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Difficulties in exploring
curative strategies for HIV-1
Human immunodeficiency virus 1 (HIV-1)
is a major global health issue. Each year
there are 40,000 new cases of HIV infec-
tion among Americans and as many as 2
million new cases worldwide. Strategies
toward finding a cure for HIV-1 are ham-
pered by the fact that HIV-1 is extraor-
dinarily variable. This diversity poses a
major obstacle to the development of an
AIDS vaccine. The genetic diversity of
HIV-1 isolates can reach up to 20% for
envelope polyprotein (Env) sequences
(1). Although the influenza vaccine is
promoted as a model system for HIV, the
diversity of HIV is greater than that seenin
influenza (2), and the variability issues in
the design of an influenza vaccine are fun-
damentally distinct from those for an HIV
vaccine. Design of an HIV vaccine con-
stitutes a significant hurdle that must be
overcome. A vaccine can induce or lever-
age, respectively, humoral and cellular
immune responses capable of recognizing
the different circulating HIV subtypes.
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The last decade has led to a significant advance in our knowledge of HIV-1
latency and immunity. However, we are still not close to finding a cure

for HIV-1. Although combination antiretroviral therapy (cART) has led to
increased survival, almost close to that of the general population, it is still
not curative. In the current issue of the JCI/, Wu et al. studied the prophylactic
and therapeutic potential of an engineered tandem bispecific broadly
neutralizing antibody (bs-bnAb), BilA-SG. This bnAb’s breadth and potency
were highly effective in protection and treatment settings, as measured by
complete viremia control following direct infusion, as well as elimination of
infected cells and delay in viral rebound when delivered with a recombinant
vector. These observations underscore the need for the clinical development
of BilA-SG for the prevention of HIV-1.

Combination antiretroviral therapy
(cART) has been very effective in con-
trolling HIV-1 replication and suppres-
sion of HIV-1 to undetectable levels in the
peripheral blood of patients for long peri-
ods of time. However, the infectious virus
still persists in reservoirs and results in
the replication competence of integrated
HIV-1 genomes in small subsets of latently
infected memory CD4" T cell populations,
called viral sanctuaries. This leads to a
viral rebound within a few weeks of cessa-
tion of cART. Targeting the reservoirs has
not been successful. Curative strategies
targeted toward the activation of dormant
virus that would lead to its destruction via
host immune or viral cytopathic effects
have had limited success.

It has recently been demonstrated that
virus diversity in infected individuals aris-
es because of the pressure exerted by the
immune system and the ability of HIV-1 to
mutate, leading in turn to the ability of the
immune response to develop broadly neu-
tralizing antibodies (bnAbs) (3-5). It is now
well known that bnAbs target the glycosyl-
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ated structure of the HIV-1 envelope present
on the viral membrane, referred to as the
closed trimeric structure of the gp120/gp41
complex. This closed state is the most infec-
tious among the different conformational
states of the envelope present on HIV-1
virions (6, 7). Similar structures can also be
exposed on the membrane of the infected
cells at the time of virus budding (8).

Broadly neutralizing Abs

offer hope

Over the years, several studies have
exploited the ability of bnAbs to confer
protection from infection, to control virus
replication, and to reduce the size of the
latently infected cells’ reservoir (review
in ref. 9). The original passive protection
studies in animal models indicated that
monoclonal Ab (mAb) combinations are
usually more effective in preventing simi-
an human immunodeficiency virus (SHIV)
infection in nonhuman primates (10-13).
More recently, bnAb combinations have
also been tested for their potential activ-
ity in reducing viremia, viral rebound in
animal models, and in exploratory clini-
cal trials. In the humanized mouse model,
a combination of the CD4 binding site
3BNC117 (14), V3 glycan 10-1074 (15), and
V1V2 glycan PG16 (16) bnAbs induced
decreased viremia in approximately 50%
of the mice, and substantially delayed virus
rebound compared with animals treated
with cART (17). Moreover, a decline in the
level of cellular-associated DNA occurred
only in the aviremic mice treated with the
3-mAb cocktail. Therefore, bnAbs can sig-
nificantly impact both plasma viremia and
the pool of latently infected cells through
recognition of HIV-1 Env on the host cell
membrane (17). Similar observations
have been reported in the nonhuman pri-
mate model in which bnAbs successfully
reduced the level of plasma viremia during
chronic (18-20) and acute (21) SHIV infec-
tion. Additionally, bnAb combinations
have been shown to reduce the size of the
pool of latently infected cells (19, 21).
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Figure 1. Schematic diagram showing binding of the BilA-SG antibody. (A) Engineered tandem bispecific bnAb BilA-SG antibody with scFv domain(s) for
binding to HIV-1gp160 trimer (green VH/VL chain of PGT128) and to soluble CD4 (orange VH/VL chain of HuSA8) via 20-mer linkers. Two possible interac-
tions are predicted for the molecule: intraspike cross-linking (B) and interspike cross-linking (C). scFv, single-chain variable fragment; VH, heavy-chain

variable region; VL, light-chain variable region.

The efficacy of individual bnAb infu-
sions was recently tested in human trials
and appeared to have a beneficial effect
on the control of plasma viremia (22).
However, in 2 different regimens, resistant
virus isolates were either observed before
treatment and hampered the therapeutic
effect of the bnAb (23), or appeared fol-
lowing infusion of the bnAbs during ana-
lytical treatment interruption (24). Taken
together, these studies have thus far indi-
cated that development of mAb-based
molecules with several epitope specifici-
ties is a desirable goal to circumvent HIV-1
envelope sequence diversity and propen-
sity to escape.

A novel approach toward the
broadly neutralizing Abs

Wu and collaborators (25) decided to take
a different approach to circumvent the
diversity of HIV-1 envelopes. They based
their molecule on 1 single gene-encoded
tandem bs-bnAb, namely BiIA-SG, where
2 single-chain variable fragment (scFv)
binding domains against the V3 glycan
epitope recognized by the PGT128 mAb

jei.org  Volume 128

and the CD4 receptor recognized by the
Hu5A8 mAb are simultaneously present
(Figure 1). This represents a radically dif-
ferent approach compared with a prede-
cessor of this molecule reported by Huang
and collaborators (26) that included a
single scFv for each anti-HIV-1 envelope
broadly neutralizing monoclonal antibody
(bnmAb) against the CD4 receptor. The
aspects related to the new class of mole-
cules discussed herein do not include obvi-
ous considerations on the pharmacokinet-
ic, tissue distribution, and ability to induce
anti-drug antibody responses, since these
will have to be addressed in further dedi-
cated studies.

As reported by Wu et al. (25), the neu-
tralizing breadth and potency of the new
BiIA-SG molecule are definitely higher
than those of the original neutralizing
PGT128 mADb, or the BiIA-DG with a single
scFv domain. The authors suggest that the
improved activity of the BiIA-SG may be
due to the ability of the anti-CD4 arm to
bring the PGT121 arm in proximity to the
HIV-1Env. In addition, this effect may also
be due to the presence of 2 binding sites
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that favor the binding of the molecule to
the targeted antigens. In developing a new
class of therapeutics, this aspect could be
relevant to improve the performance of
bispecific molecules such as those based
on the potent class of membrane proximal
epitope region-specific (MPER-specific)
mAbs that do need a simultaneous biva-
lent binding to the membrane lipid layer
and to the HIV-1 envelope (27). It is inter-
esting that a similar molecule was original-
ly designed and characterized to include
the MPER 10e8 specificity and was also
developed into a trispecific molecule (28).
Ultimately, it will be interesting to observe
if this newly engineered molecule can
address the need for the simultaneous rec-
ognition of 2 different regions of the HIV-1
envelope to broaden the breadth and pre-
vent escape. These new molecules could
represent the benchmark for compari-
son with the recently reported trispecific
mAb-based molecules that are also aimed
at increasing breadth and potency of anti-
HIV-1 activity (29).

The authors also demonstrate that the
BiIA-SG molecule is able to protect from
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infection and control virus rebound in the
humanized mouse model for HIV-1 infec-
tion. Of note, the molecule, delivered as
an adeno-associated virus construct, led
to a reduction of P24* T cells in the blood
and spleen.

Concluding remarks

Additional information about the activity
of BiIA-SG against the so-called sanctu-
ary for HIV-1 in the latent reservoir will
have to be obtained before designing stud-
ies to prevent the appearance of escape
mutants and to reduce the virus reservoir
in tissues such as lymph nodes, the GI
tract, and the central nervous system. If
the mechanism of action of the BiIA-SG is
related to its broadly neutralizing function,
it still remains to be determined how this
molecule will perform against the circu-
lating HIV-1 isolates, taking into account
HIV-1 diversity and the dichotomy already
observed between in vitro breadth of indi-
vidual bnAbs and the presence of escape
mutants (23, 24).

In addition to the neutralization activ-
ity, bnAbs can significantly impact both
plasma viremia and the pool of latently
infected cells through recognition of the
HIV-1 Env on the host cell membrane (17)
and engagement of Fcy-R-bearing cells
(30). Therefore, the possibility of further
enhancing the activity of this promising
class of immunotherapeutics needs to
be explored by designing bnAbs that can
engage Fcy-R-bearing cells and facilitate
the killing of latently infected cells.
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