SUPPLEMENTARY INFORMATION

Supplementary Figure 1: TNF-TNFR promotes purified toxin induced Pyrin inflammasome activation. (A) Representative images marking pyroptotic cell death (white arrowheads) in BMDMs in response to control (to *C. difficile* toxin-negative) and *C. difficile* toxin stimuli. *Tnf* induction in response to (B) *C. difficile* toxin (in house) and (C) purified toxin (TcdB) stimuli. (D) Caspase-1 processing, (E) IL-18 and (F) LDH release in BMDMs

following stimulation with purified TcdB. (B, C, E, F) Data is presented as mean \pm SEM and representative of atleast three independent repeats. (E, F) * P<0.5, and ***P<0.001 compared to WT by using (E) Student's t-test, (F) one-way ANOVA followed by Fischer's LSD posttest.

Supplementary Figure 2: TNF signaling does not affect NLRC4 and AIM2 inflammasome activation. (A) Caspase-1 processing and (B) IL-1β release in response to

NLRC4 triggers, Salmonella (MOI 1) and Pseudomonas (MOI 1) for six hours. (C) Caspase-1 processing and (D) IL-1 β release in response AIM2 activation- LPS primed cells transfected with dAdT (2.5 μ g/ml) for four hours. (B, D) Data is presented as mean ± SEM and is representative of atleast two independent repeats and (B, D) NS refers to not significant using Student's t-test.

Supplementary Figure 3: Splenic composition in *Mefv*^{V726A/V726A} mice is modulated by TNF signaling. Representative flow plots demonstrating the proportion of (A) T cells (CD3), B cells (CD19+), and (B) neutrophils (CD11b+Ly6G+CD3-CD19-) in spleens of indicated mice.

Supplementary Figure 4: TNF production by hematopoietic cells promotes neutrophilia in *Mefv*^{V726A/V726A} mice. Proportion of neutrophils in blood of WT mice irradiated and reconstituted with bone marrow cells from various *Mefv* strains. The terminology for the groups is described as donor>>recipient. Data is presented as mean \pm SEM and includes N=5-10 mice/experimental group. ****P<0.0001 and ns- not significant compared to *Mefv*^{V726A/V726A} >> WT group using Student's t-test.

Supplementary Figure 5: Treg induction in $Mefv^{V726A/V726A}$ mice is not dependent on TNFR signaling. Proportion of CD4+ T cells that express Foxp3 in (A) spleen and (B)

popliteal lymph nodes (pLN). Data is presented as mean \pm SEM and includes N=6-12 per genotype. * P<0.5, **P<0.01, ****P<0.0001 and ns- not significant compared to $Mefv^{V726A/V726A}$ by using one-way ANOVA followed by Fisher's LSD post-test.

Graphical abstract

Supplementary Figure 6: Graphical abstract

Pyrin activation is promoted by the TNF-TNFR axis in both canonical stimuli and constitutive activation observed in FMF-KI cells. In the FMF mouse model, pyrin inflammasome activation leads to IL-1 β production which is the dominant factor in FMF pathology. Inflammasome-mediated IL-1 β promotes TNF production that signals through TNFR1 to promote neutrophilia, runting and anemia. Thus, TNF signaling forms a feedback loop for exacerbation of systemic inflammation in FMF model. On the other hand, TNFR2 signaling is specifically

required to inhibit development of colon and joint inflammation.

UNCROPPED BLOTS: lanes that correspond to those shown in the cropped images within the manuscript are marked by a red box.

Full unedited gel for Fig S2A/ S2B