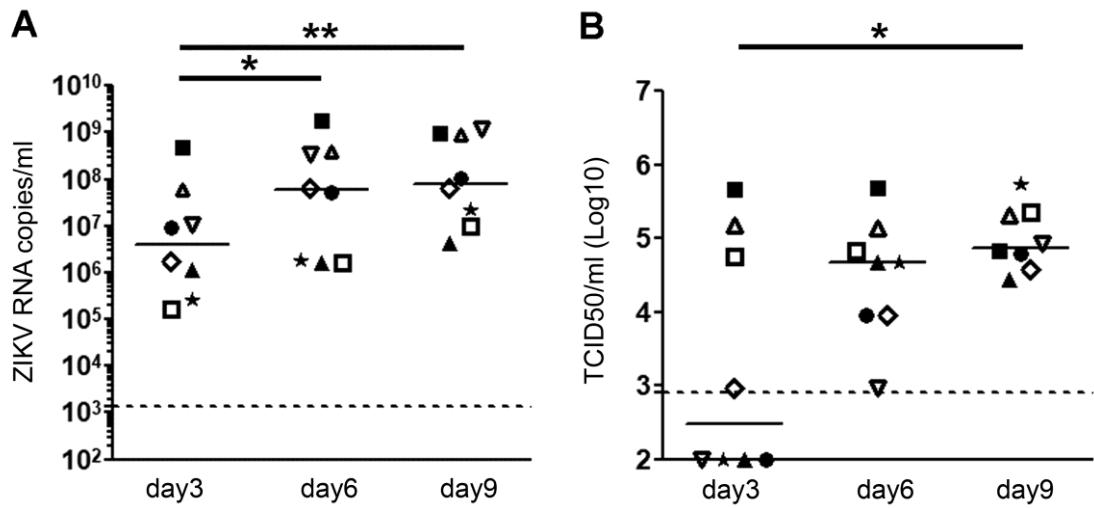
786 70. Ye J et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain
787 reaction. *BMC Bioinformatics* 2012;13(1):134.

788 71. Wang F et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-
789 embedded tissues. *J. Mol. Diagnostics* 2012;14(1):22–29.

790 72. Deleage C et al. Defining HIV and SIV Reservoirs in Lymphoid Tissues. *Pathog. Immun.*
791 2016;1(1):68–106.

792 73. Deleage C, Chan CN, Busman-Sahay K, Estes JD. Next-generation in situ hybridization
793 approaches to define and quantify HIV and SIV reservoirs in tissue microenvironments.
794 *Retrovirology* 2018;15(1):4.

795 74. Matusali G et al. Detection of Simian Immunodeficiency Virus in Semen, Urethra, and Male
796 Reproductive Organs during Efficient Highly Active Antiretroviral Therapy. *J Virol*
797 2015;89(11):5772–5787.


798 75. Roulet V et al. Susceptibility of human testis to human immunodeficiency virus-1 infection in
799 situ and in vitro. *Am J Pathol* 2006;169(6):2094–2103.

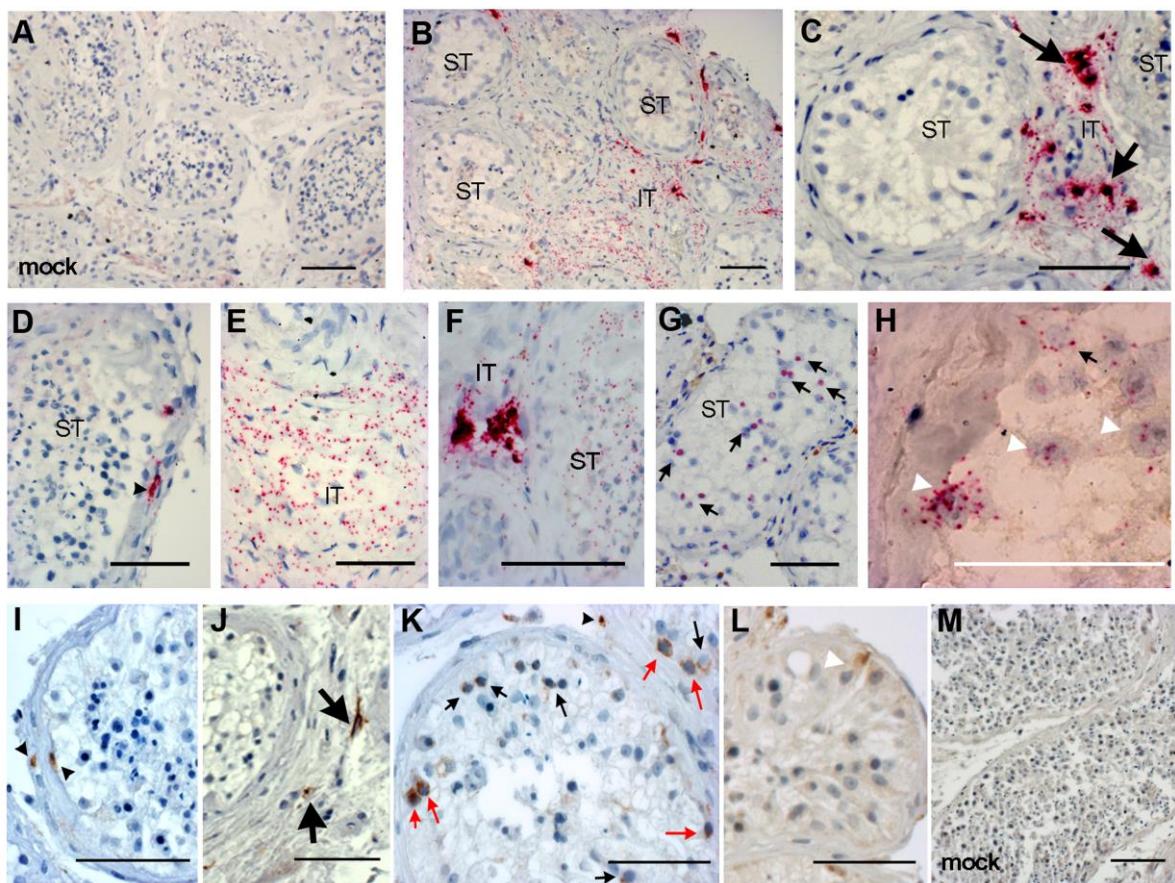
800

801

802 **FIGURES AND FIGURE LEGENDS**

803

804

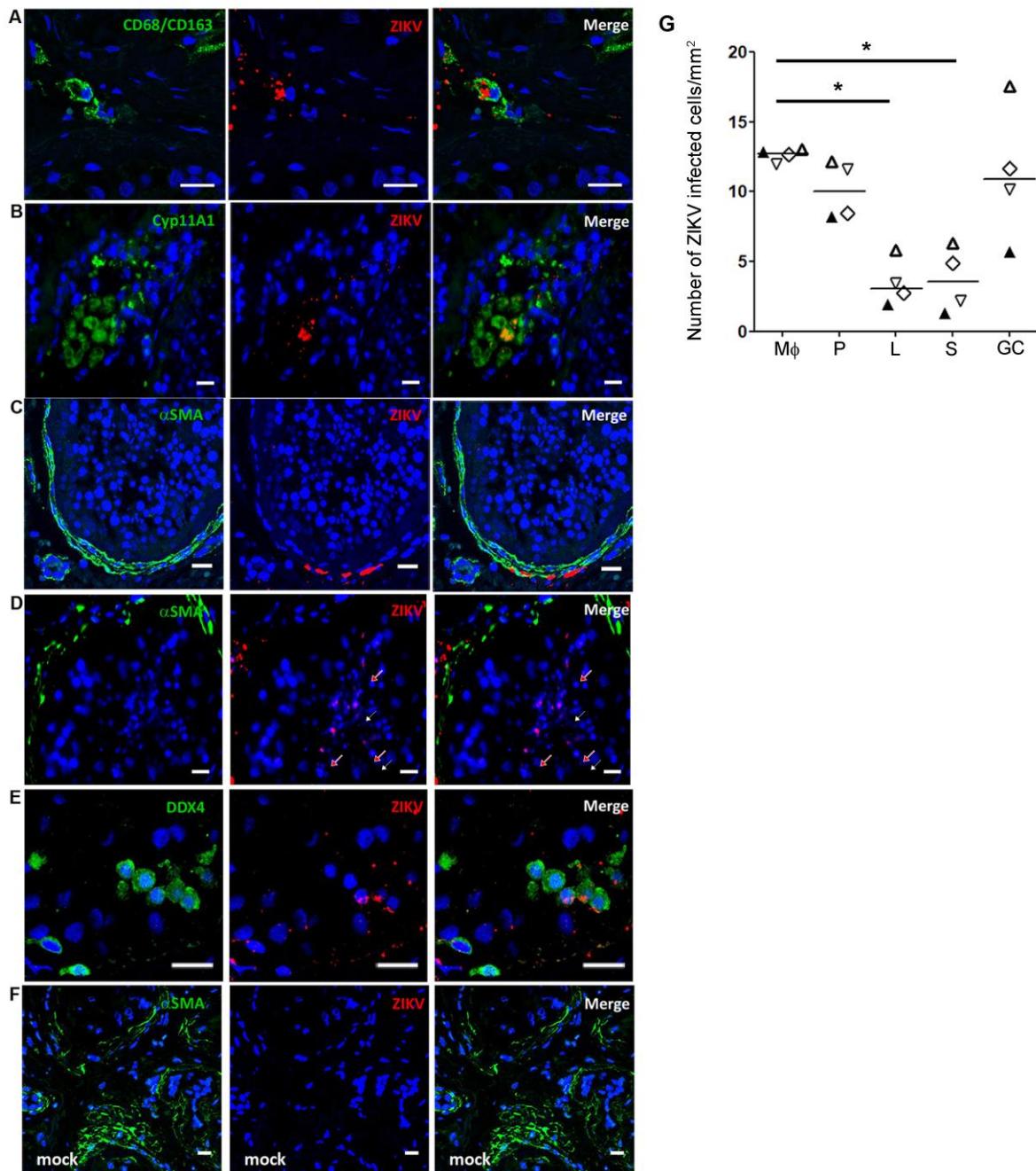

805

806 **Figure 1 ZIKA virus replicates in human testicular tissue.** Human testis explants from 8 donors
 807 were ex vivo infected overnight with 10⁵ TCID₅₀ (corresponding to 2.2.10⁷ to 2.9.10⁷ vRNA copies)
 808 from a low-passage ZIKV strain isolated in 2015 in the French Caribbean
 809 (MRS_OPY_Martinique_PaRi-2015). Explants were thoroughly washed and cultured on inserts in
 810 1 ml of medium/well for 9 days, with media fully removed and changed every 3 days. Each of the
 811 time points (day 3, day 6, day 9) represent de novo viral release over a 3-day-culture period. A)
 812 ZIKV RNA release over a 3-day-culture period at day 3, day 6 and day 9 detected by RT-qPCR; B)
 813 Viral titers determined by infectivity assay of 3-day-culture period tissue supernatants on VeroE6
 814 cells. Each symbol represents a different donor (same symbol/donor throughout the manuscript
 815 figures). Dotted lines represent the detection limit of the assays. Mock-infected explants were
 816 always below detection level. Bars represent median. *P<0,05; **P<0,01 (Friedman-Dunns non-
 817 parametric comparison).

818

819

820

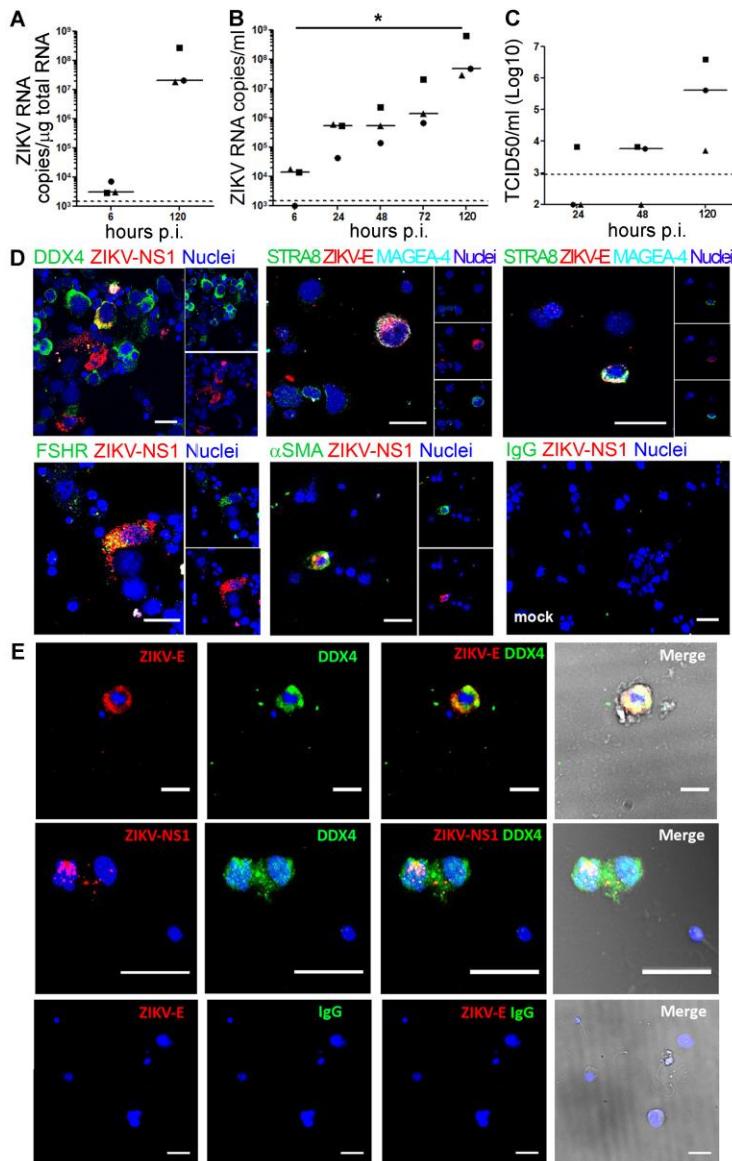

821

822

823 **Figure 2 ZIKV infects somatic and germ cells in human testis explants.**

824 A-H) Representative images of RNAscope in situ hybridization for ZIKV RNA in control mock-
 825 infected (A) and ZIKV-infected testis explant (n=8 independent donors) after 6 days of culture (B-
 826 H). ZIKV RNA labeling was observed in the interstitial tissue (IT) of testis explants (B, C, E, F), in
 827 cells bordering the seminiferous tubules (ST) (B, D) and within seminiferous tubules (F,G,H). I-M)
 828 Representative images of immunohistochemistry staining of NS1-ZIKV performed on ZIKV-
 829 infected (I-L) and mock-infected (M) testis explants in culture for 6 days (n=8 independent donors).
 830 Black arrow heads point at infected cells in the extracellular matrix surrounding the seminiferous
 831 tubules. Thick arrows point at infected cells in the interstitial tissue. Thin black arrows point at
 832 infected germ cells. Thin red arrows point at infected spermatogonia. White arrow heads point at
 833 Sertoli cell nucleus. Black scale bars=100μm; White bar=50μm.

834

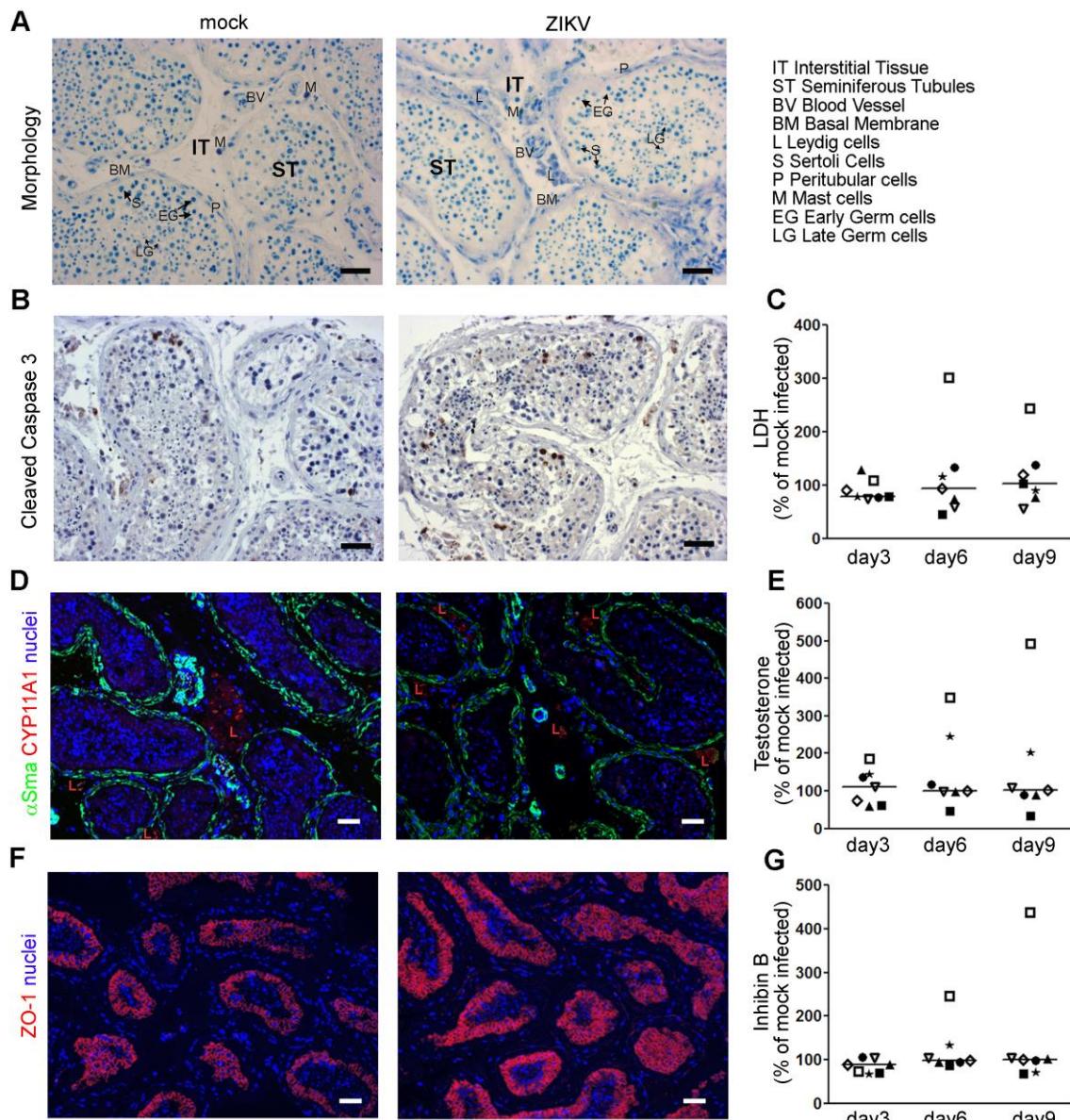


835

836 **Figure 3 Characterization and quantification of ZIKV-infected human testicular cells ex vivo.**
 837 RNAscope in situ hybridization for vRNA coupled with immunofluorescence for cell markers
 838 identified ZIKV RNA in CD68/CD163+ macrophages (A), Cyp11A1+ Leydig cells (B), αSMA+
 839 peritubular cells (C), late germ cells localized near the lumen in seminiferous tubules (white arrows:
 840 round spermatids; red arrows: elongated spermatids) (D) and DDX4+ early germ cells (E). Staining
 841 for ZIKV was never observed in mock-infected testis (F). Nuclei are stained in blue. Scale
 842 bars=20μm. (G) Infected cells were quantified in at least 3 whole tissue sections from 4 testis
 843 donors (each represented by a different symbol) at day 9 p.i. Mφ: macrophages; P: peritubular cells;
 844 L: Leydig cells; S: Sertoli cells; GC: germ cells. Bars represent median. *P<0,05 (Friedman-Dunns
 845 non parametric comparison).

846

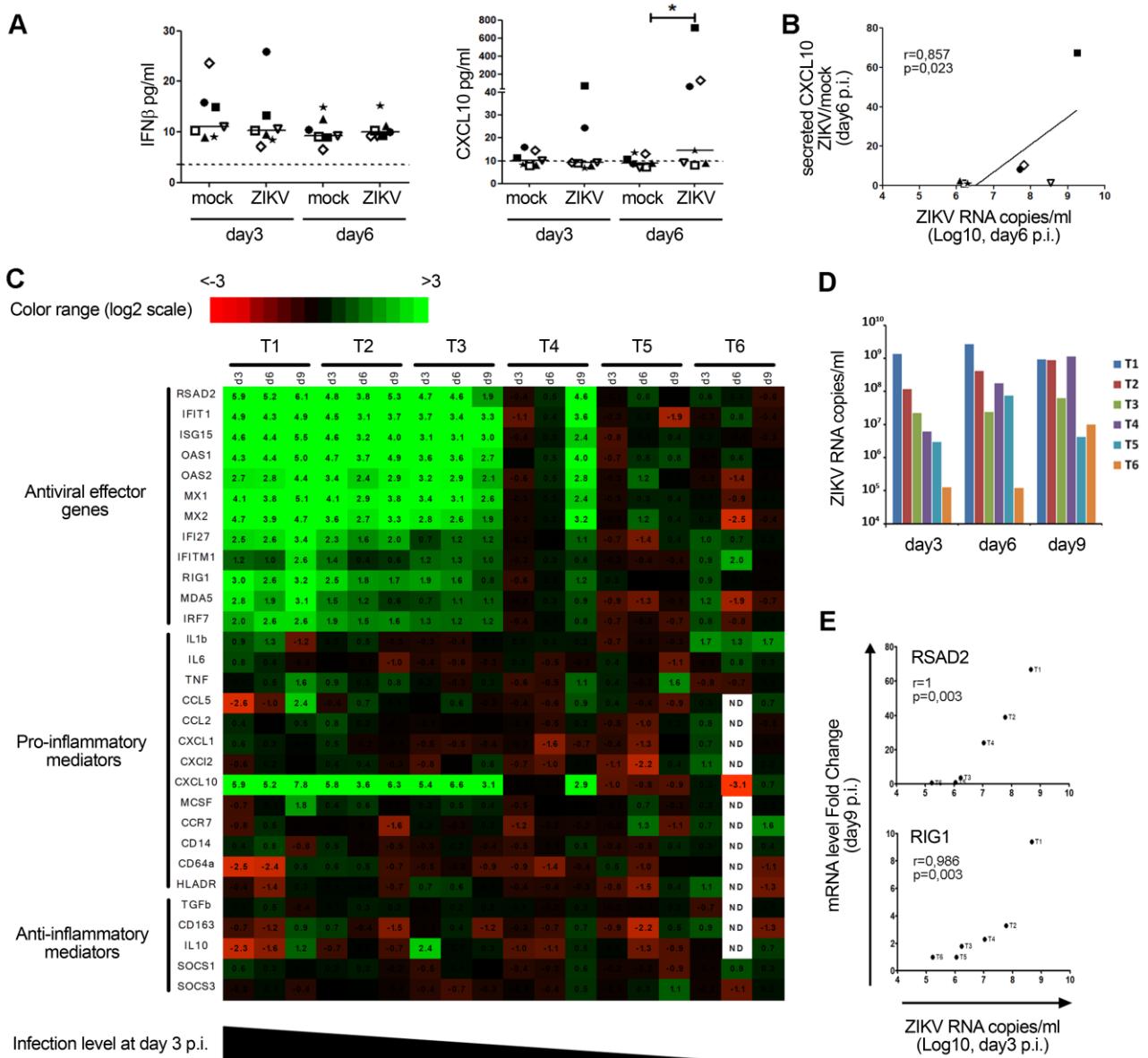
847



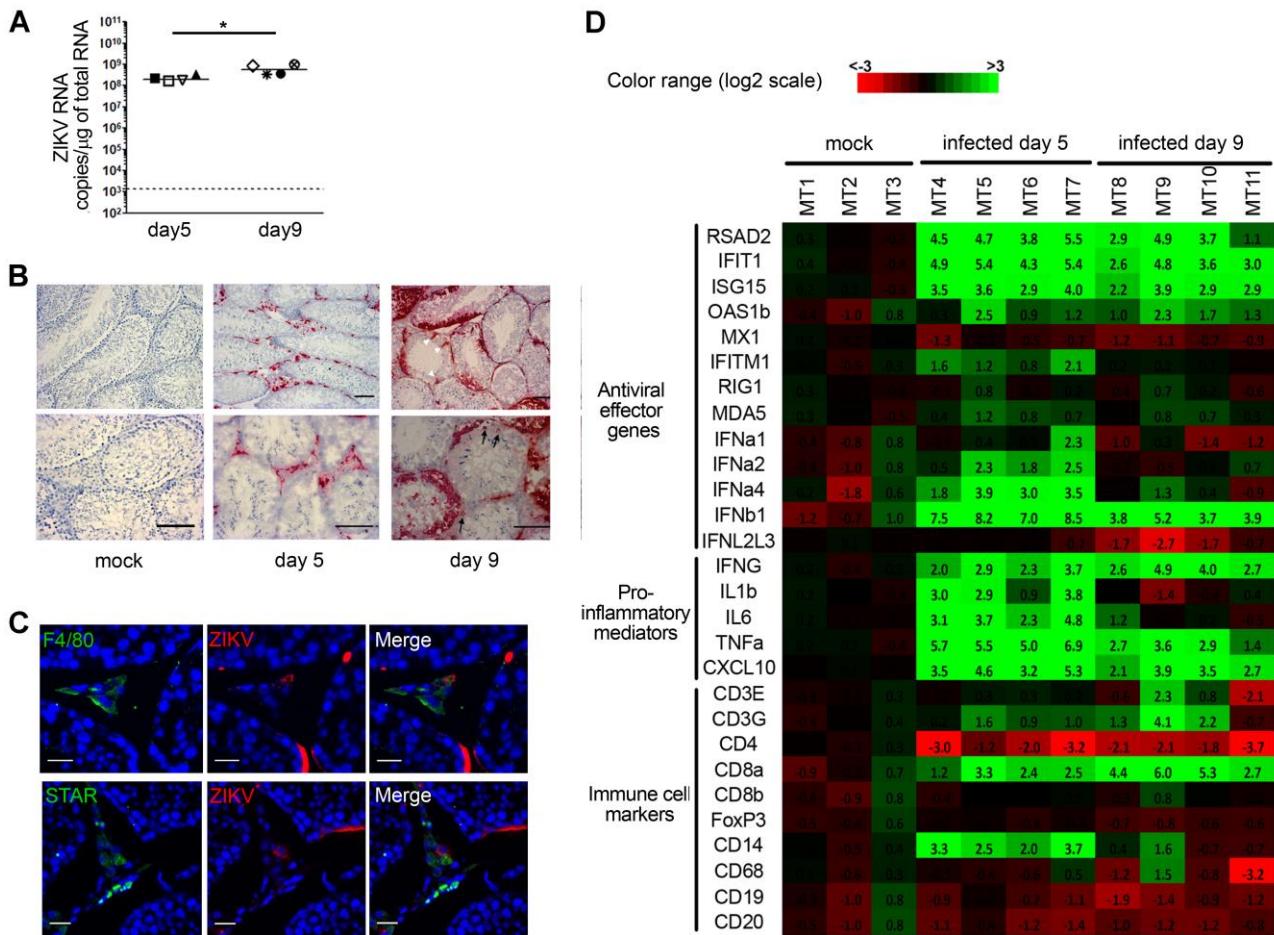
848

849

850


851 **Figure 4 ZIKV replicates in human testicular germ cells in vitro and in vivo.** A-C) Primary
 852 testicular cells were infected with ZIKV (MOI 1, corresponding to 7.15×10^5 TCID₅₀ units/ ml/ 0.5
 853 million cells). ZIKV RNA detected by RT-qPCR in cells (A) and culture supernatants (B). C) Viral
 854 titers determined by infectivity assay of tissue supernatants on VeroE6 cells. Each dot represents
 855 independent donors. Bars represent median values. Dotted lines indicate detection limit. *P<0,05
 856 (Friedman-Dunns non-parametric comparison). D) Immunofluorescence against ZIKV NS1 or
 857 envelope (ZIKV-E) proteins combined with cell markers for all germ cells (DDX4) or specific germ
 858 cell types (STRA8, MAGEA4), Sertoli cells (FSH-R) and peritubular cells (αSMA). Nuclei are
 859 stained in blue. E) Detection of infected germ cells in semen from ZIKV-infected men.
 860 Immunofluorescent labelling of semen cell smears from two ZIKV-infected patients, one at day 7
 861 (top panel) and one at day 11 (middle panel) post-symptoms onset. ZIKV Envelope (ZIKV-E) or
 862 NS1 protein co-labelled with the germ cell marker DDX4. Bottom panels show semen from a
 863 healthy individual stained with anti- ZIKV-E antibody and IgG isotype as a negative control. Nuclei
 864 are stained in blue. In the merge panels, brightfield images are included to visualize the cell's
 865 morphology. Scale bars=20µm.
 866

867
868
869


870 **Figure 5 ZIKV infection ex vivo does not alter human testis explant morphology, cell viability**
 871 **or hormonal production.** A) Toluidine histological staining of testis explants, shown here for
 872 mock- infected (left panel) and ZIKV-infected (right panel) testis explants at day 6 post-infection
 873 (p.i.). B) Cleaved caspase 3 IHC to detect apoptotic cells in mock (left panel) and ZIKV-infected
 874 (right panel) testis explants, shown here for day 6 p.i. C) Lactate dehydrogenase (LDH) release in
 875 testis supernatant expressed as % of mock-infected explants at the corresponding day of culture. D)
 876 Immuno-fluorescent co-labeling of peritubular (α SMA) and Leydig (Cyp11A1) cells, shown on
 877 tissue sections at day 6 p.i. for mock (left panel) and ZIKV-infected (right panel) explants. Nuclei
 878 are stained in blue. E, G) Testosterone and inhibin B release in testis supernatants expressed as % of
 879 mock-infected explants at the corresponding day of culture. F) Immuno-fluorescent labeling of
 880 Sertoli cells tight junctions associated protein ZO-1 in tissues sections for mock (left panel) and
 881 ZIKV-infected (right panel) explants, shown at day 6 p.i. Nuclei are stained in blue. Bars=50 μ m. C,
 882 E, G: each symbol represents a different donor; horizontal bars represent median values.

883

884
885

Figure 6 ZIKV triggers a broad antiviral response but no IFN-up-regulation and a minimal pro-inflammatory response in human testicular tissue. A) Levels of IFN- β and CXCL10 measured by flow-cytometer based multiplex assay in mock-infected and ZIKV-infected human testis explant supernatants. Each symbol represents a different donor. Bars represent median values. *P<0,05 (Friedman-Dunns non-parametric comparison). **B)** Correlation between secreted CXCL10 induction in ZIKV-infected versus mock-infected explants and ZIKV RNA level in culture supernatant at day 6 post-infection (p.i.) (Spearman non-parametric test). **C)** Innate immune gene expression determined by RT-qPCR in the testis explants from 6 donors (T1-T6) infected with ZIKV for 3, 6 and 9 days (d3, d6, d9). Heat-map shows log2 transformed expression ratios between ZIKV-infected and time-matched mock-infected controls. Green indicates up-regulation and red down-regulation of mRNA compared to controls. Type I and II IFN mRNAs were below the quantification threshold (not shown). **D)** Viral loads in supernatants of the testis explants analyzed in (C). **E)** Examples of correlation between gene expression fold at day 9 and the level of infection at day 3 p.i. (Spearman non-parametric test). Other correlations are shown in Figure S9.

900

901
902

Figure 7 Innate immune response to ZIKV infection in the testis from IFNAR^{-/-} mouse.
 A) vRNA measured by RT-qPCR in the testis from mice infected with ZIKV for 5 or 9 days (4 animals/group). Each dot represents one animal and horizontal bars represent the median. The dotted line indicates the limit of detection. Mock-infected (n=3) were below the detection threshold (not shown). * P<0.05 (Mann-Whitney test, non-parametric comparison). B) Detection of ZIKV RNA by RNAscope in situ hybridization in testis tissue sections from mice mock-infected or at day 5 or day 9 post-infection. White arrow heads point at Sertoli cells, thin black arrows point at germ cells. Scale bars=100µm. C) RNAscope in situ hybridization for ZIKV RNA coupled with immunofluorescence for cell markers identified ZIKV RNA in F4/80+ macrophages and STAR+ Leydig cells. Nuclei are stained in blue. Scale bars=20µm. D) Expression of a range of innate immune genes and of genes encoding immune cell markers was determined by RT-qPCR in testis from 3 mock-infected mice (mouse testis MT1 to MT3) and 4 ZIKV-infected mice at day 5 (MT5 to MT7) and day 9 (MT8 to MT11) post-infection. Fold induction is presented as a heat-map of log₂ transformed expression ratios to the average expression level in mock-infected mice. On the scale bar, green indicates up-regulation and red, down-regulation.

917

919