Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Exercise stimulates the mitogen-activated protein kinase pathway in human skeletal muscle.
D Aronson, … , R A Fielding, L J Goodyear
D Aronson, … , R A Fielding, L J Goodyear
Published March 15, 1997
Citation Information: J Clin Invest. 1997;99(6):1251-1257. https://doi.org/10.1172/JCI119282.
View: Text | PDF
Research Article

Exercise stimulates the mitogen-activated protein kinase pathway in human skeletal muscle.

  • Text
  • PDF
Abstract

Physical exercise can cause marked alterations in the structure and function of human skeletal muscle. However, little is known about the specific signaling molecules and pathways that enable exercise to modulate cellular processes in skeletal muscle. The mitogen-activated protein kinase (MAPK) cascade is a major signaling system by which cells transduce extracellular signals into intracellular responses. We tested the hypothesis that a single bout of exercise activates the MAPK signaling pathway. Needle biopsies of vastus lateralis muscle were taken from nine subjects at rest and after 60 min of cycle ergometer exercise. In all subjects, exercise increased MAPK phosphorylation, and the activity of its downstream substrate, the p90 ribosomal S6 kinase 2. Furthermore, exercise increased the activities of the upstream regulators of MAPK, MAP kinase kinase, and Raf-1. When two additional subjects were studied using a one-legged exercise protocol, MAPK phosphorylation and p90 ribosomal S6 kinase 2, MAP kinase kinase 1, and Raf-1 activities were increased only in the exercising leg. These studies demonstrate that exercise activates the MAPK cascade in human skeletal muscle and that this stimulation is primarily a local, tissue-specific phenomenon, rather than a systemic response to exercise. These findings suggest that the MAPK pathway may modulate cellular processes that occur in skeletal muscle in response to exercise.

Authors

D Aronson, M A Violan, S D Dufresne, D Zangen, R A Fielding, L J Goodyear

×

Usage data is cumulative from November 2024 through November 2025.

Usage JCI PMC
Text version 458 140
PDF 84 35
Citation downloads 74 0
Totals 616 175
Total Views 791
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts