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Introduction
The tumor suppressor gene phosphatase and tensin homo-
log (PTEN; OMIM 601728) was originally recognized as being 
mutated somatically in multiple sporadic cancers (1, 2), as well as 
mutated in the germline of patients with Cowden syndrome (CS; 
OMIM 158350), a hereditary overgrowth and cancer predisposi-
tion disorder (3, 4). PTEN is a dual-specificity phosphatase at two 
levels. First, PTEN has been shown to dephosphorylate protein 
substrates on serine/threonine and tyrosine residues, thus act-
ing as a dual-specificity protein phosphatase (5). One example is 
the tyrosine dephosphorylation of focal adhesion kinase (FAK) 
to inhibit cell spreading (6). Second, PTEN also dephosphory-
lates phosphatidylinositol 3,4,5-trisphosphate (PIP3) to phos-
phatidylinositol 4,5-bisphosphate (PIP2) — hence, PTEN is also 
a dual-specificity phosphatase in the sense that it dephosphor-
ylates lipid substrates in addition to protein substrates (7). As a 
lipid phosphatase, PTEN canonically negatively regulates the 
phosphatidylinositol 3-kinase (PI3K) signaling cascade, thereby 
dampening downstream protein kinase B (PKB/AKT) signaling 
(7, 8). Left unchecked, such as through PTEN mutation or inacti-
vation, elevated PIP3 levels cause constitutive activation of AKT 
with subsequent downstream cascades resulting in, e.g., upregu-
lation of mammalian target of rapamycin (mTOR) signaling (9). 
This ultimately leads to cell survival, growth, proliferation, and 
decreased apoptosis (10–12). Notably, AKT represents only one 
of many PIP3-binding proteins regulated by the PI3K/PTEN axis 
(13, 14). Although originally believed to be an exclusively cytoplas-
mic phosphatase, PTEN is now known to also function within the 

nucleus, contributing to cell cycle regulation, DNA double-strand 
break repair, genomic stability, and chromatin remodeling (15–
20). Therefore, although PTEN exerts much of its function as a 
lipid phosphatase counteracting the PI3K/AKT/mTOR signaling 
pathway, PTEN also exerts protein phosphatase–dependent and 
pan-phosphatase-independent activities within both the cyto-
plasm and the nucleus (ref. 21 and Figure 1).

Germline PTEN mutations have been identified in patients 
with different clinical syndromes, and that subset is termed PTEN  
hamartoma tumor syndrome (PHTS) (22). Besides PTEN mutation– 
positive CS, PHTS also encompasses individuals with Bannayan- 
Riley-Ruvalcaba syndrome (BRRS), Proteus syndrome (PS), and 
Proteus-like syndrome who have PTEN mutations (22–26). BRRS 
(OMIM 153480) is a rare congenital disorder classically charac-
terized by macrocephaly in combination with intestinal hamarto-
matous polyposis, vascular malformations, lipomas, and genital 
freckling (27, 28). PS (OMIM 176920) is a rare, complex, and high-
ly variable disorder characterized by progressive, postnatal over-
growth of multiple tissues derived from different cell lineages (29). 
Relatedly, germline and somatic mosaic mutations in other genes 
encoding components of the PI3K/AKT/mTOR signaling pathway 
downstream of PTEN predispose patients to partially overlapping 
sets of clinical manifestations reminiscent of PHTS. These over-
growth syndromes are known as the PTEN-opathies (ref. 30 and 
Figure 2). A subset of individuals with the PTEN-opathies harbor 
germline mutations in components of the PTEN signaling cascade 
(Table 1), predisposing these individuals to overgrowth and/or  
cancer in different organs. Postzygotic somatic mosaic mutations 
in PTEN pathway genes cause overgrowth disorders restricted to 
the tissues where the mutations occurred. One example is PS, in 
which a somatic mosaic activating AKT1 mutation (p.Glu17Lys) has 
been identified in more than 90% of individuals meeting clinical 
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and mechanistic insights that put forth why some organs overgrow 
but never turn malignant while others develop malignancies. Impor-
tantly, the elucidation of the underlying mechanisms is of clinical 
importance since it promotes the implementation of evidence-based 
medical management and preventative and therapeutic approaches.

PTEN dysfunction and cancer
The identification of germline PTEN mutations allowed for the 
comprehensive elucidation of component cancers and associated  

diagnostic criteria (31). Finally, somatic mutations in components 
of the PTEN signaling cascade occurring in postnatal somatic tis-
sue can drive a vast array of sporadic cancers (32–35).

Overgrowth syndromes are important to diagnose, not only for 
timely disease management, but also because several of these condi-
tions are associated with elevated risks of cancer. Here, we utilize the 
PTEN-opathies, particularly PHTS, as a model to examine how per-
turbation of the PTEN signaling pathway leads to a spectrum of het-
erogeneous clinical phenotypes. We discuss the genetic, functional, 

Figure 1. Cytoplasmic and nuclear PTEN signaling. In the cytoplasm, PTEN canonically functions to regulate the PI3K/AKT/mTOR signaling pathway. Under 
growth factor stimulation, PI3K is activated and catalyzes the phosphorylation of PIP2 to PIP3. PIP3 recruits PDK1 to the plasma membrane, which then 
contributes to the activation of AKT. AKT regulates a myriad of downstream cellular processes such as cell growth, proliferation, and decreased apoptosis. 
The lipid phosphatase activity of PTEN counteracts PI3K by dephosphorylating PIP3 to PIP2, thereby dampening AKT activation. In the nucleus, PTEN plays a 
vital role in maintaining genomic stability, chromosomal architecture, cell cycle control, and the regulation of ribosome biogenesis within nucleoli.

Table 1. Germline mutation frequencies of PTEN pathway genes in the PTEN-opathies

Syndrome (OMIM) Gene Germline mutation frequency References

Cowden syndrome, CS (158350)
PTEN 25%–85% 41, 60, 83
AKT1 2% 167
PIK3CA 9% 167

Bannayan-Riley-Ruvalcaba syndrome, BRRS (153480) PTEN 60% 83, 84, 168, 169
Macrocephaly–autism spectrum disorder, macro-ASD (605309) PTEN 10%–20% 71, 108–111
Proteus and Proteus-like syndromes, PS (176920) PTEN 7%–67% 23–25, 44, 170
Megalencephaly–capillary malformation syndrome, MCAP (602501) PIK3CA 8% 171

Megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome, MPPH (603387)
PIK3R2 Up to 41% 172
AKT3 Up to 29% 172
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lipid phosphatase activity only (4, 46, 47). Interestingly, several 
PTEN mutations retain partial or even complete catalytic activity 
(48), suggesting alternative mechanisms for compromised PTEN 
function. For example, catalytically active mutant PTEN p.Lys-
289Glu is characterized by a nuclear import defect due to loss of 
monoubiquitination at p.Lys289 (49). Nuclear PTEN is thought to 
be protected from polyubiquitination and subsequent proteasome- 
mediated degradation in the cytoplasm; therefore, it is able to 
dampen AKT signaling and induce p53-independent apoptosis 
(49). In support of these observations, nuclear exclusion of PTEN 
has been associated with more aggressive, advanced-stage cancers 
(50–54). Relatedly, the N-terminal phosphatase domain contains 
two ATP-binding motifs, critical for regulating PTEN exit from 
the nucleus (55). Expectedly, ATP-binding motif mutants (e.g., 
p.Lys62Arg, p.Tyr65Cys, p.Lys125Glu) do not bind ATP efficient-
ly, resulting in nuclear PTEN mislocalization. This subsequently  
leads to increased cellular proliferation, reduced/abrogated apop-
tosis, and increased anchorage-independent growth (56, 57). 
PTEN has also been shown to be SUMOylated at Lys266 within 
the C2 domain, which facilitates PTEN binding to the plasma 
membrane through electrostatic interactions and subsequent 
suppression of PI3K/AKT signaling, both in vitro and in vivo (58). 
Additionally, germline PTEN mutations have been observed at 
Lys254 (Figure 3), a residue that is also SUMOylated to enhance 
PTEN nuclear import to then function in DNA repair (59). There-
fore, mutations at Lys254 result in nuclear exclusion of PTEN and 
compromised DNA repair mechanisms.

Aside from intragenic mutations, approximately 10% of CS 
patients harbor germline PTEN promoter mutations (60). Patho-

lifetime risks (36). Three independent studies revealed elevated 
risks for breast, thyroid, endometrial, kidney, and colon cancers 
and melanoma in PHTS (36–38). Similarly to other hereditary 
cancer syndromes, the risk for bilateral and multifocal cancer 
is elevated (22). Relatedly, individuals with PHTS have a 7-fold 
increased risk of developing second malignant primary neo-
plasms (39). Collectively, these cancer risk assessment studies 
inform clinical surveillance recommendations and medical man-
agement of individuals with germline PTEN mutations (36), with 
the aim of detecting malignancies at the earliest, most manage-
able stages (Table 2).

PTEN comprises nine exons canonically encoding a 403–amino  
acid protein (1, 40). Broadly, PTEN mutations could impact the 
abundance of PTEN protein, resulting in haploinsufficiency;  
result in reduced or lost phosphatase activity; act in a dominant- 
negative manner; and/or result in aberrant localization and func-
tion (21). The germline mutation spectrum in PHTS is broad, with 
mutations affecting all nine exons of PTEN (refs. 36, 39, 41, 42, 
and Figure 3). Approximately two-thirds of germline PTEN muta-
tions occur in exons 5, 7, and 8 (41). Interestingly, up to 40% of 
all germline PTEN mutations are located in exon 5, encoding 
the core catalytic motif, although this exon represents only 20% 
of the coding sequence (41, 43, 44). Relatedly, two distinct Alu 
elements have been reported in two unrelated CS patients with 
identical break points within exon 5, suggesting that this exon is 
a possible retrotransposition hotspot (45). Mutations within the 
core catalytic motif typically abrogate pan-phosphatase (lipid  
and protein) activity, such as mutations affecting p.Cys124, but 
rarely, mutations such as p.Gly129Glu result in abrogation of 

Figure 2. The classic PTEN pathway and associated PTEN-opathies. The PTEN-opathies encompass a spectrum of disorders with mutations within genes 
encoding proteins belonging to the PTEN pathway. PIK3CA-related overgrowth spectrum (PROS) includes distinct clinical entities with phenotypic overlap 
among the different syndromes. These overgrowth disorders are typically associated with postzygotic somatic mosaic PIK3CA mutations in affected 
tissues and are characterized by segmental overgrowth affecting the body (e.g., CLOVES syndrome, fibroadipose hyperplasia) or the brain (e.g., megalen-
cephaly–capillary malformation syndrome [MCAP], hemimegalencephaly). PIK3CA encodes the catalytic p110α subunit protein of PI3K. Similarly to PTEN 
dysfunction, PIK3CA activation results in phosphorylation and activation of AKT, ultimately resulting in overgrowth-promoting downstream effects within 
the PI3K/AKT/mTOR signaling pathway downstream of PTEN. Expectedly, these syndromes show clinical phenotypic overlap with PHTS, including megal-
encephaly, vascular malformations, overgrowth, and neurocognitive deficits.
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and can be detected in human serum and plasma. PTEN-L has 
also been shown to interact with canonical PTEN to regulate mito-
chondrial function and energy production (64). More recently,  
another N-terminal extended PTEN isoform, named PTENβ, 
has been identified (65). PTENβ translation is initiated from an 
AUU codon upstream of the AUG initiation codon for canonical 
PTEN. This isoform specifically localizes in cell nucleoli, and 
regulates ribosomal DNA (rDNA) transcription and cellular pro-
liferation. As these newly identified PTEN protein isoforms are 
characterized by distinct subcellular localizations and biological 
functions, further studies are warranted to better understand how 
these isoforms contribute to carcinogenesis. Importantly, since 
PTEN-L and PTENβ share the canonical PTEN sequence, muta-
tions that impact canonical PTEN would be expected to impact 
these isoforms as well. However, mutations within the N-terminal 
extended regions of PTEN-L and PTENβ can have downstream 
effects independent of canonical PTEN. An intriguing hypothe-

genic promoter mutations result in decreased PTEN transcription 
and translation, the latter due to altered mRNA secondary struc-
ture (60, 61). More recently, some unsuspected PTEN intronic 
variants were shown to result in pathogenic exon skipping, alter-
native splicing, or the use of cryptic splice sites (62). These splic-
ing changes correlate with significantly lower PTEN protein levels 
and elevated p-AKT in patients with splicing changes compared 
with those without aberrant splicing. Finally, large PTEN deletions 
occur in approximately 3% to 10% of PHTS patients and can be 
found over the entire coding sequence (41, 42, 60).

Interestingly, PTEN encodes at least two proteins by means 
of noncanonical translation initiation. The first identified isoform 
represents a longer PTEN protein, named PTEN-Long (PTEN-L, 
also known as PTENα), that contains 173 additional amino acids at 
the amino-terminus due to the usage of an alternative CUG trans-
lation initiation site upstream of the canonical AUG sequence (63). 
Additionally, PTEN-L can be secreted to enter other cells directly,  

Table 2. Component cancer risks, clinical surveillance, and management recommendations for PHTS

Population risk 
(SEER)

Lifetime risk in 
PHTSA Screening/surgical guidelinesB Age to start Frequency

Breast (female) 12% 67%–85% Breast awareness and self-exam: report changes 
to health care provider

18 Consistent

Clinical breast exam 25C Every 6–12 months

Mammogram with consideration of  
tomosynthesis and breast MRI with contrast

30–35C Every 12 months

Discuss mastectomy Personalized As needed

Thyroid 1% 6%–38% Thyroid ultrasound Time of PHTS diagnosis,  
including childhood

Every 12 months

Kidney 1.6% 2%–34% Consider renal ultrasound 40 Every 1–2 years

Endometrium 2.6% 21%–28% Encourage patient education and  
prompt response to symptoms  
(e.g., abnormal bleeding)

Not applicable Not applicable

Consider screening via endometrial biopsy Not applicable Every 1–2 years

Transvaginal ultrasound in postmenopausal 
women at the clinician’s discretion

Not applicable As needed

Discuss hysterectomy with completion  
of childbearing

Personalized As needed

Colon 5% 9%–17% Colonoscopy 35C unless symptomatic Every 5 years or more frequently 
depending on whether patient is 
symptomatic or polyps are found

DermatologicD 2% 2%–6% Dermatologic exam Personalized Clinician’s recommendation

Developmental NA NA Consider psychomotor assessment in children Time of PHTS diagnosis Clinician’s recommendation

Brain MRI if symptomatic Time of PHTS diagnosis Clinician’s recommendation

ACancer lifetime risks calculated to age 70 by Tan et al. (36) and Bubien et al. (37), and to age 60 by Nieuwenhuis et al. (38). Cancer risk percentage ranges 
reflect lowest and highest frequencies reported in all three studies. BAnnual comprehensive physical examination starting at age 18 years or 5 years before 
the youngest age of diagnosis of a component cancer in the family (whichever comes first), with particular attention to thyroid examination. Encourage 
patient education regarding the signs and symptoms of cancer. CCancer screening should begin 5–10 years before the earliest known component cancer 
in the family or according to the ages listed in the table, whichever comes first. DLifetime cancer risk estimates of skin cutaneous melanoma. SEER, 
surveillance, epidemiology, and end results; PHTS, PTEN hamartoma tumor syndrome. Adapted with permission from the NCCN Clinical Practice Guidelines 
in Oncology (NCCN Guidelines) for Genetic/Familial High-Risk Assessment: Breast and Ovarian V.1.2019.
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the pathomechanisms behind and for subsequent medical man-
agement of the observed phenotypes.

Finally, because it is technically challenging to functionally 
interrogate all germline and somatic PTEN mutations, research 
efforts have focused on devising high-throughput methods to 
evaluate pathogenicity. Surprisingly, several residues within the 
catalytic pocket are shown to be tolerant to mutations, with solvent 
exposure playing a critical role in dictating tolerance (80). More-
over, several uncharacterized PTEN variants result in decreased 
PTEN thermodynamic stability and abundance, thus expanding 
the list of potentially functional variants (81). Collectively, such 
efforts foster evidence-based, functionally relevant classification 
of PTEN mutations into more clinically actionable categories. 
Predictably, meta-analysis of outputs coupled with clinical pheno
typic correlations will likely yield more robust classifications. Such 
analyses culminated in a recently completed effort through Clin-
Gen’s PTEN Variant Curation Expert Panel (82).

Genotype-phenotype correlations and modifiers 
of cancer risks
As with other inherited cancer syndromes, while it is possible to 
risk-assess increased organ-specific cancer probabilities, it is still 
impossible to predict at an individual level who will go on to develop  
any particular component cancer during his or her lifetime. Hence, 
multiple studies have attempted to find predictive PTEN genotype- 

sis is the tissue-specific expression of various PTEN protein iso-
forms, which could, in turn, predispose PHTS individuals to dif-
ferent phenotypes in a genotype-dependent manner. Indeed, the 
complex interplay among the PTEN family proteins could partly 
explain why a wide spectrum of clinical phenotypes are observed 
in the PTEN-opathies, with implications for the precise clinical 
management of these disorders.

PTEN dysfunction in PHTS offers important biological 
insights in the context of common sporadic cancers. Indeed, PTEN 
is one of the most frequently somatically mutated genes in cancer 
(66–68). The experimental data, in turn, offer insights regard-
ing how germline PTEN mutations cause the clinical manifesta-
tions observed in PHTS. Cell survival, growth, apoptosis, migra-
tion, and genomic instability represent processes that influence 
cell fate and reflect overgrowth and cancer-related phenotypes. 
In time, it became evident that PTEN is also critical for normal 
development and physiology (11, 69). These findings help explain 
the occurrence of neurodevelopmental disorders such as megal-
encephaly, autism spectrum disorder (ASD), and developmental 
delay in individuals with PHTS (70–72). Importantly, germline 
PTEN mutations have been reported in previously undiagnosed 
individuals with isolated PHTS-related phenotypes, indicating 
that the syndrome is indeed underdiagnosed (71, 73–79). Certain-
ly, utilizing knowledge about PHTS pathogenesis aids in establish-
ing a molecular diagnosis, itself critical both for understanding 

Figure 3. PTEN structure and germline mutation spectrum in PHTS. (A) PTEN germline mutation spectrum from 431 PHTS patients. PTEN is canonically a 
403–amino acid protein. Different types of mutations are depicted in the lollipop plot overlaying the PTEN protein structure. The frequency of mutations 
correlates with the heights of the vertical lines representing each lollipop. PTEN comprises a PIP2-binding domain (PBD), a phosphatase domain, a C2 
domain, and a C-terminal tail including a PDZ-binding domain. The active site is included within amino acid residues 123 and 130. (B) PTEN consists of 9 
exons that encode the 403–amino acid protein. The exons are overlaid to match the protein domains in A. Intronic regions are not represented. The colored 
bars represent large deletions (abbreviated as del) and duplications (abbreviated as dup) annotated by affected exon numbers and the number of affected 
patients in parentheses. Figure adapted with permission from ref. 174.
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phenotype correlations. Earlier studies revealed an association 
between PTEN germline mutations and malignant breast disease 
(83, 84). Missense mutations and mutations within and 5′ of the 
phosphatase core motif appear to be associated with multiorgan 
manifestations, serving as a surrogate of disease severity (83). Other  
groups did not detect such genotype-phenotype correlations (85), 
likely because their sample size of studied PHTS patients is small 
(n = 13), compared with the 44 families and 43 probands of the pre-
ceding studies (83, 84). More recently, germline PTEN frameshift 
mutations have been found to be overrepresented, but not absolute, 
in thyroid cancer (86), nonsense mutations overrepresented in col-
orectal cancer (36), promoter mutations overrepresented in breast 
cancer (36), and missense mutations overrepresented in individuals 
with ASD (87). Interestingly, a theoretical computational approach 
revealed global 3-dimensional PTEN structural instability and inac-
tive conformation in cancer-associated PTEN mutations, whereas 
ASD-associated PTEN mutations revealed localized destabilization 
contributing to partial opening of the active site (88). Such effects 
cannot be extrapolated from PTEN’s secondary structure alone 
and indeed provide an important dimension to consider for assess-
ing PTEN genotype–PHTS phenotype associations. Additionally, 
studies have shown that ASD-associated mutations tend to retain 
higher PTEN activity relative to non–ASD-associated mutations 
(80, 89, 90). Whether assayed in vivo in yeast or in vitro in mam-
malian stable or primary cell lines, partial hypomorphic PTEN lipid  
phosphatase activity is retained in individuals with ASD, versus 
total loss of PTEN lipid phosphatase activity in individuals with 
more severe PHTS-related phenotypes (80, 89–91). Relatedly, 
it is predicted that PTEN mutations that result in the accumula-
tion of stable inactive PTEN protein would lead to more severe 
PHTS-related developmental phenotypes and malignancies (90). 
Finally, imbalances in PTEN subcellular localization could impact 
PHTS phenotypic manifestations. A murine model of germline- 
mislocalized cytoplasm-predominant PTEN exhibits macrocephaly 
and a neurocognitive profile reminiscent of high-functioning ASD 
(92, 93). Intriguingly, germline-mislocalized nuclear-predominant 
PTEN can exist in patients with either cancer or ASD (57, 94). In 
this context, it is tempting to speculate whether mutant nuclear  
PTEN plays distinct roles in the affected tissues related to the latter 
disparate phenotypes.

The lack of absolute PTEN genotype-phenotype correlations 
suggests that additional factors act as phenotypic modifiers in 
PHTS. A proof-of-principle study showed that approximately 6% 
of PTEN mutation–positive CS/CS-like individuals also harbor 
germline variants in genes encoding three of the four subunits 
of mitochondrial complex II (SDHB, SDHC, SDHD), which were 
originally discovered as alternative susceptibility genes in PTEN 
wild-type CS/CS-like patients (95, 96). Individuals carrying SDHx 
variants show an increased risk of breast and thyroid cancers that 
surpasses the risks mediated by mutant PTEN alone (95). Interest-
ingly, while individuals with SDHx variants alone show the highest 
prevalence of thyroid cancer, the coexistence of a PTEN mutation 
was associated with a 77% snapshot prevalence of breast cancer, 
as compared with 32% with PTEN mutations alone and 57% with 
SDHx variants alone. Although the prevalence of thyroid cancer 
was not significantly elevated in individuals with both PTEN muta-
tions and SDHx variants, the histology was papillary for all tumors 

versus the notable enrichment in follicular thyroid tumors in indi-
viduals with only PTEN mutations. Mechanistically, SDHx variants 
result in ROS-mediated stabilization of HIF-1α, destabilization and 
decreased protein expression of p53 due to defective interaction 
with NQO1, and resistance to apoptosis (95). These data also reveal 
how mitochondrial dysfunction leads to tumorigenesis subsequent 
to elevated flavin adenine dinucleotide (FAD) and nicotinamide 
adenine dinucleotide (NAD+), the cofactor and product of NQO1 
enzymatic catalysis, respectively. Subsequent studies showed that 
SDHD p.G12S and p.H50R variants directly lead to impaired PTEN 
subcellular localization and function through SRC-induced oxida-
tion, accompanied by apoptosis resistance and induction of cellular 
migration (97). Importantly, the selective SRC inhibitor bosutinib 
could rescue these tumorigenic phenotypes only when wild-type 
PTEN was present. Similarly, SDHD p.G12S and p.H50R variants  
result in reduced autophagy in a PTEN-dependent manner (98).  
From a clinical perspective, these data provide mechanistic insights 
that could explain the increased prevalence of thyroid cancer in CS 
patients with SDHx variants alone compared with those with PTEN 
mutations alone, as well as the seemingly paradoxical decreased 
prevalence of thyroid cancer in the setting of coexisting PTEN 
mutations and SDHx variants.

A hypothesis-generating pilot study further identified micro-
biomic differences in fecal samples derived from PTEN mutation–
positive patients with and without PHTS component cancers (99). 
Functional metagenomic analysis revealed enrichment of cancer- 
relevant biological processes such as folate biosynthesis, genetic  
information processing, and cell growth/death pathways in fecal 
samples from PHTS cancer patients compared with those without 
a cancer diagnosis. These data suggest that gut dysbiosis could also 
play a role as a cancer risk modifier in PHTS patients. Conceiv-
ably, with increased sample sizes and independent replication, we 
suspect that novel associations will be discovered and expanded 
beyond cancer, toward phenotypes such as ASD and non-neoplastic  
overgrowths. Collectively, this knowledge will be impactful for 
more tailored medical management of PHTS patients.

Germline predisposition — overgrowth  
versus cancer
The discovery of PTEN as the Cowden syndrome gene paved 
the way for understanding how its disruption contributes to 
disease etiology (1, 3, 4). Functional characterization further 
established PTEN as a bona fide tumor suppressor gene (Fig-
ure 1). Studies in Drosophila and mouse models have shown that 
PTEN and downstream PI3K/AKT/TOR signaling play a cen-
tral role in regulating cell number and size. Hence, dysfunction 
of this pathway recapitulates the growth anomalies observed in 
the PTEN-related human diseases. Drosophila PTEN has been 
shown to regulate cell number and size when mutated, leading 
to hyperplastic overgrowth in fruit fly mutant tissue (100). Sim-
ilarly to mammalian signaling pathways, Drosophila PTEN reg-
ulates growth by antagonizing DDP110 (the Drosophila homo-
log of PI3K), and by acting as a negative regulator of insulin 
receptor signaling (101–103). With this knowledge of the basic 
mechanistic principles, what remains elusive, however, is the 
ability to identify factors that regulate progression from over-
growth to malignancy in a defined set of organs.
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The most obvious explanation for organ-specific cancer devel-
opment could be that the expression of the cancer-related gene, 
here PTEN, could be limited to the tissues in which malignancies 
arise. However, PTEN is ubiquitously expressed in all three germ 
cell layers throughout development, supporting the occurrence 
of hamartomatous overgrowths and variable multisystem pheno-
types in individuals with germline PTEN mutations (11, 69, 104, 
105). Homozygous Pten-knockout mice die before birth, further 
supporting a critical role for PTEN in embryogenesis (11, 105–
107). High-level PTEN expression has also been reported during 
human development in tissues known to be associated with PHTS 
(104). However, this does not corroborate the tendency of these 
organs to develop malignancies when PTEN malfunctions. For 
example, the strongest PTEN protein levels are observed through-
out the central and peripheral nervous systems (104), even though 
brain cancer is not a PHTS component cancer. Nevertheless, 
neurodevelopmental phenotypes are observed in PHTS, includ-

ing macrocephaly (about 94% of patients), ASD (108–111), and 
Lhermitte-Duclos disease (LDD), a pathognomonic hamartoma-
tous overgrowth of the cerebellum (112). Immunohistochemical 
studies show decreased or absent PTEN expression accompanied 
by elevated p-AKT in the affected LDD dysplastic gangliocytoma  
cells (113). Interestingly, murine studies have found that even 
a subtle reduction in PTEN causes increased tumorigenesis in a 
tissue-specific manner (114). In humans, reduced PTEN protein 
dose in CS-derived lymphoblastoid cell lines tends to occur in 
conjunction with an underlying germline PTEN mutation and to 
correlate with increasing clinical phenotypic burden (41). Further 
investigation in CS/CS-like patients with thyroid cancer reveals 
that low PTEN protein levels from blood-derived lymphoblastoid 
cells can predict for the presence of a germline PTEN mutation 
(115). Importantly, low blood PTEN levels correlate with weak or 
absent PTEN staining in the affected PHTS-derived thyroid tis-
sues. Hence, one possibility is that variable tissue-specific thresh-

Table 3. Preclinical studies, case reports, and clinical trials using PI3K/AKT/mTOR inhibitors for the treatment of the PTEN-opathies

Drug target Drug Indication (reference) Treatments and reported outcomes

Preclinical studies of patient-derived cells

   PI3K Wortmannin,  
LY294002

PIK3CA-related overgrowth spectrum,  
PROS (173)

Decreased proliferation of primary dermal fibroblasts from skin biopsies of overgrowth  
lesions and decreased phosphorylation of AKT and p70S6K

   Pan-AKT ARQ 092 AKT1-related Proteus syndrome (136) Suppression of AKT and downstream signaling in patient-derived cells and tissues mosaic  
for the AKT1 somatic gain-of-function p.Glu17Lys mutation

PROS (137) Decreased proliferation of primary fibroblasts with PIK3CA mutations, decreased 
phosphorylation of AKT and downstream targets, less cytotoxicity in comparison with 
rapamycin and wortmannin

Case reports

   mTORC1 Sirolimus  
(rapamycin)

PTEN-related Proteus syndrome (125) Dose: 0.1 mg/kg/d, divided into 2 doses. Duration: 17+ months. Outcomes: resolution of 
respiratory and nutritional complications, reduction in soft-tissue masses, reduction in the  
size of mesenteric lymph nodes, minimal effect on the size or appearance of external 
subcutaneous lipomata.

Bannayan-Riley-Ruvalcaba syndrome (126) Dose: 0.8 mg/m2/dose, twice daily. Duration: 12 months. Outcome: decreased size  
of the vascular mass.

PTEN hamartoma tumor syndrome,  
PHTS (127)

Dose: 0.1 mg/kg/d. Duration: 19 months. Outcomes: transient improvement of somatic  
growth and reduced thymus volume, absence of clinical benefit.

Infantile Lhermitte-Duclos disease (128) Dose: 0.6 mg/kg/d. Duration: 12 months. Outcomes: decreased episodes of decerebrate 
posturing, regaining of normal appearance of the pituitary stalk, less compression of  
the brainstem.

   PI3K BYL719 (p110α) PROS (138) Dose: 50–250 mg/d. Duration: 6–18 months. Outcomes: patient-dependent with general 
improvement of overgrowth; decrease in size of vascular tumors, reduction of hemihypertrophy, 
attenuation of scoliosis.

Clinical trials
   mTORC1 Sirolimus PHTS/Cowden syndrome, CS Phase II clinical trial completed and results forthcoming (NCT00971789)

PROS Phase II clinical trial completed and results forthcoming (NCT02428296)

Everolimus PHTS with neurocognitive deficits Phase I/II clinical trial currently recruiting (NCT02991807)

   PI3K/mTOR BGT226 CS patients with advanced solid malignancies Phase II clinical trial completed and results forthcoming (NCT00600275)

BEZ235 Phase I/II clinical trial completed and results forthcoming (NCT00620594)

   Pan-AKT ARQ 092 Patients with overgrowth diseases and/ 
or vascular anomalies

Phase I/II clinical trial currently recruiting (NCT03094832)
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as candidates for pharmacologic inhibition in the PTEN-opathies 
(Table 3). As such, AKT and PIK3CA inhibitors have been used in 
PS and PIK3CA-related overgrowth spectrum (PROS) disorders 
(136–138). PIK3CA encodes the p110α catalytic subunit protein 
of PI3K. Preclinical studies using the allosteric pan-AKT inhibi-
tor ARQ 092 revealed suppression of AKT and downstream sig-
naling in cells and tissues from PS patients, mosaic for the AKT1 
somatic gain-of-function p.Glu17Lys mutation (136). ARQ 092 
treatment of primary fibroblast cells from PROS patients also 
showed promising results; compared with sirolimus and the PI3K 
inhibitor wortmannin, ARQ 092 resulted in higher antiprolifera-
tive activity and lower cytotoxicity, at least in vitro (137). Related-
ly, a recent proof-of-principle study demonstrated the successful 
usage of the PIK3CA inhibitor BYL719 (alpelisib) in a preclinical 
murine model of PROS and subsequently for the treatment of 19 
patients with severe PROS disorders (138). Importantly, in these 
PTEN-opathies, all patients harbored somatic mutations; the ulti-
mate goal from treatment is to continuously reduce progrowth 
signals in affected tissues with minimal toxicity toward normal 
wild-type cells. However, this becomes more challenging in the 
germline context, such as PHTS, where a high therapeutic index 
becomes even more critical since all cells harbor the underlying 
PTEN mutation. Moreover, constitutional PTEN pathway dys-
function would theoretically necessitate some type of chronic 
treatment regimen. However, lifelong mTOR and PIK3CA inhibi-
tion might not be feasible because of immunosuppressive effects, 
disruption of systemic glucose homeostasis, and the critical role 
the PTEN pathway plays in normal tissue and organ development 
(11, 69, 139, 140). Although isolated case reports and studies (125, 
126, 128, 138) show promise for the therapeutic management of 
the PTEN-opathies, longitudinal studies are necessary to evaluate 
long-term safety and efficacy.

Another major caveat to molecular targeting of the PI3K/AKT/
mTOR pathway is feedback activation of collateral oncogenic  
signaling pathways, causing resistance. This led to the investiga-
tion of combinatorial therapies that would, in theory, effectively  
target the growth-promoting signals without loss of feedback 
controls. Indeed, inhibiting mTORC1 has been shown to result 
in feedback activation of upstream signaling components such 
as AKT through insulin receptor substrate 1 (IRS1) or through 
direct phosphorylation at Ser473 by mTORC2 (141). However, 
experimental studies show promise in that the rebound upregula-
tion of AKT during mTORC1 inhibition can be abrogated by pre-
treatment or cotreatment with resveratrol, at least in vitro (142). 
Moreover, PI3K inhibition can result in therapeutic resistance in 
PIK3CA-mutant cell lines due to a rebound insulin-dependent 
feedback mechanism (140), or failure to suppress CDK4/6 as 
evidenced through persistent RB phosphorylation (143). In these 
contexts, the combination of various PI3K inhibitors with anti
glycemic therapies or CDK4/6 inhibitors, respectively, results in 
the attenuation of the progrowth feedback signaling cascades, 
hence overcoming resistance. Interestingly, NVP-BEZ235, a dual 
PI3K/mTOR inhibitor, has been shown to selectively inhibit the 
growth of a subset of androgen receptor–positive (AR+) breast can-
cer cell lines (144). AR is positively correlated with PTEN expres-
sion in breast cancer, owing to direct PTEN transcription that is 
mediated by an androgen response element in the PTEN promoter  

olds of PTEN protein dosage could potentially influence particular 
PHTS-related phenotypes.

Intriguingly, despite the fact that germline PTEN mutations 
result in component cancers within a restricted set of organs (36), 
PTEN somatic driver mutations are enriched in multiple sporadic  
cancer types that are not components of the PHTS spectrum, 
including prostate cancer, glioblastoma multiforme, and others 
(1). Moreover, identical germline PTEN mutations often result 
in apparently disparate phenotypes (e.g., cancer versus non
malignant overgrowths), including in an intrafamilial manner 
(116). These observations suggest that additional factors act as 
overgrowth versus cancer phenotypic modifiers in PHTS. Indeed, 
while germline PTEN mutations predispose PHTS patients to can-
cer, it is the landscape of acquired somatic alterations that likely 
governs cancer initiation and progression. Hence, although the 
germline PTEN mutations affect all cells of PHTS patients, the 
tissue-restricted pattern of particular modifying factors could 
explain the nonrandom progression to malignancy in specific 
organs. Additionally, the type of germline PTEN mutation could 
also influence eventual cell fates. For example, germline PTEN 
mutations such as C-terminal deletions that result in genomic 
instability could prime tissues that are particularly sensitive to 
DNA damage for progression to malignancy (117). Finally, the 
immune system has been recognized as a major determinant of 
cancer development (118–120). PTEN loss promotes resistance to 
tumor immune cell infiltration through the production of inhibi-
tory cytokines, hence resulting in immune escape (121). Interest-
ingly, pregnant mice treated with low-dose lipopolysaccharide 
to induce maternal inflammation produce offspring with brain 
overgrowth (122). This phenotype is more pronounced in Pten- 
heterozygous mice compared with wild type, indicating evident 
crosstalk between genetic susceptibility and the inflamed micro-
environment mediated through ROS signaling. Importantly, ROS 
cause oxidation and subsequent inactivation of PTEN, a mecha-
nism observed in a subset of CS/CS-like patients (97, 123). Hence, 
the manifestation of a cancer phenotype does represent a complex 
interplay among predisposing factors, genetic and epigenetic con-
founders, tissue-specific signaling networks, oncogenic signaling 
pathways, and microenvironmental context (124).

Molecularly targeted therapeutics
Altered PI3K/AKT/mTOR signaling in the PTEN-opathies implies 
that PI3K, AKT, and mTOR are germane targets for therapeutic 
intervention (Table 3). Proof-of-principle case reports demonstrate 
the use of the mTORC1 inhibitor sirolimus (rapamycin) to allevi-
ate the symptoms and overgrowth manifestations of individuals 
with PHTS (125–128). Indeed, sirolimus has been used in a phase 
II open-label clinical trial in individuals with PHTS. Additionally, 
a double-blind drug-placebo, crossover trial with the mTORC1 
inhibitor everolimus is currently accruing PHTS patients with ASD 
(22). Notably, mTORC1 inhibitors have been used in patients with 
tuberous sclerosis complex (TSC) (129–132) and Peutz-Jeghers 
syndrome (PJS) (133). TSC1/2 and STK11/LKB1, the susceptibil-
ity genes for TSC and PJS, respectively, are not only upstream of 
mTOR (9, 134) but are also downstream of PTEN signaling (135).

In addition to mTORC1 inhibition, upstream components of 
the PTEN signaling pathway, such as PI3K and AKT, also serve 
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pathway, it is therefore not surprising that PTEN disruption can 
result in immune dysregulation. The latter is germane in carcino-
genesis, whereby immune surveillance, evasion of immune recog-
nition, and a chronically inflamed microenvironment represent 
major immune hallmarks of cancer (118). Additionally, PI3K/AKT/
mTOR pathway activation has been shown to modulate responses  
to immunotherapy. Loss of PTEN in the sporadic context has been 
associated with resistance to anti–PD-1 therapy in melanoma  
(121), a CS component cancer, and more recently in a case study 
of metastatic uterine leiomyosarcoma (162). Interestingly, acti-
vation of the PI3K/AKT/mTOR pathway has been shown to drive 
expression of PD-1/PD-L1 in a subset of solid tumors, causing 
immunoresistance (163–165). Indeed, because PTEN seems to be 
a major immunotherapeutic response predictor, multiple ques-
tions arise regarding the promising utility of immunotherapeutic 
agents in individuals with germline PTEN mutations and cancer. 
Studies have shown that a subset of individuals with PHTS have 
autoimmune phenotypes as well as B and T cell–related immune 
dysfunctions (161, 166). Importantly, reduction in peripheral lym-
phocyte numbers in comparison with control subjects, including 
decreased CD4+ cell numbers and hence absolute FOXP3+ Treg 
numbers, would suggest that these individuals will have a differ-
ent response to immunotherapy compared with individuals with 
normal immune systems.

Perspective
The PTEN-opathies represent a paradigm whereby one path-
way appears etiologic for a wide spectrum of clinically dis-
tinct phenotypes. The recognition and characterization of the 
PTEN-opathies allow for significant advances in understanding 
how clinical phenotypic manifestations result from underlying 
molecular and cellular processes to then guide risk assessment, 
therapeutics, and preventative strategies. Preclinical studies and 
clinical trials show promise for the treatment of a subset of the 
PTEN-opathies. However, this becomes more complex in the 
germline context, where a high therapeutic index is mandatory, 
yet exceptionally challenging. Indeed, individuals with germline 
PTEN mutations have a lifelong predisposition to PHTS-related 
signs and symptoms, necessitating prolonged treatments that 
could impact normal growth and development and cause nontar-
geted cytotoxicity. One of the most serious complications of the 
PTEN-opathies, particularly PHTS, is the increased lifetime risk 
for cancer. Although PTEN-enabled organ-specific cancer risk 
estimates and management guidelines are part of the routine 
clinical armamentarium of precision care, it remains virtually 
impossible to absolutely predict which individual (versus a proba-
bility) will develop which component malignancy. Nonmalignant 
component phenotypes of PHTS, such as ASD and severe vas-
cular malformations, can be chronically debilitating and affect 
quality of life for patients and their families. Intriguingly, identi-
cal germline PTEN mutations are observed in patients with these 
seemingly disparate phenotypes (e.g., cancer versus ASD), indi-
cating that additional factors may act as phenotypic modifiers  
in PHTS. Hence, future studies elucidating absolute modifiers of 
disease manifestations and associated signaling networks will be 
key to define more precise and effective preventative and thera-
peutic strategies for the individual at risk.

(145, 146). Mechanistically, the beneficial effect of AR activation 
in combination with PI3K/AKT/mTOR inhibition in AR+/ER+ 
breast cancers can be explained, at least partially, through PTEN 
upregulation and MYC  suppression (144). Interestingly, the  
converse phenomenon has been extensively studied in prostate 
cancer and has been shown to be context-dependent (147–149). 
As such, PTEN-deficient prostate cancer cells have decreased AR 
transcription, and PI3K pathway inhibition activates AR signaling 
by alleviating the feedback inhibition on HER2/3 kinases (148). 
Therefore, the crosstalk between PTEN and AR signaling will 
likely be genotype- and context-dependent.

Although most therapeutic strategies are aimed at attenuating 
downstream oncogenic signaling consequent to PTEN dysfunc-
tion, strategies to enhance PTEN levels and/or activity represent 
promising therapeutic modalities. This is particularly pertinent 
for the cell-permeable PTEN-L (63) that would theoretically allow 
the restoration of PTEN levels in the context of PTEN haploinsuf-
ficiency. Moreover, PTEN expression and/or activity could also be 
enhanced through modulating negative and positive regulators 
of PTEN (e.g., transcription factors, miRNAs, protein ubiquiti-
nation machinery, etc.). Certainly, these approaches are context- 
dependent with respect to baseline endogenous PTEN levels and 
activity, tissue specificity, and the requisite of establishing long-term 
effects, among many other factors. Importantly, restoring wild-type 
PTEN in the context of a stable mutant PTEN protein could worsen  
the condition owing to dominant-negative effects (150). Another 
plausible approach is through gene editing of mutant PTEN alleles 
to restore or even enhance PTEN function (e.g., increased phospha-
tase activity or recruitment to the plasma membrane) (151). While 
gene editing poses many challenges, including off-target effects and 
activation of adaptive immune responses (152, 153), recent advances 
show promise in mitigating these outcomes (154–156). Undoubtedly, 
gene editing will be exceptionally challenging in the germline setting 
where the whole organism is targeted for editing.

Finally, given the broad spectrum and diverse functional 
consequences of germline PTEN mutations, targeting the PI3K/
AKT/mTOR signaling pathway may not be effective in all con-
texts, e.g., when disease-associated PTEN mutations impact lipid  
phosphatase–independent functions. One possible approach could 
be to target the vulnerabilities caused by patient-specific germline 
PTEN mutations. For example, because PTEN plays a vital role 
in maintaining genomic integrity in the nucleus, it is possible to 
therapeutically use PARP inhibitors (157). Moreover, patients with 
germline PTEN mutations within the C-terminal region could 
benefit from proteasome inhibitors to mitigate PTEN degradation 
(158). Indeed, treatment with the proteasome inhibitor MG-132 
can restore both nonsense and missense mutant PTEN protein 
levels in vitro (159). However, restoring missense mutant PTEN 
levels in the presence of the wild-type allele can also result in  
dominant-negative effects, and could worsen the condition (150). 
Predictably, in the era of precision medicine, cancer prevention is 
key and determining context-specific therapeutic indices will be 
vital for the effective management of the PTEN-opathies.

Immunotherapy
The PI3K/AKT/mTOR pathway is an important regulator of 
immunity (160, 161). Since PTEN is a master regulator of this 
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