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Introduction
Pulmonary hypertension (PH) is an enigmatic disease of the lung 
vasculature (1). Vessels are marked by endothelial dysfunction, 
intimal and medial proliferation and hypertrophy, vascular stiff-
ening, in situ thrombosis, and inflammatory infiltration. Panvas-
cular remodeling leads to progressive narrowing and occlusion 
of the distal arterioles (2), causing increased pulmonary vascular 
resistance. Mortality in pulmonary arterial hypertension (PAH) is 
driven by right ventricular (RV) failure, and according to the Reg-
istry to Evaluate Early and Long-Term PAH Disease Management 
(REVEAL Registry), the 5-year survival rates by functional class-
es I–IV in newly diagnosed patients are 72.2%, 71.7%, 60.0%, and 
43.8%, respectively (3).

PH results from many disparate triggers and is classified 
clinically into five groups that determine prognosis and thera-
py choice (1). A particularly severe subtype, group 1 PAH, arises 
from idiopathic, hereditary causes, toxin exposure, and second-
ary disease associations, and PH in groups 2–5 is associated with 
myriad comorbidities (1, 4). Overlap in the molecular under-
pinnings of different PH types remains incompletely defined. 
Current treatments neither prevent nor reverse the causative 
pathology. Furthermore, although historically the focus was 
on pulmonary vessels and the RV, PH involves extrapulmonary 
tissues (5–7). Therefore, the development of novel treatments 
likely hinges on identifying molecular features  that unify the 
multitissue dysfunction that defines PH.

Spanning over two decades, extensive basic, translational, 
and clinical analyses support a causative link between metabolic 

reprogramming and PH (8). Foundational studies demonstrated 
a mechanism for increased glycolysis and diminished glucose 
oxidation in pulmonary vascular cells and RV, paralleling War-
burg’s observations that proliferating tumor cells display mito-
chondrial respiratory repression followed by increased glucose 
uptake and glycolysis (9, 10). The master transcription factors 
HIF-1 and HIF-2α are critical effectors in this metabolic shift 
and are stabilized by hypoxic, inflammatory, and metabolic 
stress — known pathologic triggers of PH (11–13). Specifically, 
in PH, HIF-α–dependent upregulation of pyruvate dehydro-
genase kinases 1 and 2 (PDK1/2) inhibits pyruvate dehydro-
genase–mediated (PDH-mediated) conversion of pyruvate to 
acetyl-CoA (14, 15). The Warburg effect has been observed in 
both animal and human models of PH (14, 16–24). Coupled 
with metabolic dysregulation, mitochondrial dysfunction in 
PH results in evasion of mitochondrial-mediated apoptosis (14, 
15, 25, 26). Mitochondrial membrane potential is specific for 
oxidative phosphorylation (OXPHOS) and control of protein 
flux across the membrane; dissipation of this potential leads to 
energy collapse and cytochrome c release, driving the intrinsic 
apoptotic pathway (27). Like in cancer cells, the mitochondria in 
PH exhibit hyperpolarized membrane potential and thus resis-
tance to apoptosis (25, 26, 28). These metabolic perturbations, 
summarized in Figure 1, have reframed our understanding of 
PH pathogenesis (2) and are a basis for the “metabolic theory” 
of this disease — a concept discussed in recent reviews (29–31). 
While the Warburg effect has served as a conceptual anchor, the 
complexities of metabolic reprogramming and mitochondrial 
dysfunction have become the focus of intensive investigation 
in PH. This Review will emphasize emerging and controversial 
molecular concepts beyond the Warburg effect, the potential 
for and obstacles to clinical translation of current findings, and, 
finally, how metabolic dysregulation in PH may inform our clin-
ical framework and improve disease management.

Pulmonary hypertension (PH) is a heterogeneous and fatal disease of the lung vasculature, where metabolic and 
mitochondrial dysfunction may drive pathogenesis. Similar to the Warburg effect in cancer, a shift from mitochondrial 
oxidation to glycolysis occurs in diseased pulmonary vessels and the right ventricle. However, appreciation of metabolic 
events in PH beyond the Warburg effect is only just emerging. This Review discusses molecular, translational, and clinical 
concepts centered on the mitochondria and highlights promising, controversial, and challenging areas of investigation. 
If we can move beyond the “mountains” of obstacles in this field and elucidate these fundamental tenets of pulmonary 
vascular metabolism, such work has the potential to usher in much-needed diagnostic and therapeutic approaches for the 
mitochondrial and metabolic management of PH.
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rapid growth; therefore, G6PD may represent an enticing target for 
curbing PASMC hyperproliferation. However, G6PD loss also pre-
vents production of NADPH, a reducing equivalent and critical sub-
strate for NO synthesis (36), suggesting that G6PD inhibition might 
be detrimental to vasomotor tone in PH. Separately, patients with 
sickle cell disease, who are at increased risk of developing PH (37), 
have demonstrated less sickling and hemolysis with increased PPP 
flux compared with glycolysis. It is not yet known whether targeting 
aberrant PPP in PH has therapeutic effects, especially in cells heavily 
reliant on this pathway or exposed to oxidative stress.

Glutaminolysis. Beyond the shift in energy production ascribed 
to the Warburg effect, insights detail how adequate biomass is 
made available for vascular cell proliferation in PH. Glutamino-
lysis is a type of anaplerotic reaction in which tricarboxylic acid 
(TCA) cycle carbon intermediates are replenished, particular-
ly when rapidly dividing cells require substantial biomass. TCA 
intermediates from glutaminolysis contribute to amino acid, FA, 
and de novo purine and pyrimidine biosynthesis (38).

New data support a prominent pathogenic role for glutamine 
metabolism in PH (16, 39, 40). Prior work showed that RV car-
diomyocyte hypertrophy in monocrotaline-treated rats relies on 

Emerging molecular concepts

Beyond the Warburg effect
The molecular drivers of PH described in Figure 2 build on the 
Warburg effect, adding complexity to metabolic rewiring and 
highlighting a role for non-bioenergetic mitochondrial dysfunc-
tion in promoting PH. Taking cues from cancer, data demonstrate 
significant alterations in metabolic programs other than glycolysis 
and glucose oxidation, including the pentose phosphate pathway 
(PPP), glutaminolysis, and fatty acid (FA) synthesis and oxidation 
— all of which may be integral to PH initiation and progression.

Pentose phosphate pathway. While the Warburg effect focuses 
on glycolysis, the PPP, which yields reductive NADPH and ribose-
5-phosphate for nucleotide synthesis, is often augmented in paral-
lel with glycolysis. PPP flux is upregulated in pulmonary vascular 
cells in multiple PH models (16, 32–34). Increased activity of the 
rate-limiting enzyme glucose-6-phosphate dehydrogenase (G6PD) 
was observed in pulmonary artery smooth muscle cells (PASMCs) of 
chronically hypoxic rats (32), suggesting that G6PD deficiency may 
protect against PH development (35). Increased PPP flux provides 
defense against oxidative stress and the substrates necessary for 

Figure 1. Metabolic pathways disrupted in PH: 
the Warburg effect. The mitochondria in pulmo-
nary vascular cells and the right ventricle in PH 
exhibit decreased oxidative phosphorylation and 
increased glycolysis, consistent with the Warburg 
effect. Following a decrease of respiratory activi-
ty, transcriptional upregulation and stabilization 
of HIF-α mediates compensatory glycolytic 
reprogramming, which includes increased glucose 
transporter 1 (GLUT1); hexokinase (HK), which 
traps glucose via conversion to glucose-6-phos-
phate (G6P); and lactate dehydrogenase (LDHA), 
which converts pyruvate to lactic acid. At the 
same time, there is increased activity of pyruvate 
kinase isoform M2 (PKM2), which slows the 
production of pyruvate from phosphoenolpyru-
vate (PEP), and reduced pyruvate dehydrogenase 
(PDH) activity, driven by elevated pyruvate 
dehydrogenase kinase (PDK1/2). The Warburg 
effect promotes cell survival and proliferation, 
and simultaneous hyperpolarization of the 
mitochondrial membrane potential promotes 
evasion of mitochondria-dependent apoptosis. 
This metabolic switch in pulmonary vascular cells 
drives extensive remodeling that further results 
in increased pulmonary vascular resistance and 
pulmonary artery pressures. ETC, electron trans-
port chain; HRE, hypoxia-response element.
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Figure 2. Emerging concepts of mitochondrial dysfunction in PH. Metabolic dysregulation in PH beyond the Warburg effect includes alterations in the 
pentose phosphate pathway (PPP), glutaminolysis, and FA handling; in certain contexts, it may include an increase of oxidative phosphorylation (a reverse 
of the Warburg effect); increased reliance on metabolic activities of HIF-2α and ROS signaling; and profound alterations of iron metabolism. Perturbations 
in mitochondrial dynamics involve altered mitochondrial biogenesis as well as increased fission and decreased fusion. Dysregulated mitochondrial mass and 
fragmentation result in metabolic reprogramming and tissue-specific dysfunction typical of PH. A more precise understanding of the complex molecular driv-
ers of PH will inform novel diagnostic technologies and mitochondria-specific therapies. Development of imaging tools such as PET (image courtesy of  
J. Latoche and C. Anderson, In Vivo Imaging Facility at Hillman Cancer Center, UPMC) and cardiac MRI, high-throughput metabolomic analysis, as well as 
potential metabolic targeted therapies will be facilitated by a more granular understanding of mitochondrial pathology. Advancements in molecular and 
translational research may ultimately allow for a redefinition of PH subtypes through the lens of metabolic dysfunction, with great utility in strategizing 
appropriate precision medicine therapies. The processes by which  other mitochondrial and metabolically driven diseases may be related to PH are yet to be 
determined. ETC, electron transport chain; HRE, hypoxia-response element.

https://www.jci.org
https://www.jci.org
https://www.jci.org/128/9


The Journal of Clinical Investigation      R E V I E W  S E R I E S :  M I T O C H O N D R I A L  D Y S F U N C T I O N  I N  D I S E A S E

3 7 0 7jci.org      Volume 128      Number 9      September 2018

eral endothelium is unclear (57). Additionally, carnitine acyltrans-
ferase (CrAT), a “carnitine shuttle” component required for FA 
transport and metabolism, prevents acyl-CoA accumulation and 
promotes FAO. Decreased CrAT activity resulted in mitochondri-
al dysfunction and reduced FA metabolism in the endothelium 
of lambs with shunt-induced increased pulmonary blood flow, a 
model of congenital heart disease and PH (58), suggesting that 
targeting FAO may worsen metabolic dysfunction in this context. 
Thus, FA metabolic regulation in PH may be cell- and etiology-
specific, potentially complicating direct therapeutic targeting.

A reverse Warburg effect in PH?
While most data support that diminished OXPHOS drives met-
abolic dysfunction in PH, contemporary evidence reveals that 
increased glucose oxidation may mediate PH pathogenesis. Spe-
cifically, methamphetamine use, which significantly increases PH 
risk and is associated with poor prognosis (59), prevented pulmo-
nary endothelial adaptation to additional environmental stressors 
like hypoxia, thus increasing OXPHOS, mitochondrial ROS, and 
DNA damage (60). Separately, mitochondrial activity in platelets 
from PAH patients exhibited increased glycolysis and respiratory 
reserve capacity dependent on FAO (61). This metabolic shift in 
both glycolysis and respiration correlated with clinical measure-
ments of increased mean pulmonary arterial pressure (MPAP), 
pulmonary vascular resistance, and RV stroke work index (61). 
Further study is required to determine whether such metabolic 
alterations in platelets alter thrombosis formation versus reso-
lution, particularly in chronic thromboembolic PH (group 4 PH) 
(62). Together, these data suggest that metabolic reprogramming 
in PH appears to be context-specific and more complex than what 
is seen in hypoxic exposure alone. Thus, under certain pathogenic 
triggers, in specific tissues, or at certain times of disease develop-
ment, the converse of the classic Warburg effect may be increas-
ingly observed. With the advent of metabolomic and transcrip-
tomic analyses of PH patients, a systems biology approach may 
facilitate our understanding of how these metabolic perturbations 
are interconnected and how future therapies might efficiently 
reverse these changes.

A central metabolic role for HIF-2α in PH
HIF-1α plays an integral role in promoting and potentiating the War-
burg effect; however, its homolog HIF-2α may be equally or more 
important in PH, as demonstrated in patients with enhanced HIF-
2α signaling. Patients with Chuvash polycythemia, a von Hippel–
Lindau–associated disease characterized by HIF-2α stabilization 
(63), and patients with HIF-2α gain-of-function mutations devel-
op PH (64–66). Similarly, there is increased prevalence of a gene 
variant representing a gain-of-function HIF-2α mutation in cattle 
with high-altitude PH, or brisket disease (67). Genetic manipula-
tion in animal models of PH reinforces the importance of HIF-2α. 
Heterozygous HIF-2α–knockout mice were protected from hypoxic 
PH (68), and endothelial prolyl hydroxylase 2 (PHD2) knockdown 
promoted HIF-2α–dependent pulmonary vascular remodeling and 
PH in mice (69, 70). HIF-2α exhibits both redundant and unique 
functions compared with HIF-1α, and HIF-2α may be more spe-
cific to endothelial dysfunction compared with HIF-1α signaling 
in PASMCs (71–74). Initial mechanistic studies demonstrated that 

glutaminolysis, which was reversed by the glutamine antagonist 
6-diazo-5-oxo-l-norleucine (DON) (39). Furthermore, in pulmo-
nary vascular cells exposed to increasing extracellular matrix stiff-
ness, a recently identified PH trigger (41), mechanoactivation of 
Yes-associated protein 1 (YAP) and the transcriptional coactivator 
with a PDZ-binding motif (TAZ, also known as WWTR1), induced 
the reductive enzyme glutaminase 1 (GLS1), thus promoting glu-
taminolysis and hyperproliferation (40). Glutaminolytic repro-
gramming was increased in the vascular lesions of PAH patients 
and animal models, and multiple vascular cell types in PH relied 
on the YAP/TAZ–GLS1 axis (42–45). Pharmacologic inhibition of 
either YAP or GLS1 also effectively improved rodent PAH. Notably, 
the YAP/TAZ–GLS1 axis induced glutaminolysis in SIV-induced 
PAH primates as well as in HIV-infected PAH patients, suggesting 
a mechanistic link between glutaminolysis and this enigmatic PAH 
subtype. Building on these findings, a separate study demonstrated 
that elevated glutamate, following GLS1-mediated conversion of 
glutamine, stimulated NMDA-type glutamate receptors, induced 
glutamatergic cell-cell signaling in pulmonary vessels, and pro-
moted PH (46). Aberrant glutamine metabolism represents an 
increasingly promising diagnostic and therapeutic target in PH, 
given its fundamental roles in promoting proliferative capacity and 
potentially mediating pathogenic cell-cell interactions.

FA handling. Given that FA oxidation (FAO) accounts for 
60%–90% of cellular energy production in ventricular tissue (39), 
lipid uptake and metabolism in PH have been primarily studied in 
the failing RV, but with still incompletely defined results. Patients 
with PAH display increased circulating free FAs as well as RV-spe-
cific accumulation of increased long-chain FAs, triglycerides, and 
ceramides — hallmarks of lipotoxicity (47–49). Pulmonary artery 
banding in rats increased RV FAO (50). Conversely, RV FAO was 
impaired in Bmpr2-mutant mice, whose mutations predispose to 
PH (48, 49). How FAO is altered in PH is not fully defined. Nota-
bly, FAO and glucose oxidation share a reciprocal mechanism, the 
Randle cycle, in which activation of one inhibits the other (51). 
Taking advantage of this relationship, pharmacologic inhibition 
of FAO by trimetazidine or ranolazine increased glucose oxidation 
and ameliorated RV hypertrophy in animals with PH (50).

Beyond the RV, altered FA metabolism has been observed in 
diseased pulmonary vasculature. FA synthase, which converts 
malonyl-CoA to free FA, was upregulated in PASMCs and endo-
thelial cells in PH (52, 53). Separately, genetic knockdown of mal-
onyl-CoA decarboxylase, a critical FAO enzyme, or treatment 
with trimetazidine upregulated glucose oxidation in PASMCs and 
protected animal models from developing PH (54). These data 
suggest that exploiting the Randle cycle could prevent metabolic 
dysfunction in the pulmonary vasculature, as in the RV. Howev-
er, efficacy of FAO inhibitors in PH patients depends on whether 
FAO-dependent metabolic dysfunction is specific to different pul-
monary vascular cell types. Specifically, diminished FAO, due to 
decreased acetyl-CoA, promoted endothelial-mesenchymal tran-
sition (EndoMT) in multiple vascular beds, including the pulmo-
nary vasculature, suggesting that FAO is critical for maintenance 
of endothelial cell fate and linking it to EndoMT and PH develop-
ment (55). Separately, endothelial cells in the peripheral circula-
tion rely heavily on FAO for nucleotide synthesis (56); whether this 
mechanism contributes differentially to pulmonary versus periph-
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feedback promoted PH development (94). Thus, Tempol-induced 
IRP1 activation has been proposed as an iron-specific therapy for 
PH (95). Clinical trials for iron replacement in PH are also ongoing 
(96–98). Yet, conversely, data in sickle cell disease have implicat-
ed iron overload as a causative trigger in PH (99). Disease context 
specificity and/or a need to maintain precise iron homeostasis 
may underlie these discrepancies, which in turn support caution 
in excessive iron repletion in PH patients.

Complementing altered iron homeostasis, deficiency of Fe-S 
clusters, bioinorganic cofactors required for enzyme redox potential 
(100), has been found to promote electron transport dysfunction 
and PH in experimental rodent models. Specifically, the hypoxia- 
induced microRNA miR-210 repressed the Fe-S cluster assembly pro-
teins ISCU1 and ISCU2 (101, 102), attenuating Fe-S cluster integrity 
in endothelial cells. Coupled with these mechanistic data, exercise- 
induced PH (102) was identified in a patient with rare homozygous 
mutations of ISCU1/2. Deficiency of other Fe-S cluster assembly 
proteins may predispose to PH — an idea reinforced by patients 
with NFU1 (103) and BOLA3 mutations (104) who exhibit PH. 
Furthermore, IRP1 is Fe-S cluster–dependent, thus connecting the 
molecular controls of iron homeostasis in general with Fe-S cluster– 
driven metabolism and PH.

An imbalance in mitochondrial biogenesis and mitophagy
Mitochondrial number, or mass, governs cellular bioenergetic 
capacity and is regulated by biogenesis and mitophagy. Mito-
chondrial biogenesis is controlled by PPARγ coactivator (PGC1α), 
which activates nuclear respiratory factor 1 (NRF1) and mitochon-
drial transcription factor A (TFAM) to promote mtDNA genes 
(105). PH models have demonstrated reduction in mitochondrial 
biogenesis genes and mass (22, 106, 107), but mechanistic under-
standing of biogenesis regulation is lacking. Multiple mediators 
affect mitochondrial biogenesis in PH, including NO/cGMP sig-
naling (108–110). For example, PPHN modeled in fetal lambs 
resulted in decreased PGC1α, electron transport chain complex 
expression, and mtDNA copy number, which was reversed by 
NO donation (111). Therefore, mitochondrial biogenesis may be 
restored by treatment with NO derivatives, which are currently 
being investigated as therapies in PH (112). Separately, biogenesis 
markers may provide spatiotemporal information about PH patho-
genesis. Monocrotaline-treated rats exhibited reduced expression 
of PGC1α, NRF1, and TFAM mRNA first in skeletal muscle and 
later in RV. Moreover, a concomitant decrease in mRNA and pro-
tein signatures appeared to differentiate decompensated versus 
compensated RV failure (113). Temporal perturbations in biogene-
sis such as these may underlie early-stage skeletal muscle–driven 
symptoms like exercise intolerance and late-stage heart failure 
symptoms. Ultimately, detailed temporal- and tissue-specific 
findings of mitochondrial biogenesis could facilitate stage-specific  
diagnostic and therapeutic intervention.

Imbalances in mitophagy, the process of removing damaged 
mitochondria, may also affect mitochondrial mass, but the role 
of mitophagy and autophagy in PH is incompletely understood 
(114). Uncoupling protein 2 (UCP2) is a calcium uniporter that 
maintains ER-dependent Ca2+ influx to the mitochondria, thus 
regulating activity of calcium-dependent proteins like PDH, ROS 
production, and mitochondrial-mediated apoptosis (28, 115, 116). 

HIF-2α upregulated arginase, a urea cycle enzyme, thus decreasing 
arginine availability for NO production and attenuating endotheli-
um-dependent vasodilation (74, 75). Furthermore, HIF-2α modu-
lated mitochondrial superoxide dismutase 2 (SOD2) and thus ROS 
production in other diseases (76). SOD2 epigenetic silencing has 
been linked to PH (77), but whether this controls a robust patho-
phenotype in PH is unknown. While additional studies are required 
to elucidate the unique effects of HIF-2α versus HIF-1α or even ver-
sus HIF-3α (78) on mitochondria in PH, current evidence suggests 
that there may be therapeutic utility in HIF-2α–targeting strategies 
in the pulmonary vasculature.

Complex alterations in mitochondrial ROS
Imbalance in multiple types of ROS is causatively linked to PH 
development and is reviewed extensively elsewhere (79). The pre-
dominant forms of mitochondrial ROS, superoxide, and hydrogen 
peroxide (H2O2) are of particular interest in PH because of their 
role in mitochondrial DNA (mtDNA) damage, cellular signaling, 
inflammation, and survival (79–81).

The mechanisms of mitochondrial ROS production are not 
fully defined and are even controversial. In general, a quorum of 
studies has suggested that the vasculature of nonhypoxic PAH 
models exhibits decreased mitochondrial H2O2 (14, 15). Spe-
cifically, reduced H2O2 production due to epigenetic silencing 
of SOD2 in PASMCs (77) resulted in decreases redox potential, 
HIF-1α stabilization, inhibition of redox-sensitive voltage-gated 
Kv1.5 channels, and increased intracellular calcium, which pro-
moted proliferation (14). In models of persistent PH of the new-
born (PPHN) and chronic hypoxia, decreased endothelial SOD 
(82) and extracellular SOD (83), respectively, further suggest 
that decreased H2O2 production may be a common feature in PH. 
Conversely, separate studies using a chronic hypoxia model of PH 
demonstrated increased mitochondrial superoxide production 
followed by upregulated HIF-1α and metabolic reprogramming in 
PASMCs (84–86). The mechanistic discrepancies in mitochondri-
al ROS production may depend on experimental conditions, spe-
cies differences, and perhaps complexities of how pure hypoxic 
stress may interface with other triggers of PAH. Development of 
more sensitive, specific, and stable ROS probes and modulatory 
reagents, particularly in vivo, is needed to understand the temporal 
(87), subcellular (84), and tissue-, etiology-, and species-specific  
alterations of mitochondrial ROS in PH.

Bioactive iron deficiency in PH: focus on mitochondria
Mitochondrial iron metabolism encompasses three major path-
ways: iron storage, iron-sulfur (Fe-S) cluster formation, and heme 
synthesis (88). Moreover, an association of iron deficiency with 
PH has emerged (89). Because iron is required for PHD2 activity 
and thus HIF-α degradation, iron deficiency promoted enhanced 
HIF-α signaling in a rat model of PH (90, 91); similarly, deficien-
cy of ascorbate, another cofactor required for PHD2 activity, was 
associated with PH (92). Iron regulatory protein 1 (IRP1) enhances 
translation of proteins in iron metabolism, including HIF-2α, and 
has been implicated in PH. Consequently, triggered by low iron, an 
IRP1-dependent feedback mechanism prevented HIF-2α–driven  
erythropoiesis, thus worsening iron deficiency as a whole (93). 
Notably, disruption of the IRP1–HIF-2α axis and IRP1-dependent 
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UCP2-deficient endothelial cells exhibited increased mitophagy 
and reduced mitochondrial mass (117). More work is required to 
understand how UCP2 and other factors may interconnect pro-
cesses of biogenesis and mitophagy in PH.

Increased fission and mitochondrial fragmentation
Mitochondria exist in dynamic networks that are altered by fusion 
(joining) or fission (division). The dynamin-like GTPases mitofusin 
1 and 2 (MFN1/2) mediate fusion, while translocation of activated 
dynamin-related protein 1 (DRP1) to the outer membrane mediates 
fission (118). Recent studies demonstrated enhanced mitochondri-
al fragmentation in PH. Animal models of PH showed increased 
DRP1 and mitochondrial fragmentation in PASMCs and RV that 
were reversed by treatment with the DRP1-targeting small mole-
cule mitochondrial division inhibitor (Mdivi-1) or the FAO inhibitor 
trimetazidine (119–121). DRP1 translocation requires interaction 
with adaptor proteins (121), including the mitochondrial dynamics 
proteins MiD49 and MiD51. Elevated MiD49 and MiD51 levels in 
PASMCs from PAH patients led to enhanced DRP1-mediated fission 
(122). In parallel, decreased MFN2 expression was observed in dis-
eased PASMCs (123) and skeletal muscle (6). Interestingly, MFN2 
reciprocally regulated PGC1α, suggesting a link between diminished 
mitochondrial mass and increased fragmentation in PH (123). Mech-
anisms by which fission and fusion affect other cell types in PH are 
unknown, particularly in vivo.

In sum, disparate etiologies of PH seem to converge at the 
mitochondria, where certain pathologic features persist, includ-
ing membrane hyperpolarization, altered ROS and iron handling, 
increased fragmentation, and decreased mitochondrial mass. 
Chronic mitochondrial perturbations influence metabolic repro-
gramming; however, the mechanism of mitochondrial and meta-
bolic dysfunction remains unclear. Beyond genetic mutation and 
hypoxia, exploration of pathologic drivers in other PH subtypes 
may expand our understanding of mitochondrial and subsequent 
metabolic dysfunction in this disease.

Tissue-specific mitochondrial dysfunction
Pathologic changes associated with PH are found in several pul-
monary vascular and extrapulmonary cell types. Here, we address 
nuanced differences in metabolic rewiring in the RV–pulmonary 
artery (RV-PA) circuit. Additionally, while prior studies focused 
on tissues with high bioenergetic requirement and mitochondrial 
content, like PASMCs, we explore the increasingly more relevant 
roles of mitochondria in other cell types.

The right ventricle. Similar to other cardiopulmonary cell types, 
RV cardiomyocytes exhibit metabolic rewiring (i.e., increased glycol-
ysis, glutaminolysis, and FAO at the expense of glucose oxidation) 
in PH, as discussed above (39, 124). RV dysfunction may be driven 
by stepwise, rather than continuous, shifts from normal myocardi-
um to adaptive and maladaptive remodeling. Initial studies have 
shown distinct metabolic phenotypes between normal, hypertro-
phic, and decompensated RV failure — namely, increased glycolysis 
and reduced glucose oxidation as a response to hypoxia during car-
diomyocyte hypertrophy and more complex alterations in glucose 
and FA oxidation in decompensated RV failure (19, 124–126). Addi-
tionally, while HIF-1α expression between the compensated and 
decompensated RV did not change, HIF-1–dependent genes were 

differentially expressed (19). In sum, the RV appears to exhibit a dis-
tinct stepwise metabolic program, often independent from chronic 
pressure overload due to pulmonary vascular remodeling (127). 
Temporal assessment of RV function by novel, noninvasive imaging 
modalities like PET may be required to better distinguish this meta-
bolic shift and to ensure timing and efficacy of metabolic treatments.

Endothelial cells. Endothelial dysfunction in PH is complex and 
not fully understood; a prominent model asserts that initial injury 
and apoptosis precede pathogenic hyperproliferation in PH (128, 
129). Understanding the dynamic phenotype(s) of the pulmo-
nary endothelium has significant clinical implications, potentially 
facilitating diagnostic determination of disease stage and therapy. 
Given that endothelial dysfunction in peripheral and pulmonary 
circuits is defined by rewiring of multiple metabolic pathways 
(16, 40, 58, 130, 131), it is conceivable that mitochondrial changes 
may provide context for these spatiotemporal alterations. Study of 
endothelial cells that are genetically predisposed to PH has pro-
vided some clues. Transgenic and heterozygous Bmpr2-mutant 
mice exhibited increased mtDNA damage in the form of peroxi-
dation-induced DNA adducts (81). In patients with BMPR2 hap-
loinsufficiency, heritable PAH is linked to endothelial metabolic 
dysfunction (16, 130). BMPR2-mutant endothelial cells displayed 
increased p53, mitochondrial biogenesis gene expression, and gly-
colytic flux, resulting in a proinflammatory state that predisposes 
to PH. Conversely, BMPR2-deficient endothelial cells exposed 
to hypoxia followed by reoxygenation demonstrated diminished 
p53-driven mitochondrial biogenesis coupled with increased 
mitochondrial fission, mtDNA damage, and apoptosis. Both path-
ways illustrate how BMPR2 mutation and resultant perturbations 
in mitochondrial dynamics increase susceptibility to endothelial 
dysfunction and PH (132). Further interrogation of endothelial 
mitochondrial function could be instrumental in characterizing 
the maladaptive shift between early-stage apoptosis and poten-
tially late-stage phenotypes like endothelial-mesenchymal tran-
sition (72, 133) or hyperproliferation (2, 128, 134). The study of 
endothelial cells derived from BMPR2-haploinsufficient inducible 
pluripotent stem cells may facilitate valuable insights (135–137).

Tissues anatomically distinct from the RV-PA circuit. Cells in cir-
culation — erythrocytes, platelets, and immune cells — are also a 
focus of study in PH, but how mitochondrial defects in hematopoi-
etic cells influence the pulmonary vasculature is not fully defined. 
PH is often a complication of hematologic disorders, particularly 
anemias (138). In that context, pathologic and age-related drivers 
of mtDNA mutagenesis are known to prevent mitochondrial elimi-
nation from reticulocytes, resulting in deregulated erythroid matu-
ration (139, 140). It is unknown whether erythroid progenitor mito-
chondrial dysfunction could predispose to PH. Similarly, platelets 
from PAH patients exhibit increased glycolytic flux and OXPHOS 
(61), but a causative link between platelet metabolic dysfunction 
and PH is not established. Finally, perivascular inflammation is 
a common feature of PH (7), and immune cell recruitment to the 
pulmonary vasculature is under substantial study (141–143). While 
metabolic reprogramming is linked to macrophage plasticity (144) 
and T cell activation (145), a direct connection between that meta-
bolic rewiring and pulmonary vascular inflammation has yet to be 
defined (146). Furthermore, damage-induced mtDNA release was 
shown to augment a damage-associated molecular pattern–medi-
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ated (DAMP-mediated) innate immune response in other diseases 
(147), and DAMP-dependent responses in PH are currently under 
investigation (81).

The role of progenitor cells in PH is also an evolving field of 
study (148, 149), and mitochondrial dysfunction in these cells may 
play a prominent role. Prior data suggested that progenitor cells 
in PH exhibited altered glucose metabolism; namely, blood out-
growth endothelial cells displayed increased glycolysis (150), and 
CD133+ progenitor cells showed increased G6PD expression and 
flux through the PPP (33). Shifting endothelial progenitor cells 
toward mitochondrial OXPHOS was shown to be protective after 
ischemic injury (151); similar processes may protect against PH.

Given the breadth of metabolic reprogramming across mul-
tiple cell types in PH, studies of mitochondrial dysfunction may 
eventually implicate other anatomically distinct tissues in PH 
pathogenesis. In particular, there may be mitochondrial-specific 
changes in the brain, gut microbiome, and liver, especially in por-
topulmonary hypertension and iron deficiency (152). Additionally, 
with the advent of high-throughput methods like single-cell RNA 
sequencing, nuanced differences in metabolism and mitochondri-
al function among cells in the same tissue can now be discerned. 
Lastly, given the multitissue mitochondrial dysfunction in PH, 
an attractive model may be emerging whereby novel endocrine 
processes could control anatomic coordination of mitochondrial 
dysfunction, potentially spearheaded by secretion and uptake of 
molecular messengers like mitokines (153) or microRNAs, already 
known to be important in this disease.

Evolving translational technologies

Diagnostics for metabolic reprogramming
Imaging. While hemodynamic monitoring remains the gold stan-
dard, diagnostic modalities that provide early, accurate, and non-
invasive measurement of tissue-specific pathology are needed. 
The Warburg effect provides the basis for adopting 18F-fluorode-
oxyglucose PET (FDG-PET) as a diagnostic tool for PH (154–156). 
FDG-PET is already used in the clinical setting in other diseases 
and may provide quantitative spatiotemporal measurement of 
metabolic reprogramming in RV to complement current hemody-
namic testing. Moreover, it may be a future tool for longitudinal 
measurement of treatment response and targeted drug delivery 
to metabolically dysregulated tissues. Use of FDG-PET may also 
prompt adaptation of PET for other metabolically relevant mark-
ers in PH-related pathology, such as FAs, amino acids, and TCA 
metabolites like l-2-hydroxyglutarate, which coordinate pul-
monary vascular metabolic responses to reductive stress (157). 
Metabolic disease progression in the RV may also be followed by 
four-dimensional flow cardiac MRI, which illustrates RV energy 
work density and energy dissipation (158), and hyperpolarized car-
diac MRI, which can quantify muscle-specific metabolites (159). 
PET and cardiac MRI can even be coupled in a hybrid technolo-
gy (160) that may provide an unprecedented view of metabolic 
perturbations in compensated versus decompensated RV failure, 
allowing for better diagnostic and prognostic detail in PH patients.

Plasma metabolomics. Thus far, circulating metabolite screens 
in PH have aimed to identify unique profiles in PH patients and/or 
distinct PH subtypes for diagnostic and prognostic benefit. Data 

suggest that certain microRNAs (102, 161), plasma acylcarnitines 
(47, 162), glutamate (163), TCA intermediates, amino acids (163, 
164), transfer RNA–specific modified nucleosides (163), purines, 
indoleamines, and indoleamine 2,3-dioxygenase–dependent 
tryptophan metabolites (165) are differentially expressed in plas-
ma among various cohorts of PH patients. Moreover, significant 
metabolite alterations prognosticated risk of death (163) and cor-
related with hemodynamic measurements (165). High-through-
put screening of patient plasma in tandem with other diagnostic 
tools, like that proposed in the US National Heart, Lung, and Blood 
Institute’s Pulmonary Vascular Disease Phenomics Program 
(PVDOMICS) initiative (166) and the UK National Cohort Study 
of PAH (163), could provide group- and stage-specific information 
and be a step toward implementing precision metabolomic med-
icine in PH. However, elucidating site-specific metabolic dysreg-
ulation via metabolomics may require more invasive transpulmo-
nary blood sampling to ascertain cell source (165). As is the case in 
recent analyses (163, 166), studies also require large-scale cohort 
validation of existing data. Additional barriers to implementation 
of routine metabolomic screening include the lack of standardized 
methods for sampling and detection, controlling among experi-
ments, and interpretation.

Together, next-generation metabolic imaging and metabolo-
mic biomarkers could improve early diagnosis and longitudinal 
management of PH. Yet a better understanding of the underlying 
pathology, large-scale analyses correlated with clinical metrics, 
and removal of high cost and barriers to access are all required for 
successful implementation.

Prospective mitochondria-targeted therapies
Mitochondria-specific therapies have the potential to slow 
or regress PH development, but several challenges remain. 
First, tested therapies result in heterogeneous responses in PH 
patients. Dichloroacetate (DCA) inhibits PDK2 and upregulates 
PDH activity, restoring glucose oxidation in PASMCs, endothe-
lial cells, and RV (50, 124). Ultimately, this therapy prevented 
and reversed PH development in animal models and certain 
PAH patients (25, 167–169). Notably, a subset of patients exhib-
ited variable responses to DCA treatment — heterogeneity that 
appeared to be dictated by loss-of-function genetic polymor-
phisms in sirtuin 3 (SIRT3) and UCP2 (168). These data indicate 
that precision medicine may improve selection of appropriate 
therapy for patients. Importantly, single-drug metabolic therapy 
may not be sufficient to reverse PH pathology given dysregula-
tion of numerous metabolic pathways across multiple affected 
tissues. For example, ranolazine, the FAO inhibitor, improved 
PAH symptoms and RV function (57) despite the lack of hemody-
namic improvement in MPAP (57). It is possible that ranolazine’s 
efficacy may be limited to the RV, with unclear precedent for 
interpreting such data and their clinical implications. To address 
these obstacles more efficiently, we contend that immediate 
investment is imperative for obtaining -omics-level genetic, tran-
scriptomic, and metabolomic data from clinical trials as combina-
tion therapies are tested. Such comprehensive data will be essen-
tial in deconvoluting the complexity of these metabolic shifts in 
PH patients and will eventually guide creation of more effective 
mitochondrial-specific therapies, as depicted in Figure 2.
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perturbations through the lens of aging may deepen and broaden 
our understanding of the role of mitochondria in PH. For exam-
ple, stem cell niche and cellular senescence are largely driven by 
age-dependent alterations in mitochondrial metabolism (184), 
yet the effect of these processes on the pulmonary vasculature is 
largely undefined. Without a pathologic aging model of PH and 
with a limited number of longitudinal PH databases, the extend-
ed experimental timeline has prevented study of aging and PH. 
These challenges are not insurmountable, and we expect that 
future exploration of the impact of aging on PH will also influ-
ence its clinical classification and provide valuable opportunities 
to adapt PH management in a more elderly population.

Conclusion
Intensified investigation has revealed the complex metabolic 
reprogramming and perturbations in mitochondrial dynamics in 
PH within and beyond the RV-PA circuit. Yet fundamental ques-
tions still remain, including the causal mechanism of mitochon-
drial dysfunction, how these dysregulated metabolic pathways 
work synergistically or in opposition to promote disease, and 
how tissue-specificity and disease stage overlay and define these 
metabolic programs. Diagnostic and therapeutic technologies 
based on common mitochondrial features in PH are promising 
but require further development in tandem with high-throughput 
-omics evaluation, given disease heterogeneity. With mitochon-
drial dysfunction as a central driver of PH, we expect new, caus-
ative, and surprising connections to emerge between PH and other 
mitochondria-dependent diseases. These links will likely provide 
a basis for refined classification of PH subtypes in order to move 
closer to a precision medicine approach for diagnosis and manage-
ment of this historically neglected disease.
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Redefining metabolic overlap  
in subtypes of PH

Metabolic syndrome and PH
The clinical classification system for PH defines subtype based 
on presumed etiology, with consequences for prognosis and 
therapy. However, given the cumulative data on metabolic and 
mitochondrial etiologies in PH, we have considered whether this 
schema must evolve to reflect the intersection or divergence of 
metabolic phenotypes among PH subtypes. An example of this 
concept is the association of metabolic syndrome, heart failure 
with preserved ejection fraction (HFpEF), and PH. Cardiovascu-
lar disease has long been linked to metabolic syndrome — dyslip-
idemia, systemic hypertension, elevated fasting glucose levels, 
and central obesity (170). Only recently was PH connected to 
metabolic syndrome (171, 172) with patients exhibiting dyslipid-
emia (173) and insulin resistance (174, 175). In addition, SIRT3 
(176) and UCP2 (177) polymorphisms are associated with meta-
bolic syndrome and PH (168, 178). Tissue-specific SIRT3 knock-
down and subsequent metabolic reprogramming were studied in 
PASMCs (178), endothelial cells (130), fibroblasts (18), and skele-
tal muscle (179). Interestingly, early restoration of SIRT3 expres-
sion in skeletal muscle, the predominant site of insulin-mediated 
glucose uptake (180), by nitrite or metformin reversed insu-
lin resistance and reduced pulmonary pressures and vascular 
remodeling in a rodent model of metabolic syndrome and HFpEF 
(179). This study confirms the importance of skeletal muscle in 
metabolically driven PH and illustrates the role of metabolic syn-
drome in PH. Yet classification of group 2 PH or PH-HFpEF does 
not reflect this distinct molecular characteristic. Specifically, 
data support that metabolic syndrome may be present in all PH 
subtypes, with a majority of patients in groups 2 and 3 PH (172). 
Furthermore, HFpEF itself is a diverse clinical entity that encom-
passes patients with LV diastolic dysfunction without metabolic 
syndrome. Therefore, we expect that molecular classification of 
PH subtypes will be an evolving concept, particularly as we learn 
more about deregulated metabolism in this disease.

Aging and PH
The age of patients diagnosed with PH has steadily risen in 
recent decades (181), and interest in age-associated alterations 
in pulmonary vascular function has grown (182, 183). Moreover, 
several similarities have emerged between mitochondrial dys-
function during aging and PH progression. Investigating these 
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