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Abstract

The effects of glucagon (G) on proximal tubule reabsorption
(PTR) and GFR seem to depend on a prior action of this
hormone on the liver resulting in the liberation of a media-
tor and/or of a compound derived from amino acid metabo-
lism. This study investigates in anesthetized rats the possi-
ble contribution of cAMP and urea, alone and in combination
with a low dose of G, on phosphate excretion (known to de-
pend mostly on PTR) and GFR. After a 60-min control pe-
riod, cAMP (5 nmol/min X 100 grams of body weight [BW])
or urea (2.5 pmol/min X 100 grams BW) was infused intra-
venously for 200 min with or without G (1.2 ng/min X 100
grams BW, a physiological dose which, alone, does not in-
fluence PTR or GFR). cAMP increased markedly the excre-
tion of phosphate and sodium (+303 and +221%, respec-
tively, P < 0.01 for each) but did not alter GFR. Coinfusion
of cAMP and G induced the same tubular effects but also
induced a 20% rise in GFR (P < 0.05). Infusion of urea,
with or without G, did not induce significant effects on PTR
or GFR. After G infusion at increasing doses, the increase in
fractional excretion of phosphate was correlated with a simul-
taneous rise in plasma cAMP concentration and reached a
maximum for doubling of plasma cAMP. These results sug-
gest that cAMP, normally released by the liver into the
blood under the action of G, (@) is probably an essential
hepatorenal link regulating the intensity of PTR, and (b)
contributes, in conjunction with specific effects of G on the
nephron, to the regulation of GFR. (J. Clin. Invest. 1996. 98:
2251-2258.) Key words: liver « proximal tubule « phosphate «
sodium « glomerular filtration rate

Introduction

Glucagon is a pancreatic hormone which stimulates several
metabolic pathways in the liver, its first target organ. It plays
an essential role in the maintenance of plasma glucose concen-
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tration by stimulating glycogenolysis and gluconeogenesis in
situations of high energy needs or during fasting. On the other
hand, and independent of the body’s immediate needs in glu-
cose, this hormone also plays a crucial role in disposal of nitro-
gen from the body. This is the case either after the ingestion of
a large protein meal (or an amino acid infusion), when exoge-
nous amino acids need to be metabolized and excess nitrogen
excreted, or during periods of fast, when endogenous amino
acids are used for gluconeogenesis. Actually, gluconeogenesis
and ureagenesis are always linked (1), in order to ensure an
appropriate disposal of the amine groups when the carbon
chains of amino acids enter carbohydrate metabolism (2-4).

The kidney is also a target organ for glucagon, which influ-
ences solute transport in several nephron segments. As dis-
cussed in a previous paper (5), the tubular effects of glucagon
on the distal segments of the nephron most probably result
from a direct action of the hormone on specific receptors. This
is the case for the stimulation of electrolyte reabsorption in the
thick ascending limb of Henle. On the other hand, the effects
of glucagon on the proximal tubule seem to be indirect and to
require the previous action of glucagon on the liver (5).

In addition to its tubular effects, glucagon also influences
renal hemodynamics. Several studies have established that this
hormone participates in, or is even indispensable for, the post-
prandial increase in GFR (6-11). However, this effect of gluca-
gon is probably indirect and involves other mediators (12) be-
cause the plasma concentration of glucagon required to increase
GFR exceeds the usual peripheral concentration seen after a
protein meal (6, 10, 13). Moreover, direct infusion of glucagon
into the renal artery fails to increase GFR in dogs (10, 14), hu-
mans (8), and rats (Ahloulay, M., personal observation). In
previous experiments, we have confirmed that the rise in pe-
ripheral plasma glucagon concentration seen after a protein
meal, and reproduced by glucagon infusion at a rate of 1.25 ng/
min X 100 grams of body weight (BW),! failed to increase
GFR (5, 15). On the other hand, we observed that the rate of
glucagon infusion necessary to increase GFR was only 3- to 10-
fold higher. This higher rate of infusion induced in peripheral
blood a concentration of glucagon that is physiologic for the
liver, given the normal porto-peripheral concentration gradi-
ent for pancreatic hormones, due to their direct release in the
portal vein (5, 15). This is in good agreement with the study of
Premen (16) showing that a glucagon infusion, which failed to
increase GFR when infused peripherally, did increase GFR
when infused in the portal vein. Taken together, these findings

1. Abbreviations used in this paper: BW, body weight; C, control peri-
ods; dDAVP, desamino p-arginine vasopressin; E, experimental peri-
ods; FE, fractional excretion; G1, glucagon infusion 1.25 ng/min X
100 grams BW; G10, glucagon infusion 12.5 ng/min X 100 grams BW;
P, plasma.
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established that glucagon action on the kidney requires a prior
action on the liver. It has been proposed that glucagon could
induce the release from the liver of a vasoactive hormone,
glomerulopressin, influencing the resistance of renal arterioles
(17, 18, and for reviews see references 19 and 20). Other stud-
ies have suggested that the link between the liver and the kid-
ney could be a compound(s) derived from the metabolism of
amino acids by the liver (21-23). The nature of this compound
has not yet been determined.

The intracellular second messenger mediating the hepatic
actions of glucagon is cAMP. Intravenous administration of
glucagon is known to induce a marked and prompt rise in
plasma cAMP, due to a rapid exit of this nucleotide from hepa-
tocytes (24-28). cAMP is excreted by the kidney as a result of
both filtration and secretion. It has been well established that
cyclic nucleotides are secreted in the proximal tubule by a car-
rier-mediated process involving the organic acid transport sys-
tem (29). On the other hand, a few studies suggest that cAMP
secretion in the proximal tubule might be responsible for the
effects of glucagon on the excretion of phosphate (5, 30).
Plasma cAMP thus could represent a significant interorgan
mediator linking the liver and the kidney. Could this nucle-
otide also be involved in the hemodynamic effects of glucagon
on the kidney? Alternatively, or in conjunction, could urea,
which is produced by the liver and excreted by the kidney un-
der the influence of glucagon (15), represent another compo-
nent of the hepatorenal link?

This study was undertaken to evaluate (a) the influence of
arise in plasma cAMP or in plasma urea on renal function and
(b) the possible contribution of cAMP and/or urea to gluca-
gon-induced hyperfiltration. We hypothesized that rather than
resulting from the influence of a single factor, the rise in GFR
could depend on a combination of two or more factors acting
jointly on the kidney.

Classical clearance experiments were conducted in normal,
nonfasted rats in which a stable level of urinary concentrating
activity was established to prevent uncontrolled changes in uri-
nary flow rate and intrarenal urea recycling which could exert
a confounding influence on GFR (5). Glucagon, cAMP, and
urea were infused individually or in combination to evaluate
the resulting changes in sodium, phosphate, urea, and water
excretion, and in GFR.

Methods

Animals and experimental protocols

Adult male Wistar rats (Iffa-Credo, Lyon, France), 230-300 grams
BW, fed on a standard rat chow, were allowed food and water ad libi-
tum until the time of the experiment. Clearance experiments were
conducted in two series of anesthetized rats (Inactin, 10 mg/100 grams
BW, intraperitoneally; Research Biochemicals Inc., Natick, MA) with
an experimental protocol identical to that described in our previous
study (15). Surgery included tracheotomy and catheterization of one
jugular vein, the two femoral arteries, and the bladder. Mean arterial
blood pressure was monitored continuously through the right femoral
artery (pressure processor; Gould Inc., Glen Burnie, MD). Isotonic
saline (NaCl 0.9%) was infused intravenously during the entire ex-
periment at a rate of 15 pl/min X 100 grams BW. After completion of
the surgery and for the rest of the experiment, Inutest (Laevosan Ge-
sellschaft, Linz, Germany) was infused at 0.75 mg/min X 100 grams
BW. To ensure a relatively stable urinary concentrating activity (5),
desamino p-arginine vasopressin ({DAVP; Minirin, Ferring, Malmo,
Sweden), an antidiuretic analogue of vasopressin, was infused at 1.66
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pg/min X 100 grams BW. As shown in a previous study, this improves
the stability of basal renal function and prevents the possible con-
founding influence of uncontrolled changes in urinary flow rate on
solute excretion and renal hemodynamics (5).

Protocol 1. After surgery and 1 h of equilibration (t = 0), urine
was collected in preweighed tubes for four 20-min control periods (C)
after which the experimental infusion was started and urine was col-
lected for six 20-min experimental periods (E). Blood samples (= 300
wl) were taken from the left femoral artery at the beginning and end
of the equilibration period, and then every 40 min during the next 200
min (that is at the beginning of periods 1, 3, 5, 7, 9, and at the end of
period 10). Plasma concentrations at the midpoint of each clearance
period were interpolated from the values measured in these samples.

This series of experiments included seven groups of rats, one of
which served as time control. In the other six groups, urea, cAMP
(Sigma, St. Louis, MO), or glucagon (highly purified porcine gluca-
gon; Novo Industry, Bagsvaerd, Denmark) were infused alone or in
combination. The different experimental infusions and the corre-
sponding abbreviations are shown in Table I (Table I also shows two
groups of rats studied previously that received a glucagon infusion at
two different rates, reproducing physiologic concentrations for either
the kidney [G1] or the liver [G10]; see explanations in reference 5).
Urea was infused at a rate close to that used in our previous study
(15). Regarding cAMP, this nucleotide has rarely been infused in
vivo. We chose to infuse 5 nmol/min X 100 grams BW, a rate 17-fold
lower than that used by Lorentz (31), and comparable to that used in
other studies (30, 32, 33). The glucagon infusion rate used in the
present study (G1) was 1.2 ng/min X 100 grams BW, corresponding
to the lowest infusion rate of our previous study (a rate which does
not increase GFR).

Protocol 2. In our previous experiments, changes in plasma cAMP
in response to glucagon infusions G1 or G10 had been measured in a
few rats (5). To extend these observations, an additional series of rats
was used to determine the concentrations of cCAMP in peripheral
blood and urine in different conditions, and the associated changes in
GFR and phosphate excretion. Inutest and dDAVP were infused as
in protocol 1, and the experiments included one C and one E period.
During each period, urine was collected for 60 min (after an equili-
bration period of 60 min for C, or 40 min for E). During E, different
rats received the following infusions. Three rats received glucagon at
a rate of 120 ng/min X 100 grams BW (a rate 100-fold higher than in
protocol 1), two rats received cAMP at a rate similar to that in proto-
col 1, and one rat served as control (no change during E).

Analysis, calculations, and statistics

Urinary flow rate was evaluated by gravimetry. Osmolality was mea-
sured with a freezing point osmometer (Roebling, Berlin, Germany).

Table 1. Experimental Infusions Given in the Different Groups
(per 100 grams BW)

Groups n Glucagon cAMP Urea
ng/min nmol/min umol/min

Control 8 0 0 0
G1* 8 1.2 0 0
G10* 7 12 0 0
cAMP 4 0 5.0 0
Urea 8 0 0 2.5
cAMP + urea 4 0 5.0 2.5
G1 + urea 4 1.2 0 2.5
G1 + cAMP 7 1.2 5.0 0
G1 + cAMP + urea 5 1.2 5.0 2.5

n, number of rats per group; *data from preceding study (5).



Table II. GFR (ml/min) Measured during C and E Periods in
the Different Rat Groups

Groups C E A=(E-C)
Control 3.05+0.31 2.99+0.29 —0.06+0.13
G1* 2.70%+0.13 2.53+0.12 —0.20%0.10
G10* 2.57+0.13 3.13x0.23 +0.57+0.13%
cAMP 2.35+0.18 2.45+0.14 +0.10+0.11
Urea 2.60£0.15 2.71+0.17 +0.11+0.11
cAMP + urea 3.08+0.28 3.18+0.46 +0.10+0.30
G1 + urea 2.38+0.19 2.23+0.09 —0.15+0.12
G1 + cAMP 2.32+0.11 2.76+0.24 +0.44+0.18%
G1 + cAMP + urea 2.94+0.25 3.54+0.36 +0.60+0.14%

Paired ¢ test between E and C: P < 0.05; P < 0.01. *Data taken from a
previous study (5).

Inutest concentration in plasma and urine was measured by the an-
throne method (34). Inutest clearance was considered to represent
GFR. The concentration of urea in plasma and urine was measured
by a modification of the Berthelot method (Urea-Kit Biomérieux,
Lyon, France) and that of phosphate by standard methods (RA 1000;
Technicon Instruments Corp., Tarrytown, NY). cAMP was measured
in plasma by radioimmunoassay after acetylation, using a commercial
kit (RTA H cAMP; Amersham Corp., Arlington Heights, IL).

In protocol 1, the results obtained for each rat during the four
control (1-4) and the last four experimental periods (7-10) were av-
eraged to provide one C and one E value per rat. Means*+SE for C
and E were then calculated for each group. In protocols 1 and 2, the
statistical significance of the differences observed between C and E in
each group was evaluated by paired ¢ test. In addition, the changes in
GFR observed in the different groups in protocol 1 were compared
by one-way ANOVA followed by the Fisher post-hoc test.

Results

The infusion of dDAVP in all rats during the experiments en-
sured a similar urine flow rate and osmolality in all groups

(range 7.0-10.0 pl/min and 1,670-1,995 mosmol/kg H,O, re-
spectively). No significant changes between control and exper-
imental periods were observed in the time-control group ex-
cept for a 36% increase in phosphate excretion (P < 0.01).

GFR. Table II and Fig. 1 show the results concerning GFR
for the groups explored in protocol 1. Results obtained in a
previous study for glucagon infusion at rates of 1.25 and 12.5
ng/min X 100 grams BW (G1 and G10, respectively) are also
shown as a reference. G1, which reproduced a physiological
concentration of glucagon in peripheral blood, failed to in-
crease GFR, whereas a 10-fold higher infusion rate increased
GFR by 21.5% (5). Urea alone or combined with cAMP or G1
was without effect. cAMP alone did not alter GFR, whereas
cAMP + Gl increased GFR significantly (+18.5%). Coinfu-
sion of urea with cAMP and G1 enhanced GFR somewhat fur-
ther (+20.0%) (Fig. 1). When changes in GFR in the different
experimental groups were analyzed by ANOVA, the only
changes which differed significantly from those in the control
group were found in G10, cAMP + G1, and cAMP + G1 +
urea (P < 0.01, P < 0.05 and P < 0.01, respectively). More-
over, G1 combined with cAMP induced a significantly differ-
ent effect than G1 alone (P < 0.01).

Water and electrolytes. Fig. 2 depicts the influence of cAMP
and glucagon (G10) on solute and water excretion. cCAMP in-
fusion increased urinary flow rate and excretion of the main
urinary solutes. However, the magnitude of these changes was
not uniform. Sodium and phosphate excretion was markedly
increased (> 200%), whereas excretion of water, potassium,
and urea was increased more modestly (= 20-50%). (This ef-
fect was also observed in rats which did not receive dDAVP
[34a].) These increased excretions were probably responsible
for a decline in plasma concentration of urea (=7.5%) and
phosphate (—14.0%), a decline which did not reach statistical
significance, however. These changes induced by cAMP infu-
sion are very similar to those observed after G10 infusion re-
garding both water and solute excretions (Fig. 2) and plasma
composition (5).

Fig. 3 illustrates the influence of the different experimental
infusions on fractional excretion of phosphate (FEp,). As al-
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Figure 2. Changes in excretion of water (V), urea, phosphates, sodium, and potassium in the time-control group (n = 4) and in the groups receiv-
ing cAMP (n = 4) or glucagon (G10) infusion (n = 7). Paired ¢ test (E vs. C): *P < 0.05; **P < 0.01; ***P < 0.001. Urinary flow rate and abso-
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0.257+0.038, and 2.12+0.31 pwmol/min, respectively (means=SE of all rats). Results of glucagon experiments G10 were obtained in a previous

study (5).

ready described, glucagon increases FEpo; in a dose-depen-
dent fashion (absolute change: +5.5+1.6 and +12.3+2.5% of
filtered load, for G1 and G10, respectively) (5). In all groups
receiving cCAMP, whether alone or in combination with urea
and/or G1, a large and comparable increase in FEpo; was ob-
served (= 14%). Urea infusion induced a significant rise in
FEpo; (+8.8%2.3%) which was even greater when G1 was
coinfused with urea (+11.8+1.0%).

Protocol 2 explored the relationship between changes in
plasma cAMP (P.,\p) and changes in GFR and in phosphate
reabsorption induced by either glucagon or cAMP infusion. As
observed in Fig. 4, for the seven rats in which the changes in
P.avp Were moderate (< 40 nM, i.e., a doubling of the basal
value), a highly significant correlation was observed between

A FE PO4- (%)
[y
(=]
1

C
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changes in FEpo- and the simultaneous changes in Payp (r =
0.995, P < 0.001). For the five other rats in which higher
changes in P syp Occurred, FEpg; reached a plateau probably
corresponding to the maximal inhibition of phosphate reab-
sorption. Concerning GFR, the changes in the first seven rats
also tended to be correlated with the simultaneous changes in
P.amp (r = 0.680, 0.10 > P > 0.05). Larger changes in P.syp
(<200 nM) were associated with maximal changes in GFR
when they resulted from a high rate of glucagon infusion. In
contrast, they were not accompanied by any change in GFR
when they resulted from cAMP infusion, as already observed
in protocol 1 (Fig. 2).

Urea. As described earlier, the infusion of glucagon at a
rate of 12.5 ng/min X 100 grams BW (G10) stimulates urea

Figure 3. Influence of the differ-
ent infusions on fractional phos-
phate excretion between C and E
periods. The ordinate shows the
absolute changes (A = E — C) in
FE expressed as a percentage of
the filtered load. Results of glu-
cagon experiments G1 and G10
were obtained in a previous
study (5). cA, cAMP; U, urea.
Basal FEpq ; was 6.04=0.70%
(mean=SE of all rats). For num-
ber of rats in each group, see Ta-
ble I (in control group, n = 4 only
for phosphate measurements).
Paired ¢ test (E vs. C): *P < 0.05;
P < 0.01; *#*P < 0.001.
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synthesis in the liver and increases the fractional excretion of
urea (FE,.,) in the kidney (percent change, +52.3+12.8%,
P < 0.001) (5, 15). This simultaneous effect on the two organs

is accompanied by a small but significant decrease in plasma
urea (Py.,) (Table III), indicating that the stimulation of urea
excretion exceeds that of urea synthesis. In contrast, when ex-
ogenous urea was infused, P, increased significantly (Table
III), indicating that the rise in urea excretion did not match the
rate of urea infusion (= 7 wmol/min for a 280-gram rat). Actu-
ally, FE, ., rose much less in this case (+18.5%8.1%, NS) than
after glucagon infusion (see above). cAMP infusion increased
urea absolute excretion and FE significantly (percent change
in FE, +38.1+£13.1%, P < 0.05), and tended to decrease P,
(Table III). When G1, cAMP, and urea were coinfused, the
rise in urea excretion was comparable with that seen with G10.
However, it remained lower than the infusion rate of exoge-
nous urea, and P, rose significantly (Table III).

Discussion

This study brings new information regarding the humoral con-
trol of renal function. First, it confirms that plasma cAMP ex-
erts an influence on proximal reabsorption. Second, it suggests
that the proximal effects of glucagon are likely dependent on
the release in peripheral blood of liver-borne cAMP and on
the subsequent uptake of this nucleotide by proximal cells.
Third, it suggests that the glucagon-induced increase in GFR
depends on the combination of a physiological rise in periph-
eral plasma glucagon concentration and of a simultaneous rise
in plasma cAMP resulting from glucagon action on the liver.

Influence of plasma cAMP on renal function. It is usually
believed that circulating cAMP does not influence cellular
functions throughout the body because most cells are imper-
meable to this nucleotide (35). This explains why few studies
have investigated the effects of cAMP infusion on kidney func-
tion (30-33). However, in some cells, cCAMP is transported by
the organic acid transport system inhibitable by probenecid
and para-aminohippuric acid (29, 36-38). This system is present
in hepatocytes and in cells of the proximal tubule, mostly in
the pars recta (39, 40). As a result, cCAMP generated in hepato-
cytes may be secreted in the blood (24-27) and taken up and
secreted by proximal tubule cells (29, 36, 41).

The present results show that cAMP influences the excre-
tion of the four major solutes with a predominant effect on so-
dium and phosphate. Because pars recta cells take up cAMP,
cAMP infusion should increase their intracellular cAMP con-

Table I11. Plasma Urea and Urea Excretion in the Different Groups

Plasma urea (mM)

Urea excretion (wmol/min)

Groups C E A=E-C C E A=E-C
Control 7.1+0.4 6.8+0.4 —0.4+0.2 6.2+0.8 7.1+0.9 +0.8+0.4
G1* 7.6+0.8 7.1+0.7 -0.5+0.3 6.8+0.6 6.9+0.7 +0.1+0.4
G10* 6.5+0.6 5.8+0.5 —0.8+0.3¢ 6.7+0.8 10.5+1.3 +3.8+0.6
cAMP 5.5+0.5 5.1+0.3 —0.5+0.2 45+0.3 6.0+0.1 +1.4+0.4¢
Urea 7.4+0.4 8.9+0.6 +1.5+0.3¢ 6.8+0.8 9.6+0.7 +2.8x0.8l
CAMP + urea 7.4+0.8 9.5+12 +2.1+0.5¢ 6.8+0.9 9.9+1.1 +3.1+0.3!
G1 + urea 6.6+0.5 7.9+0.5 +1.3+0.2¢ 7.0+0.8 8.9+0.4 +1.9+0.4¢
G1 + cAMP 6.2+0.4 5.6+0.4 —0.6+0.2¢ 6.0+0.6 7.1+0.9 +1.0+0.5
G1 + cAMP + urea 6.8+0.4 8.3+0.8 +1.5+0.4% 7.0+0.7 11.2+0.9 +4.1+0.6/

Paired ¢ test between E and C: *P < 0.05; IP < 0.01; $P < 0.001. *Data taken from a previous study (5).
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centration, thus inhibiting sodium phosphate and sodium bi-
carbonate cotransport, as cCAMP generated intracellularly un-
der the influence of PTH would do (42). Phosphate resulting
from the breakdown of cAMP by phosphodiesterases proba-
bly also contributes to the rise in phosphate excretion (33, 43).

The fact that intravenously infused cAMP reduces late
proximal reabsorption suggests that the plasma level of cAMP
may permanently influence the intensity of late proximal tu-
bule function. This influence is probably physiologically signif-
icant because small increments in P ,y;p are accompanied by
detectable changes in FEpo, and maximum response occurs
for only doubling basal P s\p (Fig. 4). Accordingly, cAMP
might be an interorgan link between organs releasing cAMP in
the blood (mainly the liver [24-27] and the heart [44]) and the
kidney.

Interestingly, in the years after the discovery of the role of
cAMP as a second messenger, a number of reports have em-
phasized that glucagon stimulates hepatic cAMP production
and release in blood (or perfusate) ~ 40-fold more than epi-
nephrine, although they induce quantitatively similar meta-
bolic effects (24, 25, 45, 46). Our results suggest that the extra
amounts of cAMP produced by the liver in response to gluca-
gon probably serve as an extracellular messenger acting on the
kidney.

Role of hepatic cAMP in the glucagon-induced changes in
proximal reabsorption and in GFR. Several previous studies have
shown that glucagon exerts natriuretic and phosphaturic ef-
fects (5, 47-51) by reducing the reabsorption of sodium, phos-
phate, and water in the whole proximal tubule, with a predom-
inant influence in the pars recta (52). However, no glucagon
receptors (53) and no glucagon-sensitive adenylate cyclase ac-
tivity (54) have been found in this nephron segment. The
present results strongly suggest that the effects of glucagon on
the proximal tubule are dependent on the uptake of hepatic
cAMP by proximal tubule cells. However, the intensity of the
cAMP-dependent reduction in pars recta reabsorption can be
expected to vary with the glucagon/insulin concentration ratio
in portal blood, and not with the absolute glucagon concentra-
tion observed in peripheral blood, because insulin decreases
the glucagon-induced release of cAMP by the liver (55-57).

Several studies (including two from our laboratory) have
shown that intravenous infusion of glucagon that induces in-
crements in peripheral plasma glucagon within the physiologi-
cal range does not increase GFR (5, 6, 10, 13, 15). In contrast,
glucagon infusion increasing plasma concentration to 900 pg/
ml or above (5) (a concentration usually achieved in the portal
circulation) or infusion of lower amounts in the portal vein
(10) does increase GFR. It has been proposed that the rise in
GFR could depend on the liberation by the liver of a mediator
or metabolite derived from amino acid metabolism (6, 15, 16,
21). A putative liver-derived vasoactive mediator glomerulo-
pressin has not been well characterized to date (for review see
reference 20). In this study, we evaluated whether two metab-
olites, cAMP and urea, released by the liver under the action
of glucagon, could mediate the liver-dependent effects of glu-
cagon on the kidney. Our results show that cAMP plays a cru-
cial role but that the contribution of urea is only modest.

Although an infusion of cAMP is able to mimic the proxi-
mal effects of glucagon, it does not exert an influence on GFR.
However, when cAMP and glucagon (G1) are combined, a dis-
tinct increase in GFR occurs. Actually, this combination repro-
duces for the kidney the conditions met physiologically when
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glucagon is normally released by the pancreas in the hepatic
circulation. Accordingly, the present study shows that in nor-
mal conditions the combination of two factors acting simulta-
neously on the kidney is required for influencing GFR, namely
the renal action of liver-derived cAMP and the direct renal ac-
tion of glucagon. That cAMP is necessary but not sufficient to
raise GFR is also suggested by the absence of any change in
GFR when large increases in P4yp occur without glucagon ad-
dition, contrasting with the parallel changes observed in P.,y;p
and in GFR after G1 or G10 infusions (Fig. 4). Note that the
release of variable amounts of adenosine in the nephron lu-
men, due to the breakdown of cAMP, may partially counteract
the increase in GFR, thus weakening the correlation shown in
Fig. 4, because luminal adenosine has been shown to reduce
GFR (58).

Because a high infusion rate of glucagon (G10) increases si-
multaneously urea synthesis by the liver and GFR (15), it was
interesting to consider whether increased urea delivery to the
kidney could play a role in the renal hemodynamic response to
this hormone. Urea alone did not influence GFR (Table II).
However, it seemed to have a modest additive effect above
that due to the combination of G1 and cAMP. Notably, the in-
creased excretion of urea in groups receiving an urea infusion
occurred without any change in GFR and was solely due to a
rise in P,.,. In contrast, the similar increase in urea excretion
seen after glucagon infusion (G10) resulted from a rise in GFR
without any change in P,,.,, as already underlined (5, 15).

The contribution of glucagon to the rise in GFR seen after
a protein meal or an amino acid infusion remains controversial
(6-11, 13, 59). This might be due to the fact that the rise in
GFR is also partly dependent on the release of hepatic cAMP,
which itself depends on the balance between insulin and gluca-
gon, not on glucagon alone.

How can the combination of cAMP and glucagon induce a
rise in GFR? Glucagon (G1 level) is known to stimulate di-
rectly NaCl reabsorption in the thick ascending limb (60, 61).
This could decrease NaCl concentration at the macula densa.
On the other hand, glucagon (G10 or above) has been shown
to depress tubulo-glomerular feedback (62). Because glucagon
(G1) alone does not increase GFR, it is likely that this effect at
the macula densa level becomes significant only when a prior
cAMP-dependent reduction in late proximal reabsorption pro-
vides a higher fluid and solute delivery to the loop. This hy-
pothesis is compatible with the observations that inhibition of
reabsorption in either the proximal tubule (63) or the loop of
Henle (64) prevents the protein-induced rise in GFR.

In this study, the intravenous cAMP infusion resulted in a
plasma concentration which is much higher than that induced
by glucagon administration (Fig. 4). Thus, further studies using
lower infusion rates of cAMP are necessary to confirm the
proposed influence of circulating cAMP on renal function. Al-
ternatively, attempts to prevent cAMP secretion in the proxi-
mal tubule during glucagon administration (G10) should bring
even more convincing evidence on this role. In preliminary ex-
periments, we observed that infusion of para-aminohippuric
acid (which competes with cAMP for secretion by the proxi-
mal tubule) prevents the rise in GFR induced by glucagon G10
infusion (Ahloulay, M., F. Machet, and L. Bankir, unpublished
results).

Possible involvement of plasma cAMP in several patho-
physiologic conditions. The fact that plasma cAMP could in-
fluence proximal reabsorption and contribute to glucagon-



induced hyperfiltration provides pertinent explanations for
several clinical disorders. Impaired cAMP production by the
diseased liver could explain the sodium and water retention of
cirrhosis, and abnormally low cAMP production due to hyper-
insulinemia could account for the antinatriuretic effect of insu-
lin (65) and for the edema of Kwashiorkor (malnutrition char-
acterized by intake of food with high carbohydrate and low
protein content [66]). Conversely, the natriuresis of fasting
(67) could be due to an increased cAMP production under the
influence of increased glucagon secretion.

That both glucagon and cAMP are required to increase
GFR can account for the fact that a rate of glucagon infusion
which increases GFR in normal dogs (48) fails to do so in cir-
rhotic dogs (68) in which the hepatic cAMP response to gluca-
gon is blunted. The progressive oliguric renal failure character-
istic of the hepatorenal syndrome might be due to a sustained
defect in hepatic cAMP production. On the other hand, the
hyperfiltration of diabetes mellitus could be due, at least in
part, to the combination of elevated glucagon secretion (69,
70) and exaggerated cAMP release by the liver in the absence
of insulin action (71). It is noteworthy that immunoneutraliza-
tion of circulating glucagon induced a significant fall in GFR in
rats with streptozotocin-induced diabetes mellitus (72).

In conclusion, this study brings a new insight into the na-
ture of the hepatorenal link suspected in several physiologic
and pathologic conditions and the mechanism by which gluca-
gon influences renal hemodynamics. The present results sug-
gest that liver-borne cAMP exerts a permanent influence on
the intensity of proximal function and that glucagon and circu-
lating cAMP must act simultaneously on the kidney to in-
crease GFR after a protein meal. Alterations in cAMP produc-
tion by the liver in either direction and/or marked changes in
glucagon and insulin secretion could explain disorders in GFR
and in sodium and water excretion observed in various patho-
logic conditions.
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