Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Lung inflammatory injury and tissue repair (Jul 2023)
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118879

Inhibition of submandibular and lacrimal gland infiltration in nonobese diabetic mice by transgenic expression of soluble TNF-receptor p55.

R E Hunger, S Müller, J A Laissue, M W Hess, C Carnaud, I Garcia, and C Mueller

Department of Pathology, University of Bern, Switzerland.

Find articles by Hunger, R. in: JCI | PubMed | Google Scholar

Department of Pathology, University of Bern, Switzerland.

Find articles by Müller, S. in: JCI | PubMed | Google Scholar

Department of Pathology, University of Bern, Switzerland.

Find articles by Laissue, J. in: JCI | PubMed | Google Scholar

Department of Pathology, University of Bern, Switzerland.

Find articles by Hess, M. in: JCI | PubMed | Google Scholar

Department of Pathology, University of Bern, Switzerland.

Find articles by Carnaud, C. in: JCI | PubMed | Google Scholar

Department of Pathology, University of Bern, Switzerland.

Find articles by Garcia, I. in: JCI | PubMed | Google Scholar

Department of Pathology, University of Bern, Switzerland.

Find articles by Mueller, C. in: JCI | PubMed | Google Scholar

Published August 15, 1996 - More info

Published in Volume 98, Issue 4 on August 15, 1996
J Clin Invest. 1996;98(4):954–961. https://doi.org/10.1172/JCI118879.
© 1996 The American Society for Clinical Investigation
Published August 15, 1996 - Version history
View PDF
Abstract

Besides a prominent mononuclear cell infiltration of the islets of Langerhans, nonobese diabetic (NOD) mice also show massive cellular infiltrates of the submandibular and lacrimal glands concomitant with histological signs of tissue damage. To obtain insights into the mechanisms operative during the initiation and progression of tissue damage, we followed by in situ hybridization the appearance of cells containing mRNA of the gene encoding the proinflammatory cytokine TNF-alpha in the cellular infiltrates. Cells expressing TNF-alpha are mainly located in infiltrates, are absent in nonaffected glands, and are preferentially found among CD4 T cells. Secretion of TNF-alpha by gland-infiltrating cells was confirmed by an ELISPOT procedure. Direct evidence for an instrumental role of TNF-alpha in initiation and progression of submandibular and lacrimal gland infiltration is provided by the observed significant reduction in the extent of infiltration in nonobese diabetic mice transgenic for a soluble TNF receptor p55 fused to the Fc part of human IgG3. This protection from infiltration is paralleled by decreased expression of the adhesion molecules ICAM-1 and VCAM-1 in submandibular and lacrimal glands. These data suggest a central role of TNF-alpha in the initiation and progression of autoimmune tissue destruction of salivary glands and indicate beneficial effects of soluble TNF receptors in the treatment of organ-specific autoimmune diseases.

Version history
  • Version 1 (August 15, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Share this article
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts