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Introduction

The tumor suppressor gene phosphatase and tensin homo-
log (PTEN; OMIM 601728) was originally recognized as being
mutated somatically in multiple sporadic cancers (1, 2), as well as
mutated in the germline of patients with Cowden syndrome (CS;
OMIM 158350), a hereditary overgrowth and cancer predisposi-
tion disorder (3, 4). PTEN is a dual-specificity phosphatase at two
levels. First, PTEN has been shown to dephosphorylate protein
substrates on serine/threonine and tyrosine residues, thus act-
ing as a dual-specificity protein phosphatase (5). One example is
the tyrosine dephosphorylation of focal adhesion kinase (FAK)
to inhibit cell spreading (6). Second, PTEN also dephosphory-
lates phosphatidylinositol 3,4,5-trisphosphate (PIP3) to phos-
phatidylinositol 4,5-bisphosphate (PIP2) — hence, PTEN is also
a dual-specificity phosphatase in the sense that it dephosphor-
ylates lipid substrates in addition to protein substrates (7). As a
lipid phosphatase, PTEN canonically negatively regulates the
phosphatidylinositol 3-kinase (PI3K) signaling cascade, thereby
dampening downstream protein kinase B (PKB/AKT) signaling
(7, 8). Left unchecked, such as through PTEN mutation or inacti-
vation, elevated PIP3 levels cause constitutive activation of AKT
with subsequent downstream cascades resulting in, e.g., upregu-
lation of mammalian target of rapamycin (mTOR) signaling (9).
This ultimately leads to cell survival, growth, proliferation, and
decreased apoptosis (10-12). Notably, AKT represents only one
of many PIP3-binding proteins regulated by the PI3K/PTEN axis
(13,14). Although originally believed to be an exclusively cytoplas-
mic phosphatase, PTEN is now known to also function within the
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The tumor suppressor phosphatase and tensin homolog (PTEN) classically counteracts the PI3K/AKT/mTOR signaling
cascade. Germline pathogenic PTEN mutations cause PTEN hamartoma tumor syndrome (PHTS), featuring various benign
and malignant tumors, as well as neurodevelopmental disorders such as autism spectrum disorder. Germline and somatic
mosaic mutations in genes encoding components of the PI3K/AKT/mTOR pathway downstream of PTEN predispose to
syndromes with partially overlapping clinical features, termed the “PTEN-opathies.” Experimental models of PTEN pathway
disruption uncover the molecular and cellular processes influencing clinical phenotypic manifestations. Such insights not only
teach us about biological mechanisms in states of health and disease, but also enable more accurate gene-informed cancer
risk assessment, medical management, and targeted therapeutics. Hence, the PTEN-opathies serve as a prototype for bedside
to bench, and back to the bedside, practice of evidence-based precision medicine.

nucleus, contributing to cell cycle regulation, DNA double-strand
break repair, genomic stability, and chromatin remodeling (15-
20). Therefore, although PTEN exerts much of its function as a
lipid phosphatase counteracting the PI3K/AKT/mTOR signaling
pathway, PTEN also exerts protein phosphatase-dependent and
pan-phosphatase-independent activities within both the cyto-
plasm and the nucleus (ref. 21 and Figure 1).

Germline PTEN mutations have been identified in patients
with different clinical syndromes, and that subset is termed PTEN
hamartoma tumor syndrome (PHTS) (22). Besides PTEN mutation-
positive CS, PHTS also encompasses individuals with Bannayan-
Riley-Ruvalcaba syndrome (BRRS), Proteus syndrome (PS), and
Proteus-like syndrome who have PTEN mutations (22-26). BRRS
(OMIM 153480) is a rare congenital disorder classically charac-
terized by macrocephaly in combination with intestinal hamarto-
matous polyposis, vascular malformations, lipomas, and genital
freckling (27, 28). PS (OMIM 176920) is a rare, complex, and high-
ly variable disorder characterized by progressive, postnatal over-
growth of multiple tissues derived from different cell lineages (29).
Relatedly, germline and somatic mosaic mutations in other genes
encoding components of the PI3K/AKT/mTOR signaling pathway
downstream of PTEN predispose patients to partially overlapping
sets of clinical manifestations reminiscent of PHTS. These over-
growth syndromes are known as the PTEN-opathies (ref. 30 and
Figure 2). A subset of individuals with the PTEN-opathies harbor
germline mutations in components of the PTEN signaling cascade
(Table 1), predisposing these individuals to overgrowth and/or
cancer in different organs. Postzygotic somatic mosaic mutations
in PTEN pathway genes cause overgrowth disorders restricted to
the tissues where the mutations occurred. One example is PS, in
which a somatic mosaic activating AKTI mutation (p.Glul7Lys) has
been identified in more than 90% of individuals meeting clinical
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Figure 1. Cytoplasmic and nuclear PTEN signaling. In the cytoplasm, PTEN canonically functions to regulate the PI3K/AKT/mTOR signaling pathway. Under
growth factor stimulation, PI3K is activated and catalyzes the phosphorylation of PIP2 to PIP3. PIP3 recruits PDK1 to the plasma membrane, which then
contributes to the activation of AKT. AKT regulates a myriad of downstream cellular processes such as cell growth, proliferation, and decreased apoptosis.
The lipid phosphatase activity of PTEN counteracts PI3K by dephosphorylating PIP3 to PIP2, thereby dampening AKT activation. In the nucleus, PTEN plays a
vital role in maintaining genomic stability, chromosomal architecture, cell cycle control, and the regulation of ribosome biogenesis within nucleoli.

diagnostic criteria (31). Finally, somatic mutations in components
of the PTEN signaling cascade occurring in postnatal somatic tis-
sue can drive a vast array of sporadic cancers (32-35).

Overgrowth syndromes are important to diagnose, not only for
timely disease management, but also because several of these condi-
tions are associated with elevated risks of cancer. Here, we utilize the
PTEN-opathies, particularly PHTS, as a model to examine how per-
turbation of the PTEN signaling pathway leads to a spectrum of het-
erogeneous clinical phenotypes. We discuss the genetic, functional,

and mechanistic insights that put forth why some organs overgrow
but never turn malignant while others develop malignancies. Impor-
tantly, the elucidation of the underlying mechanisms is of clinical
importance since it promotes the implementation of evidence-based
medical management and preventative and therapeutic approaches.

PTEN dysfunction and cancer
The identification of germline PTEN mutations allowed for the
comprehensive elucidation of component cancers and associated

Table 1. Germline mutation frequencies of PTEN pathway genes in the PTEN-opathies

Syndrome (OMIM) Gene Germline mutation frequency References
PTEN 25%-85% 41,60, 83
Cowden syndrome, CS (158350) AKTI 2% 167
PIK3CA 9% 167
Bannayan-Riley-Ruvalcaba syndrome, BRRS (153480) PTEN 60% 83, 84,168,169
Macrocephaly-autism spectrum disorder, macro-ASD (605309) PTEN 10%-20% 71,108-111
Proteus and Proteus-like syndromes, PS (176920) PTEN 7%-67% 23-25, 44,170
Megalencephaly-capillary malformation syndrome, MCAP (602501) PIK3CA 8% 171
Megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome, MPPH (603387) P;I;JT};Z LLJJE tts ;;Z//‘; 1;5
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Figure 2. The classic PTEN pathway and associated PTEN-opathies. The PTEN-opathies encompass a spectrum of disorders with mutations within genes
encoding proteins belonging to the PTEN pathway. PIK3CA-related overgrowth spectrum (PROS) includes distinct clinical entities with phenotypic overlap
among the different syndromes. These overgrowth disorders are typically associated with postzygotic somatic mosaic PIK3CA mutations in affected
tissues and are characterized by segmental overgrowth affecting the body (e.g., CLOVES syndrome, fibroadipose hyperplasia) or the brain (e.g., megalen-
cephaly-capillary malformation syndrome [MCAP], hemimegalencephaly). PIK3CA encodes the catalytic p110a subunit protein of PI3K. Similarly to PTEN
dysfunction, PIK3CA activation results in phosphorylation and activation of AKT, ultimately resulting in overgrowth-promoting downstream effects within
the PI3K/AKT/mTOR signaling pathway downstream of PTEN. Expectedly, these syndromes show clinical phenotypic overlap with PHTS, including megal-

encephaly, vascular malformations, overgrowth, and neurocognitive deficits.

lifetime risks (36). Three independent studies revealed elevated
risks for breast, thyroid, endometrial, kidney, and colon cancers
and melanoma in PHTS (36-38). Similarly to other hereditary
cancer syndromes, the risk for bilateral and multifocal cancer
is elevated (22). Relatedly, individuals with PHTS have a 7-fold
increased risk of developing second malignant primary neo-
plasms (39). Collectively, these cancer risk assessment studies
inform clinical surveillance recommendations and medical man-
agement of individuals with germline PTEN mutations (36), with
the aim of detecting malignancies at the earliest, most manage-
able stages (Table 2).

PTEN comprises nine exons canonically encoding a 403-amino
acid protein (1, 40). Broadly, PTEN mutations could impact the
abundance of PTEN protein, resulting in haploinsufficiency;
result in reduced or lost phosphatase activity; act in a dominant-
negative manner; and/or result in aberrant localization and func-
tion (21). The germline mutation spectrum in PHTS is broad, with
mutations affecting all nine exons of PTEN (refs. 36, 39, 41, 42,
and Figure 3). Approximately two-thirds of germline PTEN muta-
tions occur in exons 5, 7, and 8 (41). Interestingly, up to 40% of
all germline PTEN mutations are located in exon 5, encoding
the core catalytic motif, although this exon represents only 20%
of the coding sequence (41, 43, 44). Relatedly, two distinct Alu
elements have been reported in two unrelated CS patients with
identical break points within exon 5, suggesting that this exon is
a possible retrotransposition hotspot (45). Mutations within the
core catalytic motif typically abrogate pan-phosphatase (lipid
and protein) activity, such as mutations affecting p.Cys124, but
rarely, mutations such as p.Glyl29Glu result in abrogation of
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lipid phosphatase activity only (4, 46, 47). Interestingly, several
PTEN mutations retain partial or even complete catalytic activity
(48), suggesting alternative mechanisms for compromised PTEN
function. For example, catalytically active mutant PTEN p.Lys-
289Glu is characterized by a nuclear import defect due to loss of
monoubiquitination at p.Lys289 (49). Nuclear PTEN is thought to
be protected from polyubiquitination and subsequent proteasome-
mediated degradation in the cytoplasm; therefore, it is able to
dampen AKT signaling and induce p53-independent apoptosis
(49). In support of these observations, nuclear exclusion of PTEN
has been associated with more aggressive, advanced-stage cancers
(50-54). Relatedly, the N-terminal phosphatase domain contains
two ATP-binding motifs, critical for regulating PTEN exit from
the nucleus (55). Expectedly, ATP-binding motif mutants (e.g.,
p.Lys62Arg, p.Tyr65Cys, p.Lys125Glu) do not bind ATP efficient-
ly, resulting in nuclear PTEN mislocalization. This subsequently
leads to increased cellular proliferation, reduced/abrogated apop-
tosis, and increased anchorage-independent growth (56, 57).
PTEN has also been shown to be SUMOylated at Lys266 within
the C2 domain, which facilitates PTEN binding to the plasma
membrane through electrostatic interactions and subsequent
suppression of PI3K/AKT signaling, both in vitro and in vivo (58).
Additionally, germline PTEN mutations have been observed at
Lys254 (Figure 3), a residue that is also SUMOylated to enhance
PTEN nuclear import to then function in DNA repair (59). There-
fore, mutations at Lys254 result in nuclear exclusion of PTEN and
compromised DNA repair mechanisms.

Aside from intragenic mutations, approximately 10% of CS
patients harbor germline PTEN promoter mutations (60). Patho-
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Table 2. Component cancer risks, clinical surveillance, and management recommendations for PHTS

Population risk

Lifetime risk in

. . e g
(SEER) PHTS" Screening/surgical guidelines Age to start Frequency
Breast (female) 12% 67%-85% Breast awareness and self-exam: report changes 18 Consistent
to health care provider
Clinical breast exam 25¢ Every 6-12 months
Mammogram with consideration of 30-35¢ Every 12 months
tomosynthesis and breast MRI with contrast
Discuss mastectomy Personalized As needed
Thyroid 1% 6%-38% Thyroid ultrasound Time of PHTS diagnosis, Every 12 months
including childhood
Kidney 1.6% 2%-34% Consider renal ultrasound 40 Every 1-2 years
Endometrium 2.6% 21%-28% Encourage patient education and Not applicable Not applicable
prompt response to symptoms
(e.g., abnormal bleeding)
Consider screening via endometrial biopsy Not applicable Every 1-2 years
Transvaginal ultrasound in postmenopausal Not applicable As needed
women at the clinician’s discretion
Discuss hysterectomy with completion Personalized As needed
of childbearing
Colon 5% 9%-17% Colonoscopy 35¢ unless symptomatic Every 5 years or more frequently
depending on whether patient is
symptomatic or polyps are found
Dermatologic® 2% 2%-6% Dermatologic exam Personalized Clinician’s recommendation
Developmental NA NA Consider psychomotor assessment in children Time of PHTS diagnosis Clinician’s recommendation
Brain MRI if symptomatic Time of PHTS diagnosis Clinician’s recommendation

ACancer lifetime risks calculated to age 70 by Tan et al. (36) and Bubien et al. (37), and to age 60 by Nieuwenhuis et al. (38). Cancer risk percentage ranges
reflect lowest and highest frequencies reported in all three studies. ®Annual comprehensive physical examination starting at age 18 years or 5 years before
the youngest age of diagnosis of a component cancer in the family (whichever comes first), with particular attention to thyroid examination. Encourage
patient education regarding the signs and symptoms of cancer. ‘Cancer screening should begin 5-10 years before the earliest known component cancer

in the family or according to the ages listed in the table, whichever comes first. PLifetime cancer risk estimates of skin cutaneous melanoma. SEER,
surveillance, epidemiology, and end results; PHTS, PTEN hamartoma tumor syndrome. Adapted with permission from the NCCN Clinical Practice Guidelines
in Oncology (NCCN Guidelines) for Genetic/Familial High-Risk Assessment: Breast and Ovarian V.1.2019.

genic promoter mutations result in decreased PTEN transcription
and translation, the latter due to altered mRNA secondary struc-
ture (60, 61). More recently, some unsuspected PTEN intronic
variants were shown to result in pathogenic exon skipping, alter-
native splicing, or the use of cryptic splice sites (62). These splic-
ing changes correlate with significantly lower PTEN protein levels
and elevated p-AKT in patients with splicing changes compared
with those without aberrant splicing. Finally, large PTEN deletions
occur in approximately 3% to 10% of PHTS patients and can be
found over the entire coding sequence (41, 42, 60).

Interestingly, PTEN encodes at least two proteins by means
of noncanonical translation initiation. The first identified isoform
represents a longer PTEN protein, named PTEN-Long (PTEN-L,
also known as PTENa), that contains 173 additional amino acids at
the amino-terminus due to the usage of an alternative CUG trans-
lation initiation site upstream of the canonical AUG sequence (63).
Additionally, PTEN-L can be secreted to enter other cells directly,

and can be detected in human serum and plasma. PTEN-L has
also been shown to interact with canonical PTEN to regulate mito-
chondrial function and energy production (64). More recently,
another N-terminal extended PTEN isoform, named PTENGB,
has been identified (65). PTENB translation is initiated from an
AUU codon upstream of the AUG initiation codon for canonical
PTEN. This isoform specifically localizes in cell nucleoli, and
regulates ribosomal DNA (rDNA) transcription and cellular pro-
liferation. As these newly identified PTEN protein isoforms are
characterized by distinct subcellular localizations and biological
functions, further studies are warranted to better understand how
these isoforms contribute to carcinogenesis. Importantly, since
PTEN-L and PTENp share the canonical PTEN sequence, muta-
tions that impact canonical PTEN would be expected to impact
these isoforms as well. However, mutations within the N-terminal
extended regions of PTEN-L and PTENp can have downstream
effects independent of canonical PTEN. An intriguing hypothe-
Number 2
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Figure 3. PTEN structure and germline mutation spectrum in PHTS. (A) PTEN germline mutation spectrum from 431 PHTS patients. PTEN is canonically a
403-amino acid protein. Different types of mutations are depicted in the lollipop plot overlaying the PTEN protein structure. The frequency of mutations
correlates with the heights of the vertical lines representing each lollipop. PTEN comprises a PIP2-binding domain (PBD), a phosphatase domain, a C2
domain, and a C-terminal tail including a PDZ-binding domain. The active site is included within amino acid residues 123 and 130. (B) PTEN consists of 9
exons that encode the 403-amino acid protein. The exons are overlaid to match the protein domains in A. Intronic regions are not represented. The colored
bars represent large deletions (abbreviated as del) and duplications (abbreviated as dup) annotated by affected exon numbers and the number of affected

patients in parentheses. Figure adapted with permission from ref. 174.

sis is the tissue-specific expression of various PTEN protein iso-
forms, which could, in turn, predispose PHTS individuals to dif-
ferent phenotypes in a genotype-dependent manner. Indeed, the
complex interplay among the PTEN family proteins could partly
explain why a wide spectrum of clinical phenotypes are observed
in the PTEN-opathies, with implications for the precise clinical
management of these disorders.

PTEN dysfunction in PHTS offers important biological
insights in the context of common sporadic cancers. Indeed, PTEN
is one of the most frequently somatically mutated genes in cancer
(66-68). The experimental data, in turn, offer insights regard-
ing how germline PTEN mutations cause the clinical manifesta-
tions observed in PHTS. Cell survival, growth, apoptosis, migra-
tion, and genomic instability represent processes that influence
cell fate and reflect overgrowth and cancer-related phenotypes.
In time, it became evident that PTEN is also critical for normal
development and physiology (11, 69). These findings help explain
the occurrence of neurodevelopmental disorders such as megal-
encephaly, autism spectrum disorder (ASD), and developmental
delay in individuals with PHTS (70-72). Importantly, germline
PTEN mutations have been reported in previously undiagnosed
individuals with isolated PHTS-related phenotypes, indicating
that the syndrome is indeed underdiagnosed (71, 73-79). Certain-
ly, utilizing knowledge about PHTS pathogenesis aids in establish-
ing a molecular diagnosis, itself critical both for understanding
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the pathomechanisms behind and for subsequent medical man-
agement of the observed phenotypes.

Finally, because it is technically challenging to functionally
interrogate all germline and somatic PTEN mutations, research
efforts have focused on devising high-throughput methods to
evaluate pathogenicity. Surprisingly, several residues within the
catalytic pocket are shown to be tolerant to mutations, with solvent
exposure playing a critical role in dictating tolerance (80). More-
over, several uncharacterized PTEN variants result in decreased
PTEN thermodynamic stability and abundance, thus expanding
the list of potentially functional variants (81). Collectively, such
efforts foster evidence-based, functionally relevant classification
of PTEN mutations into more clinically actionable categories.
Predictably, meta-analysis of outputs coupled with clinical pheno-
typic correlations will likely yield more robust classifications. Such
analyses culminated in a recently completed effort through Clin-
Gen’s PTEN Variant Curation Expert Panel (82).

Genotype-phenotype correlations and modifiers
of cancer risks

As with other inherited cancer syndromes, while it is possible to
risk-assess increased organ-specific cancer probabilities, it is still
impossible to predict at an individual level who will go on to develop
any particular component cancer during his or her lifetime. Hence,
multiple studies have attempted to find predictive PTEN genotype-
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phenotype correlations. Earlier studies revealed an association
between PTEN germline mutations and malignant breast disease
(83, 84). Missense mutations and mutations within and 5’ of the
phosphatase core motif appear to be associated with multiorgan
manifestations, serving as a surrogate of disease severity (83). Other
groups did not detect such genotype-phenotype correlations (85),
likely because their sample size of studied PHTS patients is small
(n =13), compared with the 44 families and 43 probands of the pre-
ceding studies (83, 84). More recently, germline PTEN frameshift
mutations have been found to be overrepresented, but not absolute,
in thyroid cancer (86), nonsense mutations overrepresented in col-
orectal cancer (36), promoter mutations overrepresented in breast
cancer (36), and missense mutations overrepresented in individuals
with ASD (87). Interestingly, a theoretical computational approach
revealed global 3-dimensional PTEN structural instability and inac-
tive conformation in cancer-associated PTEN mutations, whereas
ASD-associated PTEN mutations revealed localized destabilization
contributing to partial opening of the active site (88). Such effects
cannot be extrapolated from PTEN’s secondary structure alone
and indeed provide an important dimension to consider for assess-
ing PTEN genotype-PHTS phenotype associations. Additionally,
studies have shown that ASD-associated mutations tend to retain
higher PTEN activity relative to non-ASD-associated mutations
(80, 89, 90). Whether assayed in vivo in yeast or in vitro in mam-
malian stable or primary cell lines, partial hypomorphic PTEN lipid
phosphatase activity is retained in individuals with ASD, versus
total loss of PTEN lipid phosphatase activity in individuals with
more severe PHTS-related phenotypes (80, 89-91). Relatedly,
it is predicted that PTEN mutations that result in the accumula-
tion of stable inactive PTEN protein would lead to more severe
PHTS-related developmental phenotypes and malignancies (90).
Finally, imbalances in PTEN subcellular localization could impact
PHTS phenotypic manifestations. A murine model of germline-
mislocalized cytoplasm-predominant PTEN exhibits macrocephaly
and a neurocognitive profile reminiscent of high-functioning ASD
(92, 93). Intriguingly, germline-mislocalized nuclear-predominant
PTEN can exist in patients with either cancer or ASD (57, 94). In
this context, it is tempting to speculate whether mutant nuclear
PTEN plays distinct roles in the affected tissues related to the latter
disparate phenotypes.

The lack of absolute PTEN genotype-phenotype correlations
suggests that additional factors act as phenotypic modifiers in
PHTS. A proof-of-principle study showed that approximately 6%
of PTEN mutation-positive CS/CS-like individuals also harbor
germline variants in genes encoding three of the four subunits
of mitochondrial complex II (SDHB, SDHC, SDHD), which were
originally discovered as alternative susceptibility genes in PTEN
wild-type CS/CS-like patients (95, 96). Individuals carrying SDHx
variants show an increased risk of breast and thyroid cancers that
surpasses the risks mediated by mutant PTEN alone (95). Interest-
ingly, while individuals with SDHx variants alone show the highest
prevalence of thyroid cancer, the coexistence of a PTEN mutation
was associated with a 77% snapshot prevalence of breast cancer,
as compared with 32% with PTEN mutations alone and 57% with
SDHx variants alone. Although the prevalence of thyroid cancer
was not significantly elevated in individuals with both PTEN muta-
tions and SDHx variants, the histology was papillary for all tumors
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versus the notable enrichment in follicular thyroid tumors in indi-
viduals with only PTEN mutations. Mechanistically, SDHx variants
result in ROS-mediated stabilization of HIF-1a, destabilization and
decreased protein expression of p53 due to defective interaction
with NQO1, and resistance to apoptosis (95). These data also reveal
how mitochondrial dysfunction leads to tumorigenesis subsequent
to elevated flavin adenine dinucleotide (FAD) and nicotinamide
adenine dinucleotide (NAD"), the cofactor and product of NQO1
enzymatic catalysis, respectively. Subsequent studies showed that
SDHD p.G12S and p.H50R variants directly lead to impaired PTEN
subcellular localization and function through SRC-induced oxida-
tion, accompanied by apoptosis resistance and induction of cellular
migration (97). Importantly, the selective SRC inhibitor bosutinib
could rescue these tumorigenic phenotypes only when wild-type
PTEN was present. Similarly, SDHD p.G12S and p.H50R variants
result in reduced autophagy in a PTEN-dependent manner (98).
From a clinical perspective, these data provide mechanistic insights
that could explain the increased prevalence of thyroid cancer in CS
patients with SDHx variants alone compared with those with PTEN
mutations alone, as well as the seemingly paradoxical decreased
prevalence of thyroid cancer in the setting of coexisting PTEN
mutations and SDHx variants.

A hypothesis-generating pilot study further identified micro-
biomic differences in fecal samples derived from PTEN mutation-
positive patients with and without PHTS component cancers (99).
Functional metagenomic analysis revealed enrichment of cancer-
relevant biological processes such as folate biosynthesis, genetic
information processing, and cell growth/death pathways in fecal
samples from PHTS cancer patients compared with those without
a cancer diagnosis. These data suggest that gut dysbiosis could also
play a role as a cancer risk modifier in PHTS patients. Conceiv-
ably, with increased sample sizes and independent replication, we
suspect that novel associations will be discovered and expanded
beyond cancer, toward phenotypes such as ASD and non-neoplastic
overgrowths. Collectively, this knowledge will be impactful for
more tailored medical management of PHTS patients.

Germline predisposition — overgrowth

Versus cancer

The discovery of PTEN as the Cowden syndrome gene paved
the way for understanding how its disruption contributes to
disease etiology (1, 3, 4). Functional characterization further
established PTEN as a bona fide tumor suppressor gene (Fig-
ure 1). Studies in Drosophila and mouse models have shown that
PTEN and downstream PI3K/AKT/TOR signaling play a cen-
tral role in regulating cell number and size. Hence, dysfunction
of this pathway recapitulates the growth anomalies observed in
the PTEN-related human diseases. Drosophila PTEN has been
shown to regulate cell number and size when mutated, leading
to hyperplastic overgrowth in fruit fly mutant tissue (100). Sim-
ilarly to mammalian signaling pathways, Drosophila PTEN reg-
ulates growth by antagonizing DDP110 (the Drosophila homo-
log of PI3K), and by acting as a negative regulator of insulin
receptor signaling (101-103). With this knowledge of the basic
mechanistic principles, what remains elusive, however, is the
ability to identify factors that regulate progression from over-
growth to malignancy in a defined set of organs.
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Table 3. Preclinical studies, case reports, and clinical trials using PI3K/AKT/mTOR inhibitors for the treatment of the PTEN-opathies

Drug target Drug

Indication (reference)

Preclinical studies of patient-derived cells

PI3K Wortmannin, PIK3CA-related overgrowth spectrum,
1Y294002 PROS (173)
Pan-AKT ARQ 092 AKTI-related Proteus syndrome (136)
PROS (137)
Case reports
mTORC1 Sirolimus PTEN-related Proteus syndrome (125)
(rapamycin)
Bannayan-Riley-Ruvalcaba syndrome (126)
PTEN hamartoma tumor syndrome,
PHTS (127)
Infantile Lhermitte-Duclos disease (128)
PI3K BYL719 (p1100)  PROS (138)

Clinical trials

mTORC1 Sirolimus PHTS/Cowden syndrome, CS
PROS
Everolimus PHTS with neurocognitive deficits
PI3K/mTOR BGT226 (S patients with advanced solid malignancies
BEZ235
Pan-AKT ARQ 092 Patients with overgrowth diseases and/

or vascular anomalies

Treatments and reported outcomes

Decreased praoliferation of primary dermal fibroblasts from skin biopsies of overgrowth
lesions and decreased phosphorylation of AKT and p70S6K

Suppression of AKT and downstream signaling in patient-derived cells and tissues mosaic
for the AKT1 somatic gain-of-function p.Glu17Lys mutation

Decreased proliferation of primary fibrablasts with PIK3CA mutations, decreased
phosphorylation of AKT and downstream targets, less cytotoxicity in comparison with
rapamycin and wortmannin

Dose: 0.1 mg/kg/d, divided into 2 doses. Duration: 17+ months. Outcomes: resolution of
respiratory and nutritional complications, reduction in soft-tissue masses, reduction in the
size of mesenteric lymph nodes, minimal effect on the size or appearance of external
subcutaneous lipomata.

Dose: 0.8 mg/m?/dose, twice daily. Duration: 12 months. Outcome: decreased size
of the vascular mass.

Dose: 0.1 mg/kg/d. Duration: 19 months. Outcomes: transient improvement of somatic
growth and reduced thymus volume, absence of clinical benefit.

Dose: 0.6 mg/kg/d. Duration: 12 months. Outcomes: decreased episodes of decerebrate
posturing, regaining of normal appearance of the pituitary stalk, less compression of
the brainstem.

Dose: 50-250 mg/d. Duration: 6-18 months. Outcomes: patient-dependent with general
improvement of overgrowth; decrease in size of vascular tumors, reduction of hemihypertrophy,
attenuation of scoliosis.

Phase Il clinical trial completed and results forthcoming (NCT00971789)
Phase Il clinical trial completed and results forthcoming (NCT02428296)

Phase I/Il clinical trial currently recruiting (NCT02991807)

Phase Il clinical trial completed and results forthcoming (NCT00600275)
Phase I/1l clinical trial completed and results forthcoming (NCT00620594)

Phase /Il clinical trial currently recruiting (NCT03094832)

The most obvious explanation for organ-specific cancer devel-
opment could be that the expression of the cancer-related gene,
here PTEN, could be limited to the tissues in which malignancies
arise. However, PTEN is ubiquitously expressed in all three germ
cell layers throughout development, supporting the occurrence
of hamartomatous overgrowths and variable multisystem pheno-
types in individuals with germline PTEN mutations (11, 69, 104,
105). Homozygous Pten-knockout mice die before birth, further
supporting a critical role for PTEN in embryogenesis (11, 105-
107). High-level PTEN expression has also been reported during
human development in tissues known to be associated with PHTS
(104). However, this does not corroborate the tendency of these
organs to develop malignancies when PTEN malfunctions. For
example, the strongest PTEN protein levels are observed through-
out the central and peripheral nervous systems (104), even though
brain cancer is not a PHTS component cancer. Nevertheless,
neurodevelopmental phenotypes are observed in PHTS, includ-
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ing macrocephaly (about 94% of patients), ASD (108-111), and
Lhermitte-Duclos disease (LDD), a pathognomonic hamartoma-
tous overgrowth of the cerebellum (112). Immunohistochemical
studies show decreased or absent PTEN expression accompanied
by elevated p-AKT in the affected LDD dysplastic gangliocytoma
cells (113). Interestingly, murine studies have found that even
a subtle reduction in PTEN causes increased tumorigenesis in a
tissue-specific manner (114). In humans, reduced PTEN protein
dose in CS-derived lymphoblastoid cell lines tends to occur in
conjunction with an underlying germline PTEN mutation and to
correlate with increasing clinical phenotypic burden (41). Further
investigation in CS/CS-like patients with thyroid cancer reveals
that low PTEN protein levels from blood-derived lymphoblastoid
cells can predict for the presence of a germline PTEN mutation
(115). Importantly, low blood PTEN levels correlate with weak or
absent PTEN staining in the affected PHTS-derived thyroid tis-
sues. Hence, one possibility is that variable tissue-specific thresh-
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olds of PTEN protein dosage could potentially influence particular
PHTS-related phenotypes.

Intriguingly, despite the fact that germline PTEN mutations
result in component cancers within a restricted set of organs (36),
PTEN somatic driver mutations are enriched in multiple sporadic
cancer types that are not components of the PHTS spectrum,
including prostate cancer, glioblastoma multiforme, and others
(1). Moreover, identical germline PTEN mutations often result
in apparently disparate phenotypes (e.g., cancer versus non-
malignant overgrowths), including in an intrafamilial manner
(116). These observations suggest that additional factors act as
overgrowth versus cancer phenotypic modifiers in PHTS. Indeed,
while germline PTEN mutations predispose PHTS patients to can-
cer, it is the landscape of acquired somatic alterations that likely
governs cancer initiation and progression. Hence, although the
germline PTEN mutations affect all cells of PHTS patients, the
tissue-restricted pattern of particular modifying factors could
explain the nonrandom progression to malignancy in specific
organs. Additionally, the type of germline PTEN mutation could
also influence eventual cell fates. For example, germline PTEN
mutations such as C-terminal deletions that result in genomic
instability could prime tissues that are particularly sensitive to
DNA damage for progression to malignancy (117). Finally, the
immune system has been recognized as a major determinant of
cancer development (118-120). PTEN loss promotes resistance to
tumor immune cell infiltration through the production of inhibi-
tory cytokines, hence resulting in immune escape (121). Interest-
ingly, pregnant mice treated with low-dose lipopolysaccharide
to induce maternal inflammation produce offspring with brain
overgrowth (122). This phenotype is more pronounced in Pten-
heterozygous mice compared with wild type, indicating evident
crosstalk between genetic susceptibility and the inflamed micro-
environment mediated through ROS signaling. Importantly, ROS
cause oxidation and subsequent inactivation of PTEN, a mecha-
nism observed in a subset of CS/CS-like patients (97, 123). Hence,
the manifestation of a cancer phenotype does represent a complex
interplay among predisposing factors, genetic and epigenetic con-
founders, tissue-specific signaling networks, oncogenic signaling
pathways, and microenvironmental context (124).

Molecularly targeted therapeutics
Altered PI3K/AKT/mTOR signaling in the PTEN-opathies implies
that PI3K, AKT, and mTOR are germane targets for therapeutic
intervention (Table 3). Proof-of-principle case reports demonstrate
the use of the mTORC1 inhibitor sirolimus (rapamycin) to allevi-
ate the symptoms and overgrowth manifestations of individuals
with PHTS (125-128). Indeed, sirolimus has been used in a phase
IT open-label clinical trial in individuals with PHTS. Additionally,
a double-blind drug-placebo, crossover trial with the mTORC1
inhibitor everolimus is currently accruing PHTS patients with ASD
(22). Notably, mTORCI inhibitors have been used in patients with
tuberous sclerosis complex (TSC) (129-132) and Peutz-Jeghers
syndrome (P]S) (133). TSC1/2 and STK11/LKBI, the susceptibil-
ity genes for TSC and PJS, respectively, are not only upstream of
mTOR (9, 134) but are also downstream of PTEN signaling (135).
In addition to mTORCI1 inhibition, upstream components of
the PTEN signaling pathway, such as PI3K and AKT, also serve
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as candidates for pharmacologic inhibition in the PTEN-opathies
(Table 3). As such, AKT and PIK3CA inhibitors have been used in
PS and PIK3CA-related overgrowth spectrum (PROS) disorders
(136-138). PIK3CA encodes the p110a catalytic subunit protein
of PI3K. Preclinical studies using the allosteric pan-AKT inhibi-
tor ARQ 092 revealed suppression of AKT and downstream sig-
naling in cells and tissues from PS patients, mosaic for the AKTI
somatic gain-of-function p.Glul7Lys mutation (136). ARQ 092
treatment of primary fibroblast cells from PROS patients also
showed promising results; compared with sirolimus and the PI3K
inhibitor wortmannin, ARQ 092 resulted in higher antiprolifera-
tive activity and lower cytotoxicity, at least in vitro (137). Related-
ly, a recent proof-of-principle study demonstrated the successful
usage of the PIK3CA inhibitor BYL719 (alpelisib) in a preclinical
murine model of PROS and subsequently for the treatment of 19
patients with severe PROS disorders (138). Importantly, in these
PTEN-opathies, all patients harbored somatic mutations; the ulti-
mate goal from treatment is to continuously reduce progrowth
signals in affected tissues with minimal toxicity toward normal
wild-type cells. However, this becomes more challenging in the
germline context, such as PHTS, where a high therapeutic index
becomes even more critical since all cells harbor the underlying
PTEN mutation. Moreover, constitutional PTEN pathway dys-
function would theoretically necessitate some type of chronic
treatment regimen. However, lifelong mTOR and PIK3CA inhibi-
tion might not be feasible because of immunosuppressive effects,
disruption of systemic glucose homeostasis, and the critical role
the PTEN pathway plays in normal tissue and organ development
(11, 69, 139, 140). Although isolated case reports and studies (125,
126, 128, 138) show promise for the therapeutic management of
the PTEN-opathies, longitudinal studies are necessary to evaluate
long-term safety and efficacy.

Another major caveattomolecular targeting of the PI3K/AKT/
mTOR pathway is feedback activation of collateral oncogenic
signaling pathways, causing resistance. This led to the investiga-
tion of combinatorial therapies that would, in theory, effectively
target the growth-promoting signals without loss of feedback
controls. Indeed, inhibiting mTORCI has been shown to result
in feedback activation of upstream signaling components such
as AKT through insulin receptor substrate 1 (IRS1) or through
direct phosphorylation at Ser473 by mTORC2 (141). However,
experimental studies show promise in that the rebound upregula-
tion of AKT during mTORCI inhibition can be abrogated by pre-
treatment or cotreatment with resveratrol, at least in vitro (142).
Moreover, PI3K inhibition can result in therapeutic resistance in
PIK3CA-mutant cell lines due to a rebound insulin-dependent
feedback mechanism (140), or failure to suppress CDK4/6 as
evidenced through persistent RB phosphorylation (143). In these
contexts, the combination of various PI3K inhibitors with anti-
glycemic therapies or CDK4/6 inhibitors, respectively, results in
the attenuation of the progrowth feedback signaling cascades,
hence overcoming resistance. Interestingly, NVP-BEZ235, a dual
PI3K/mTOR inhibitor, has been shown to selectively inhibit the
growth of a subset of androgen receptor-positive (AR*) breast can-
cer cell lines (144). AR is positively correlated with PTEN expres-
sion in breast cancer, owing to direct PTEN transcription that is
mediated by an androgen response elementin the PTEN promoter
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(145, 146). Mechanistically, the beneficial effect of AR activation
in combination with PI3K/AKT/mTOR inhibition in AR*/ER*
breast cancers can be explained, at least partially, through PTEN
upregulation and MYC suppression (144). Interestingly, the
converse phenomenon has been extensively studied in prostate
cancer and has been shown to be context-dependent (147-149).
As such, PTEN-deficient prostate cancer cells have decreased AR
transcription, and PI3K pathway inhibition activates AR signaling
by alleviating the feedback inhibition on HER2/3 kinases (148).
Therefore, the crosstalk between PTEN and AR signaling will
likely be genotype- and context-dependent.

Although most therapeutic strategies are aimed at attenuating
downstream oncogenic signaling consequent to PTEN dysfunc-
tion, strategies to enhance PTEN levels and/or activity represent
promising therapeutic modalities. This is particularly pertinent
for the cell-permeable PTEN-L (63) that would theoretically allow
the restoration of PTEN levels in the context of PTEN haploinsuf-
ficiency. Moreover, PTEN expression and/or activity could also be
enhanced through modulating negative and positive regulators
of PTEN (e.g., transcription factors, miRNAs, protein ubiquiti-
nation machinery, etc.). Certainly, these approaches are context-
dependent with respect to baseline endogenous PTEN levels and
activity, tissue specificity, and the requisite of establishing long-term
effects, among many other factors. Importantly, restoring wild-type
PTEN in the context of a stable mutant PTEN protein could worsen
the condition owing to dominant-negative effects (150). Another
plausible approach is through gene editing of mutant PTEN alleles
to restore or even enhance PTEN function (e.g., increased phospha-
tase activity or recruitment to the plasma membrane) (151). While
gene editing poses many challenges, including off-target effects and
activation of adaptive immune responses (152, 153), recent advances
show promise in mitigating these outcomes (154-156). Undoubtedly,
gene editing will be exceptionally challenging in the germline setting
where the whole organism is targeted for editing.

Finally, given the broad spectrum and diverse functional
consequences of germline PTEN mutations, targeting the PI3K/
AKT/mTOR signaling pathway may not be effective in all con-
texts, e.g., when disease-associated PTEN mutations impact lipid
phosphatase-independent functions. One possible approach could
be to target the vulnerabilities caused by patient-specific germline
PTEN mutations. For example, because PTEN plays a vital role
in maintaining genomic integrity in the nucleus, it is possible to
therapeutically use PARP inhibitors (157). Moreover, patients with
germline PTEN mutations within the C-terminal region could
benefit from proteasome inhibitors to mitigate PTEN degradation
(158). Indeed, treatment with the proteasome inhibitor MG-132
can restore both nonsense and missense mutant PTEN protein
levels in vitro (159). However, restoring missense mutant PTEN
levels in the presence of the wild-type allele can also result in
dominant-negative effects, and could worsen the condition (150).
Predictably, in the era of precision medicine, cancer prevention is
key and determining context-specific therapeutic indices will be
vital for the effective management of the PTEN-opathies.

Immunotherapy
The PI3K/AKT/mTOR pathway is an important regulator of
immunity (160, 161). Since PTEN is a master regulator of this
Volume 129 Number 2
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pathway, it is therefore not surprising that PTEN disruption can
result in immune dysregulation. The latter is germane in carcino-
genesis, whereby immune surveillance, evasion of immune recog-
nition, and a chronically inflamed microenvironment represent
major immune hallmarks of cancer (118). Additionally, PI3K/AKT/
mTOR pathway activation has been shown to modulate responses
to immunotherapy. Loss of PTEN in the sporadic context has been
associated with resistance to anti-PD-1 therapy in melanoma
(121), a CS component cancer, and more recently in a case study
of metastatic uterine leiomyosarcoma (162). Interestingly, acti-
vation of the PI3K/AKT/mTOR pathway has been shown to drive
expression of PD-1/PD-L1 in a subset of solid tumors, causing
immunoresistance (163-165). Indeed, because PTEN seems to be
a major immunotherapeutic response predictor, multiple ques-
tions arise regarding the promising utility of immunotherapeutic
agents in individuals with germline PTEN mutations and cancer.
Studies have shown that a subset of individuals with PHTS have
autoimmune phenotypes as well as B and T cell-related immune
dysfunctions (161, 166). Importantly, reduction in peripheral lym-
phocyte numbers in comparison with control subjects, including
decreased CD4* cell numbers and hence absolute FOXP3* Treg
numbers, would suggest that these individuals will have a differ-
ent response to immunotherapy compared with individuals with
normal immune systems.

Perspective

The PTEN-opathies represent a paradigm whereby one path-
way appears etiologic for a wide spectrum of clinically dis-
tinct phenotypes. The recognition and characterization of the
PTEN-opathies allow for significant advances in understanding
how clinical phenotypic manifestations result from underlying
molecular and cellular processes to then guide risk assessment,
therapeutics, and preventative strategies. Preclinical studies and
clinical trials show promise for the treatment of a subset of the
PTEN-opathies. However, this becomes more complex in the
germline context, where a high therapeutic index is mandatory,
yet exceptionally challenging. Indeed, individuals with germline
PTEN mutations have a lifelong predisposition to PHTS-related
signs and symptoms, necessitating prolonged treatments that
could impact normal growth and development and cause nontar-
geted cytotoxicity. One of the most serious complications of the
PTEN-opathies, particularly PHTS, is the increased lifetime risk
for cancer. Although PTEN-enabled organ-specific cancer risk
estimates and management guidelines are part of the routine
clinical armamentarium of precision care, it remains virtually
impossible to absolutely predict which individual (versus a proba-
bility) will develop which component malignancy. Nonmalignant
component phenotypes of PHTS, such as ASD and severe vas-
cular malformations, can be chronically debilitating and affect
quality of life for patients and their families. Intriguingly, identi-
cal germline PTEN mutations are observed in patients with these
seemingly disparate phenotypes (e.g., cancer versus ASD), indi-
cating that additional factors may act as phenotypic modifiers
in PHTS. Hence, future studies elucidating absolute modifiers of
disease manifestations and associated signaling networks will be
key to define more precise and effective preventative and thera-
peutic strategies for the individual at risk.
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