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of kidney cancer therapeutics.

Introduction

Hereditary cancers in the kidney have provided a wealth of mate-
rial to advance our understanding of cellular physiology. Most
notably in the context of the mutation in the von Hippel-Lindau
(VHL) gene, carriers display an autosomal dominant risk for clear
cell-type renal cell carcinoma (ccRCC) and other lesions through-
out the body (1). This syndrome is an exceptionally valuable
teaching tool in the medical school setting, illustrating concepts
of hereditary cancer risk, loss of heterozygosity, sensor-driven sig-
naling, genetic defects altering protein level regulation (ubiquitin/
proteasome degradation) as opposed to transcriptional regulation
(transcription factors), tumor cellular metabolism, and growth
factor-driven angiogenesis, among other topics. Studies in the
biology of VHL disease and other kidney cancer syndromes led
to key discoveries that cemented angiogenesis and metabolism as
hallmarks of cancer. This Review will consolidate our knowledge
around angiogenesis and metabolism, as learned from the van-
tage point of hereditary kidney cancer (Figure 1).

VHL disease: an illustration of angiogenesis-
fueled hereditary disease

The VHL gene was discovered in 1993 in the pursuit of a famil-
ial autosomal dominant syndrome of numerous highly vascular
tumors (2). Originally described as a syndrome, also known as
familial cerebellar retinal angiomatosis, it was recognized in the

Conflict of interest: WKR receives institutional support for clinical trials from Pfizer,
Novartis, Bristol-Myers Squibb, Calithera, Peloton, Tracon, and Roche.

Reference information: J Clin Invest. 2019;129(2):442-451.
https://doi.org/10.1172/)C1120855.

jci.org  Volume129  Number2  February 2019

The field of hereditary kidney cancer has begun to mature following the identification of several germline syndromes that
define genetic and molecular features of this cancer. Molecular defects within these hereditary syndromes demonstrate
consistent deficits in angiogenesis and metabolic signaling, largely driven by altered hypoxia signaling. The classical
mutation, loss of function of the von Hippel-Lindau (VHL) tumor suppressor, provides a human pathogenesis model for
critical aspects of pseudohypoxia. These features are mimicked in a less common hereditary renal tumor syndrome, known
as hereditary leiomyomatosis and renal cell carcinoma. Here, we review renal tumor angiogenesis and metabolism from a
HIF-centric perspective, considering alterations in the hypoxic landscape, and molecular deviations resulting from high levels
of HIF family members. Mutations underlying HIF deregulation drive multifactorial aberrations in angiogenic signals and
metabolism. The mechanisms by which these defects drive tumor growth are still emerging. However, the distinctive patterns
of angiogenesis and glycolysis-/glutamine-dependent bioenergetics provide insight into the cellular environment of these
cancers. The result is a scenario permissive for aggressive tumorigenesis especially within the proximal renal tubule. These
features of tumorigenesis have been highly actionable in kidney cancer treatments, and will likely continue as central tenets

early 1900s by German ophthalmologist Eugen von Hippel, who
described angiomas in the eye in 1904, and Swedish pathologist
Arvid Lindau described the angiomas of the cerebellum and spine
in 1927 (3, 4). The term von Hippel-Lindau disease was first used
in 1936; however, its use became common only in the 1970s. VHL
disease’s link to ccRCC was discovered much later, but as this
tumor is also characterized by a vascular-rich malignancy, the
association was natural.

VHL disease has a prevalence of 2-3 per 100,000 and an esti-
mated incidence around 1 of 45,000 live births (5). Penetrance is
90% by age 65, and the manifestations emerge over the lifetime of
affected individuals.

The VHL gene is located on chromosome 3p25.1. The VHL pro-
tein (pVHL) is composed of at least two isoforms, both of which con-
vey activity as the substrate-binding component of an E3 ubiquitin
ligase complex. VHL is the centerpiece of a finely tuned rheostat
system that regulates the response to low oxygen levels. Several tar-
gets of pVHL-mediated proteasomal degradation have been report-
ed, but the canonical substrates include the hypoxia-inducible fac-
tors (HIF-1a and HIF-20). These transcription factors interact with
pVHL via their oxygen-dependent degradation domains (ODDs)
containing proline residue targets that undergo hydroxylation by a
family of iron- and oxygen-dependent prolylhydroxylation (PHD)
enzymes. Thus, in the presence of physiological oxygen levels, PHD
enzymes place a prolylhydroxylation mark on the HIF ODD, ren-
dering HIF proteins susceptible to pVHL-mediated ubiquitylation
and proteolytic degradation via the proteasome. Levels are kept low
until there is a deficit in oxygen supply, at which point unhydroxyl-
ated HIF proteins are free to accumulate, heterodimerize with their
obligate partner protein (HIF-1B, also known as the aryl hydrocar-
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Figure 1. Common themes in hereditary kidney
cancer syndromes. The two dominant forms of
hereditary (and sporadic) RCC derive from cells
in the proximal tubule. In spite of their common
or similar origin, these tumor types have distinct

genetics and biological characteristics. Although
both VHL mutation, which is associated with

clear cell type RCC, and FH mutation, which

is associated with papillary-type 2 RCC, can
deregulate HIF expression, these factors drive
a differing balance of angiogenic and metabolic
features, contributing to the overall pattern of
the distinct diseases.
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bon receptor nuclear translocator [ARNT]), and execute their func-
tion as potent transcription factors (Figure 2).

In the absence of pVHL, HIFs promote a unique angiogenic
state of continuous mitogenic signaling. Thus, numerous inves-
tigations have detailed the effect of VEGF signals in this context.
However, in the context of VHL disease, as well as in ccRCCs
in general, a variety of VHL mutations, of varying severity, are
observed. Full genomic deletions are common, along with frame-
shift and truncating mutations, as are point mutations, which result
in protein instability and mutations that retain partial functionality
of the protein. Moreover, this disease gives rise to significant gen-
otype-phenotype correlation, and the spectrum of proangiogenic
effects varies according to the class of mutations that are observed.

VHL disease is subdivided into type 1 and type 2. Type 1 con-
veys high risk for ccRCC, and is typically caused by complete loss
of the protein. Type 2 is associated with missense mutations, along
with risk for the syndrome of pheochromocytoma or paragangli-
oma. Type 2 is further subclassified based on risk of developing
hemangioblastomas (type 2A with lower risk, type 2B with the
highestrisk) (6). Type 2C, typified by the L188V mutation, conveys
risk for pheochromocytoma alone, and preserves HIF regulatory
function (7). Finally, homozygosity for a rare mild mutation at the
extreme C terminus, R200W, causes a familial autosomal reces-
sive syndrome of erythrocytosis and polycythemia via a more sub-
tle, and context-dependent, effect on HIF-20 deregulation (8-10).

The common theme in differentiating these mutations is the
extent to which pVHL interacts with and differentially regulates
the canonical targets HIF-lo and HIF-2a (11). The differential
impact of stable expression of one versus the other of these factors
has direct implications for angiogenic signaling and will be dis-
cussed in detail later in this Review.

HLRCC: an illustration of metabolically driven
hereditary kidney cancer

A second hereditary kidney cancer syndrome, called hereditary
leiomyomatosis and RCC (HLRCC), provides additional insights

into the core mechanisms of tumor cell fitness (12). HLRCC is
another classical tumor suppressor autosomal dominant disease
that conveys risk for leiomyoma (with leiomyomas in the uterus
and skin predominating) and papillary-type 2 RCC. This syndrome
is caused by germline mutations in a core Krebs cycle enzyme,
fumarate hydratase (FH) (13). FH loss uncouples the Krebs cycle,
driving up fumarate levels, and impairing cellular oxygenation as
aresult of the lack of reducing substrate (NADH) to drive electron
transport (Figure 2).

How the FH mutation contributes to the development of a
highly invasive and lethal kidney cancer remains an issue of active
investigation. FH-mutant tumor cells are highly dependent on gly-
colysis and conduct reductive carboxylation, essentially reversing
the Krebs cycle as a result of substrate availability. Constitutive
HIF stabilization further contributes to metabolic aberrance in
this cancer (14, 15). In FH-mutant tumor cells, accumulated fuma-
rate mimics a-ketoglutarate to directly inhibit PHD proteins. The
result is lack of hydroxylation and pseudohypoxic stabilization of
HIF factors in ccRCC (16).

A handful of other familial syndromes of kidney cancer risk
(17) lend additional insight into the essential mechanisms of renal
tumorigenesis. Birt-Hogg-Dubé syndrome conveys risk for a vari-
ety of RCC subtypes due to mutations in the folliculin (FLCN)
gene. Tuberous sclerosis causes angiomyolipomas and risk for
¢cRCC due to mutations in TSCI or TSC2 (tuberous sclerosis
complex 1 and 2) that lead to activation of mTOR as well as HIF
upregulation via enhanced cap-dependent translation; and hered-
itary papillary RCC, caused by activating mutations in cMET. Each
of these mutations directly or indirectly impacts HIF signaling,
tumor angiogenesis, and metabolism.

HIF/hypoxia, a central mediator of renal

tumor risk

HIFo/HIFf complex, hypoxia, and transcription activity. The
capacity to detect and adapt to changes in oxygen is critical for
cellular and whole-organism homeostasis, representing a critical
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Figure 2. HIF-mediated metabolic reprogramming in VHL-deficient RCC. Cermline mutations that render the tumor suppressor gene VHL defective, as
observed in a majority of clear cell renal carcinoma cells (ccRCC), interfere with pVHL-mediated proteolysis of HIFa (compare a classic model of cellular
metabolism in A, with pseudohypoxic HIF-driven RCC metabolic reprogramming in B). Stabilized HIFa translocates to the nucleus, where it dimerizes with
HIFpB and directly upregulates transcription of genes related to cellular metabolism, among hundreds of others. HIF reprograms metabolism away from
aerobic respiration and toward aerobic glycolysis by increasing conversion from pyruvate to lactate (via upregulation of LDHA) and by blocking pyruvate
conversion to acetyl-CoA by PDH (via upregulation of PDK1). HIF increases metabolic nutrients by upregulating transporters for both glucose (GLUT1 and
GLUT3) and glutamine (SLCA1 and SLCA3), thereby increasing rates of glycolytic and reductive carboxylation pathways, respectively. In addition, HIF
mediates a reduction in aerobic respiration by upregulating BNIP3 and BNIP3L, which leads to selective mitochondrial degradation. HIF interferes with TCA
cycle enzymes via miR-210, which disrupts formation of Fe-S clusters necessary for catalysis. Upregulation of the transcription suppressor MXI1 represses
c-MYC expression that greatly facilitates the metabolic shift in cancer cells. HIF amplifies its own transcriptional activity by upregulating the HIFa cofactor

PKM2. Ub, ubiquitin. a-KG, a-ketoglutarate.

evolutionary adaptation of multicellular organisms and enabling
survival over time. Nearly every mammalian cell (18) responds to
reduced oxygen availability through activation of the transcrip-
tion factor HIF (19-22).

When conditions allow the two isoforms of HIFa, HIF-10. and
HIF-20, to be stabilized, they are subsequently translocated into
the nucleus via binding with HIF-1B (23). There, the HIF o/ dimer
binds to hypoxia response elements (HREs) located often in the
proximal promoters of target genes, promoting their transcription.
Interplay with other DNA-binding proteins enables cooperative
binding or coactivation of HIF, fine-tuning the activation of HIF
targets (20, 24). While there is some redundancy between HIF-1
and HIF-2 targets, inactivation of each leads to unique pheno-
types, perhaps due to their tissue-specific and temporally specific
expression patterns (25-27).

In the presence of hypoxia, HIF activation reprograms cel-
lular oxidative metabolic mechanisms, representing an elegant
bioenergetic adaptation enabling cells to mitigate toxic reactive
oxygen species (ROS) and to preserve macromolecular synthe-
sis in response to oxygen availability. The reprogramming of
numerous and varied cellular systems by HIF in tumorigenesis,
including stem cell maintenance, growth factor signaling, epithe-
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lial-mesenchymal transition, invasion, metastasis, angiogenesis,
and metabolism (28-31), underscores the consequential role of
HIF in cancer progression.

HIF-1 versus HIF-2. Both HIF-lo and HIF-20 appear to be
involved in ccRCC initiation (32, 33). However, it is thought that
HIF-1a functions as a tumor suppressor in ccRCC by attenuat-
ing VHL-deficient tumor cell proliferation (34) and is not active
in some ccRCCs (35, 36). Deletions of chromosome 14q, which
harbors the HIF-1A locus, occur in ccRCC and indicate poorer
outcomes (37-39). Conversely, HIF-20, consistently functions as
an oncoprotein in ccRCC (34, 36, 40). In the VHL-deficient set-
ting, HIF-2a upregulates targets involved in angiogenesis (41-44),
oxidative stress resistance (45), mitochondrial biogenesis (34,
46-48), metastasis (49, 50), and autonomous proliferation and
cell cycle (36, 43, 51, 52). In addition, HIF-2q, but not HIF-1a, can
override pVHL’s suppressive function (34, 40, 53). Consequently,
ccRCCs that express only HIF-2a are characterized by increased
cell proliferation and adverse prognosis (36, 45, 54, 55). Elimina-
tion of HIF-2a in vivo attenuates tumorigenesis in VHL-deficient
RCC cells (56, 57). These and other differential impacts of HIF-1a.
versus HIF-2a (58) present exploitable and attractive mechanisms
for targeted therapies in ccRCC.



The Journal of Clinical Investigation

A wT B VHL mutant

W
J a-SMA
, -4

[‘ / .
IArteries -

Angiogenesis, a theme in hereditary kidney
cancer risk

Misregulated vascular growth and remodeling contribute to the
onset and progression of numerous tumor types (59), and these
processes are particularly relevant to hereditary kidney cancers.
Blood vessel development matches metabolic activity and tissue
oxygenation under normal conditions (60). However, disrupted
metabolism and oxygen sensing mechanisms in inherited kidney
cancers induce structural changes of the blood vasculature, seen
prominently in vascular remodeling downstream of HIF misreg-
ulation (61, 62), often via VHL mutations (63-65). Tumor angio-
genesis, or growth of new vessels from existing blood vascula-
ture, is driven primarily by aberrant increases in VEGF-A, which
is often induced by tumor hypoxia as the lesion expands, but also
results from primary HIF pathway defects (64). Perturbations
within other phases of vascular growth (66, 67) also contribute to
and accelerate tumor vascularization. For instance, PDGF-BB sig-
naling, an essential pathway for vessel maturation through mural
cell recruitment (68-71), can be disrupted directly and indirectly
by HIF-VEGF misregulation (72), especially in the tumor context
(73-77). Notch signaling has also been implicated in promoting
tumor vascularization (78-82), as Notch receptors and ligands
regulate not only endothelial phenotypic heterogeneity during
sprouting angiogenesis (72, 83, 84), but also arterial-venous spec-
ification (85-87) and vessel maturation via mural cell investment
(88-90). In addition to crosstalk within these signaling networks,
molecular cues from the angiopoietin (ANGPT)/Tie pathway also
coordinate the balance between (a) vascular plasticity and endo-
thelial cell sprouting, primarily via ANGPT2-induced destabiliza-
tion (91), and (b) vessel maturation via long-term investment of
pericytes and vascular smooth muscle cells, which occurs down-
stream of ANGPT1-Tie2 interactions (92). In the context of renal
cancer vascularization, these molecular pathways, among others,
contribute to a complex pattern of angiogenesis and neovessel
formation, as well as to the misregulation of vessel stabilization
and maturation (93). They may, therefore, offer unique targets for
modulating not only initial tumor vascularization, but also addi-
tional vessel remodeling processes that likely exacerbate tumor
progression and undermine effective chemotherapeutic delivery.

Angiogenesis in VHL disease — beyond

the kidney

Aberrant vascular remodeling often occurs in hereditary kidney
cancer diseases — VHL disease being a notable example. High
metabolic demand and oxygen consumption within the kidney

- b ’ '
Veins \ ﬁ
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Figure 3. Vascular dysmorphogenesis during VHL
mutations. Inducing VHL mutations experimental-
ly (compare WT conditions in A with VHL mutant
condition in B) leads to vascular abnormalities
characterized by an ectopic expression of smooth
muscle a-actin (a-SMA; green) by vascular peri-
cytes and vascular patterning defects, including
elevated vessel density and the development of
arteriovenous shunts spanning major arteries/
arterioles (light red) and venules/veins (light blue).

compound disease-related defects in the mechanisms regulating
these activities, thereby fueling the excessive proangiogenic sig-
naling described in the previous section. These defects can lead
to disease manifestations in tissues beyond the kidney, where
abnormal vascular growth and remodeling contribute to addi-
tional pathologies. For instance, brain, spinal cord, and eye/reti-
na hemangioblastoma formation is commonplace in VHL disease
(94, 95), owing in part to disruption of the VEGF-A (96, 97) and
Notch pathways (98), among others. Dysfunction in HIF signaling
is also likely involved in the aberrant vessel remodeling found in
nonkidney tissues, as recent studies have implicated this pathway,
and downstream mediators such as ANGPT-like 4 (ANGPTL4),
in angiogenesis-related conditions including pterygia (99), uveal
melanoma (100), and proliferative retinopathies (101-103).

Increased insight into how angiogenesis defects lead to clini-
cal manifestations of ocular VHL disease, such as retinal capillary
hemangioblastoma (RCH) formation, will advance future thera-
pies as well as enhance the diagnostic strategies of ophthalmolog-
ical examination of VHL patients (104-106). To better understand
retinal vascular malformations in the VHL mutation scenario, we
recently examined the retinal vasculature using inducible mouse
models of type 1 (null) and type 2B (murine G518A represent-
ing human R167Q) Vhl mutations (6, 11, 107). Retinal vessels of
type 2B Vhl-mutant animals displayed hallmarks of an accelerat-
ed progression toward an arterial phenotype, including ectopic
expression of vascular smooth muscle contractility proteins in
microvascular pericytes (Figure 3 and ref. 98). We further found
that both types 1 and 2B genetic mutations resulted in abnormal
angiogenic remodeling and changes in stage-specific vascular
density (Figure 3 and ref. 98). These observations were consistent
with a zebrafish model of VHL-associated retinopathy in which
retinal angiogenesis and vessel leakage contributed to macular
edema and retinal detachment (108). Blocking VEGF signal-
ing in this type 1 Vhl7~ model improved retinopathy outcomes
(108), though recent studies have cautioned against sustained
anti-VEGF interventions in the eye, as they may have deleterious
effects on retinal neurons (109-111). Current treatment of ocular
VHL disease includes systemic or intravitreal administration of
anti-VEGF agents, laser photocoagulation, and cryotherapy (112),
though clinical management remains a challenge because of the
likelihood of new RCH formation and the frequent presence of
multiple lesions in both eyes.

Aberrant blood vessel formation also gives rise to hemangio-
blastomas in the cerebellum and spinal cord of VHL patients (94,
113,114). Similarly to the kidney, these tissues have high metabolic
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demands and minimal to no energy reserves, which exacerbate
genetic defects in mechanisms regulating metabolism and oxygen
sensing (114). While VHL-mediated kidney cancer involves vas-
cular remodeling via angiogenesis, hemangioblastoma formation
in neurological tissues of VHL patients may also involve vasculo-
genic processes (113, 115, 116). The precise cellular contribution of
vascular cells versus tumor “stromal” cells to the dense vascularity
of hemangioblastomas remains an open question (113); it is clear,
however, that excessive proangiogenic factors such as VEGF-A,
PDGF-BB, and EGF drive lesion growth (117, 118). For these rea-
sons, antiangiogenesis strategies initially developed to treat kid-
ney cancers, and specifically VHL-associated ccRCC, are being
adapted to manage CNS hemangioblastomas untreatable by sur-
gical resection or radiation therapy (117, 119, 120).

Antiangiogenic targeting in RCC

Altered hypoxia signaling and metabolism in renal cell carcinoma,
as seen in VHL disease (121), drives angiogenic pathway activa-
tion, leading to the rationale for targeting signals involved in vas-
cular remodeling (122, 123). Development of anti-VEGF therapies
in particular has focused on dampening VEGF signaling by reduc-
ing ligand levels (e.g., the VEGF-A-targeting antibody bevacizum-
ab) or interfering with tyrosine kinase activity and receptor phos-
phorylation (e.g., axitinib, pazopanib, sorafenib, sunitinib). These
agents transformed the care of patients with RCC (122). Increasing
appreciation for proangiogenesis resistance mechanisms (124) has
inspired development of agents targeting additional growth fac-
tor pathways such as FGF (lenvatinib, targeting FGFR) and HGF
(cabozantinib, targeting the HGF receptor cMET). Clinical trials
involving anti-VEGF therapy for RCC patients (125, 126) highlight
the need for increased insight into more effective uses of antian-
giogenic agents, potential combinatorial approaches such as with
immunotherapy treatment (127, 128), and additional molecular
targets intersecting with VEGF signaling.

Because HIF signals provide critical regulation of VEGF-A
activity, this pathway has gained significant attention in the devel-
opment of antiangiogenesis therapies. For example, acriflavin,
which blocks HIF-1 dimerization, has shown promise in reducing
tumor growth and associated angiogenesis in preclinical models
(129,130). Multimodal therapy involving HIF-1a inhibition along-
side VEGF-A inhibition and hypoxia-activated chemotherapy
inhibits angiogenesis and cancer stem cell-like proliferation/sur-
vival in sarcomas (131), warranting validation of this approach for
treating RCC. HIF-2 antagonists (such as PT2399 and PT2385)
are also in development and show early indications of efficacy
in treating a subset of ccRCCs (41, 132, 133), though divergent
responses to HIF-2 inhibition underscore the importance of care-
ful inclusion of key biomarkers in clinical trial design (134).

Hypoxia and metabolism in promoting kidney
cancer risk

Glycolysis and glutaminolysis. Uncontrolled proliferation of can-
cer cells requires increased synthesis of cellular components
such as amino acids, lipids, and nucleotides, to meet basic tumor
demands. Under normal oxygen conditions, energy is generated
by the complete oxidation of glucose via aerobic respiration. How-
ever, independent of oxygen availability, cancer cells transition
Volume 129  Number 2
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to aerobic glycolysis that promotes anabolic metabolic flux (135).
This metabolic reprogramming, referred to as the Warburg effect
in cancer cells (136), is mediated by HIF-1 (52, 137-140). To offset
the energetic inefficiency of glycolytic metabolism, HIF-1 acti-
vates expression of the glucose transporters GLUT1 and GLUT3
to increase glucose uptake for glycolysis (141, 142). In addition,
HIF-1 reprograms metabolism by inducing expression of glyco-
lytic enzymes (142-148). In particular, HIF-1 inhibits conversion
of pyruvate to acetyl-CoA (AcCoA) by pyruvate dehydrogenase
(PDH) and subsequent entry into the TCA cycle, by regulating
(a) PDK1, encoding pyruvate dehydrogenase kinase 1 (149, 150),
which inactivates PDH; and (b) LDHA, encoding lactate dehydro-
genase A (142, 151), which converts pyruvate to lactate in glyco-
lytic metabolism. In so doing, HIF-1 shuttles glucose away from
respiration and into glycolysis. HIF-1 also activates mitochondrial-
selective autophagy via regulation expression of BCL-2 family
member BNIP3 and its ligand, BNIP3L, thereby preventing glu-
cose and fatty acid oxidative metabolism (152, 153). Additionally,
HIF-1 interferes with components of the TCA cycle and electron
transport chain via activation of microRNA-210 (miR-210) (154~
156). However, despite these diverse strategies of HIF-1 to repro-
gram metabolism, oxidative respiration is not completely abol-
ished. Consequently, by activating the Lon protease (LON) gene,
HIF-1 improves efficiency of electron transport (157). However,
overall reduction in electron transport efficiency in hypoxic con-
ditions leads to increased ROS (158). The switch from oxidative
to glycolytic metabolism pertains to ATP maintenance as well as
toxic oxidant accumulation (139).

HIF’s metabolic reprogramming of cancer cells is amplified by
the glycolytic enzyme pyruvate kinase M2 (PKM2) in a positive-
feedback mechanism. As an alternative splice product encoded
by the PKM2 gene (159), PKM2 is expressed in the embryo and in
cancer cells. In catalyzing the conversion of phosphoenolpyruvate
to pyruvate, PKM2 is an important determinant in the glycolytic
pathway. PKM2 contributes to enhanced lactate production seen
in some cancer cells following hydroxylation by PHD3, poten-
tiating PKM2 function as a HIF-1 coactivator (160). In turn, this
coactivation leads to transactivation of HIF-1 target genes, which
includes those encoding both PHD3 and PKM2. The HRE locat-
ed in the proximal PKM2 promoter is recognized and activated by
HIF-1a and HIF-1B, but not HIF-2a (160). Therefore, by elevating
PKM2 and PHD3 expression, HIF-1 may boost its own activity and
enhance the Warburg effect observed in cancer cells (160).

In addition to glucose, glutamine is a key energy-producing
nutrient that supports proliferating cells (Figure 2). Reductive
glutamine metabolism provides vital metabolic intermediates
for macromolecule synthesis. In hypoxic or highly proliferating
cells, such as cancer cells, glutamine is not fully oxidized, but is
rather used to generate citrate through reductive carboxylation
(RC) of o-ketoglutarate to provide intermediates (e.g., AcCoA) for
lipid synthesis, which is otherwise primarily fueled by glucose-
derived pyruvate (161-165). VHL-deficient RCC cells, which
show constitutive activation of HIF-1a and/or HIF-2a (166), syn-
thesize lipids via RC-derived AcCoA rather than through glycol-
ysis. Glucose-derived lipid synthesis is restored in this setting
following introduction of wild-type VHL (163), demonstrating a
HIF-mediated metabolic shift to RC in the VHL-deficient cells.
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A prominent mechanism by which HIFs execute this metabolic
shift and thereby abrogate cellular respiration is through the onco-
genic transcription factor c-MYC, known to induce proliferation.
In contrast to HIF-2a (61), HIF-1a inhibits ¢-MYC activity both
through transcriptional repression, by activating the GTP-binding
protein MXI1, and through targeted proteolysis in VHL-deficient
RCC. Consequently, the metabolic transcriptional profile in VHL-
deficient ccRCC is altered with HIF-1-mediated loss of ¢-MYC,
enhanced by the concomitant loss of the c-MYC-dependent tran-
scriptional coactivator PGC-1B (52).

In conjunction with reductive metabolism of glutamine, HIF
also influences glutamine signaling (167). The function of gluta-
mate receptors is well documented in various cancer types (168),
and HIF enhances glutamine signaling to drive tumor progression.
Specifically, HIF triggers expression of AMPA-type glutamate
receptors and membrane glutamate transporters that activate
SRC family kinases and related signaling pathways. As a result,
proliferation, survival, migration, and invasion are enhanced in
ccRCCs and VHL-null cells (167).

Alternative regulatory metabolic features. As an example of the
broad-reaching impact of metabolic derangement related to HIF
biology, O-GlcNAcylation, the posttranslational process by which
O-linked p-N-acetylglucosamine (O-GlcNAc) is added to intracel-
lular proteins, impacts the hydroxylation of HIF-1 in cancer cells.
O-GlcNAc modifies intracellular proteins directly or indirectly as
a response to changes in nutrient levels or stress (169). Elevated
levels of O-GlcNAcylation have been reported in cancers (170)
and are indicated in the reprogramming of cancer cell metabo-
lism (171). HIF-1a hydroxylation by PHD, interaction with pVHL,
and proteasomal degradation are regulated by O-GlcNAcylation,
though not via direct O-GlcNAc modification. Further, O-Glc-
NAcylation-mediated changes in metabolic flux required HIF-1a
hydroxylation in vitro (171).

HIF activities extend beyond angiogenesis in influencing
the microenvironment. HIF expression in immune cells induc-
es various aspects of host innate and adaptive immune function
in response to hypoxia, triggering tissue damage and immune
cell dysfunction (172). In the microenvironment of ccRCC, as a
brief example, CD8" T cells harbor distinct metabolic defects that
restrict their ability to activate in response to conventional stimuli
(173). Much more work is needed to fully understand the impact of
the unique metabolic features of kidney tumors to alter the spec-
trum of tumor promotion.

Imaging angiogenic and metabolomic defects

in RCC risk

Recent advances in medical imaging technology have expanded
the clinical armamentarium for assessing and managing kidney
cancer risk, specifically through monitoring of tumor-associated
vascular remodeling and metabolic defects. Dynamic contrast-
enhanced MRI (DCE-MRI) is one such modality that facilitates
noninvasive evaluation of RCC blood perfusion and microves-
sel leakage, correlative indicators of increased angiogenesis
(174-176). Perfusion CT offers additional insight into tumor vas-
cularity and blood flow (177, 178), with dynamic enhanced CT of
RCC tumors capturing spatial heterogeneities and “hot spots” of
increased microvascular density (179). PET, in conjunction with
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markers such as *O-labeled water (H,*0), can also be applied to
measure tumor blood flow (180, 181), but challenges remain in
applying this modality for longitudinal assessment of RCC (180).
Advances in ultrasound imaging have further extended the clini-
cal utility of this imaging technique, as Doppler perfusion imaging
and 3D scanning methods provide real-time measures of tumor
morphology and vascularity (180, 181). Tumor vascularization
imaging by ultrasound, along with MRI and PET, has recently
benefited from the development of molecular imaging strategies
whereby proteins involved in angiogenesis are labeled by contrast
agents (182-184). Sprouting endothelial cells express high levels of
VEGFR-2 to mediate VEGF signaling and the integrin o, B, which
facilitates migration along surrounding extracellular matrix.
These proangiogenic mediators, among others, have received
significant attention in the development of molecular imaging
techniques (185-188). Continued innovation in developing cancer
imaging modalities and contrast enhancement will expand our
understanding of the biology underlying RCC angiogenesis and
enhance clinical care in monitoring treatment efficacy and disease
progression using vascular biomarkers.

Metabolomic defects in RCC offer another disease feature
that can be assessed noninvasively via the aforementioned imag-
ing modalities (189). In particular, elevated glucose uptake owing
to increased metabolic activity in RCC can be monitored using
8F-labeled fluorodeoxyglucose (FDG) in conjunction with PET/
CT, particularly in detecting metastatic lesions (190-193). Vari-
ability in tumor FDG uptake, however, remains a key limitation in
assessing primary RCCs (194) and can also hamper comprehen-
sive evaluation of secondary RCC metastases, which may exhib-
it differential expression of glucose transporters and therefore
wide-ranging FDG uptake capacities (195). For these reasons,
complementary approaches are being developed to harness RCC
metabolic defects for diagnostic imaging. Carbon-11 (!C)-acetate,
for instance, can be rapidly taken up by tumor cells and converted
to AcCoA, which contributes to synthesis of cell membrane fatty
acids, a process that is accelerated during tumor cell proliferation
(196). Coupled with PET imaging, this tracer has shown promise
in predicting RCC response to the tyrosine kinase inhibitor suni-
tinib (196, 197). Membrane lipid synthesis also involves the gen-
eration of phosphatidylcholine following choline consumption
by tumor cells (198), thus providing a rationale for developing
1C-choline PET/CT as a complementary approach to evaluating
primary RCC and associated metastatic disease (199). Acceler-
ated tumor cell proliferation can also be exploited for diagnostic
imaging by administering '*F-fluorothymidine and using PET to
detect the accumulation of this tracer within tumor cells, as this
analog of thymidine cannot incorporate into tumor cell DNA but
remains trapped intracellularly following phosphorylation (200).
Further development of these metabolomic imaging markers,
alongside vascular-based approaches, continues to expand the
range of diagnostic tools available for managing and treating RCC
risk and progression.

Conclusion

The family of hereditary RCCs have contributed enormous
insight into the mechanisms of angiogenesis and associated
changes in metabolism that not only facilitate tumor growth, but
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act as drivers in the process of tumorigenesis. These core features
of the RCC family of tumors have led to new insights in cancer
biology and normal cellular physiology. Importantly, they also

have satisfied the urgent need to create avenues for therapeutic

intervention, and clinical tools such as imaging diagnostics, to
enhance the care of patients with cancer. The future holds novel
ways to integrate these tools into evolving treatment paradigms,
such as immunotherapy, and to benefit the patients with familial
syndromes themselves, through early detection, prevention, and

therapeutic intervention.
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