Keratins 8 and 18 (K8/18) are intermediate filament phosphoglycoproteins that are expressed preferentially in simple-type epithelia. We recently described transgenic mice that express point-mutant human K18 (Ku, N.-O., S. Michie, R.G. Oshima, and M.B. Omary. 1995. J. Cell Biol. 131:1303-1314) and develop chronic hepatitis and hepatocyte fragility in association with hepatocyte keratin filament disruption. Here we show that mutant K18 expressing transgenic mice are highly susceptible to hepatotoxicity after acute administration of acetaminophen (400 mg/Kg) or chronic ingestion of griseofulvin (1.25% wt/wt of diet). The predisposition to hepatotoxicity results directly from the keratin mutation since nontransgenic or transgenic mice that express normal human K18 are more resistant. Hepatotoxicity was manifested by a significant difference in lethality, liver histopathology, and biochemical serum testing. Keratin glycosylation decreased in all griseofulvin-fed mice, whereas keratin phosphorylation increased dramatically preferentially in mice expressing normal K18. The phosphorylation increase in normal K18 after griseofulvin feeding appears to involve sites that are different to those that increase after partial hepatectomy. Our results indicate that hepatocyte intermediate filament disruption renders mice highly susceptible to hepatotoxicity, and raises the possibility that K18 mutations may predispose to drug hepatotoxicity. The dramatic phosphorylation increase in nonmutant keratins could provide survival advantage to hepatocytes.
N O Ku, S A Michie, R M Soetikno, E Z Resurreccion, R L Broome, R G Oshima, M B Omary
Usage data is cumulative from September 2022 through September 2023.
Usage | JCI | PMC |
---|---|---|
Text version | 124 | 30 |
17 | 21 | |
Citation downloads | 16 | 0 |
Totals | 157 | 51 |
Total Views | 208 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.