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Inheritance of the E4 allele of the apolipoprotein E gene (APOE4) substantially increases the risk of developing late-onset
Alzheimer disease (AD). A large body of evidence has firmly established a role for apoE in modulating the risk of
developing the amyloid plaque pathology that is pathognomonic for AD. In this issue of the JCI, Liao and colleagues
discovered that antibodies against a nonlipidated form of apoE4 are highly effective in delaying the deposition of amyloid
β (Aβ) peptides in mouse models of AD pathology. Using a combination of passive immunization and viral-mediated
expression of recombinant antibodies, the authors show that Fc receptor–mediated clearance of the nonlipidated apoE4
was critical in delaying Aβ deposition. Collectively, this study identifies a new therapeutic target that could be exploited to
prevent, or possibly reverse, the Aβ pathology of AD.
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Introduction
One of the most replicated genetic asso-
ciation studies in Alzheimer disease (AD) 
is the discovery that the apolipoprotein E 
(APOE) genotype modulates the risk of 
developing AD (1, 2). Notably, apoE immu-
noreactivity was first described in asso-
ciation with both amyloid β (Aβ) plaques 
and neurofibrillary tangles in humans well 
before genetic studies linked APOE to AD 
(3). The major alleles of human APOE 
are E2, E3, and E4, all producing 299 aa-
secreted products that differ at aa 112 and 
158 as follows: E2, Cys/Cys; E3, Cys/Arg; 
E4, Arg/Arg (reviewed in ref. 4). E2 is the 
least common and E3 is the most com-
mon allele. Forty percent of all patients 
with sporadic AD have 1 allele of APOE4, 
and the risk increases 5- to 10-fold in sub-
jects with 2 alleles (5). APOE has been 
implicated in a plethora of pathways that 
could potentially modulate the risk for AD, 
including modulating the toxicity of tau 
pathology (6), modulating neuroinflam-
mation, impairing mitochondrial function, 
and altering lipid metabolism (reviewed 

in ref. 7). However, studies in humans 
and preclinical mouse models have firmly 
established that the presence of APOE4 
leads to earlier onset of amyloid pathol-
ogy (recently reviewed in ref. 8), suggest-
ing that the primary mechanism by which 
apoE modulates the risk of AD is by modu-
lating the deposition of Aβ.

Antibodies against 
nonlipidated apoE emerge  
as new biotherapies  
for AD prevention
The study by Liao and colleagues evalu-
ated a series of antibodies against human 
apoE (9). Through careful analysis they 
determined that antibodies against a 
nonlipidated, possibly aggregated, form 
of apoE4 are highly effective in delay-
ing the deposition of Aβ peptides in mice 
that express human mutant amyloid pre-
cursor protein (APP), human mutant pre-
senilin (PS1), and human apoE4. Begin-
ning with passive immunization to screen 
antibodies, the antibody that emerged as 
most efficacious was poorly reactive to 

lipidated forms of apoE3 or apoE4. Using 
adeno-associated virus–mediated CNS 
expression of recombinant antibodies, the 
authors show that Fc receptor–mediated 
clearance of the nonlipidated apoE4 was 
critical in delaying Aβ deposition. Passive 
immunization with antibodies that rec-
ognized the lipidated forms of apoE was 
ineffective, due partially to binding to lipi-
dated apoE in plasma and rapid clearance 
of the immune complex. The antibodies to 
nonlipidated apoE4 were highly reactive 
to cored-neuritic plaques in the APP/PS1 
mice, suggesting that the nonlipidated pro-
tein closely associates with Aβ aggregates. 
Thus, the presumptive mechanism by 
which these antibodies delay the deposi-
tion of Aβ is through microglial-mediated  
phagocytosis of APOE4/Aβ complexes 
that form early in the formation of Aβ 
deposits (Figure 1). Whether these anti-
bodies could be effective in promoting 
the clearance of preexisting Aβ deposits 
requires further investigation.

Whether nonlipidated apoE is an 
active or passive accomplice in the deposi-
tion of Aβ is unclear. Studies in transgenic 
mice have generally shown that apoE plays 
a pivotal role in Aβ deposition. Targeted 
inactivation of the endogenous apoE allele 
in mice that overexpress mutant APP pro-
foundly inhibits Aβ deposition (10). Tar-
geted replacement of endogenous apoE 
alleles with human APOE alleles has dem-
onstrated that the APOE4 allele is signifi-
cantly more amyloidogenic than the E2 or 
E3 alleles (11, 12). More recently, a pair of 
studies demonstrated that apoE is critical 
in the early stages of Aβ oligomerization 
and assembly, showing much less influ-
ence once deposition has taken hold (13, 
14). Most effort in the field has focused on 
the lipidated forms of apoE. Studies have 
shown that lipidated apoE4 preferentially 
stabilizes Aβ oligomers (15), selectively 
promotes Aβ fibrillization (16, 17), and 
has a greater affinity for Aβ peptides (2, 
18). Early studies with recombinant apoE 
isolated from E. coli reported that nonlipi-
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be approved in human therapy, then any 
new therapy would have to be evaluated in 
comparison to or in combination with the 
existing therapy. However, for the reasons 
outlined above, apoE antibodies target-
ing nonlipidated protein could ultimately 
emerge as the better choice for a preventive 
biotherapy in high-risk APOE4 carriers.
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