Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118570

Mannose corrects altered N-glycosylation in carbohydrate-deficient glycoprotein syndrome fibroblasts.

K Panneerselvam and H H Freeze

La Jolla Cancer Research Foundation, California 92037, USA.

Find articles by Panneerselvam, K. in: PubMed | Google Scholar

La Jolla Cancer Research Foundation, California 92037, USA.

Find articles by Freeze, H. in: PubMed | Google Scholar

Published March 15, 1996 - More info

Published in Volume 97, Issue 6 on March 15, 1996
J Clin Invest. 1996;97(6):1478–1487. https://doi.org/10.1172/JCI118570.
© 1996 The American Society for Clinical Investigation
Published March 15, 1996 - Version history
View PDF
Abstract

Type I carbohydrate-deficient glycoprotein syndrome (CDGS) patients fail to add entire N-linked oligosaccharide chains to some serum glycoproteins. Here we show that four CDGS fibroblast cell lines have two related glycosylation abnormalities. First, they incorporate 3-10-fold less [3H] mannose into proteins, and, second, the size of the lipid-linked oligosaccharide precursor (LLO) is much smaller than in controls. Addition of exogenous mannose, but not glucose, to these CDGS cells corrects both the lowered [3H] mannose incorporation and the size of LLO. These corrections are not permanent, and the defects immediately reappear when mannose is removed. To explore further the basis of mannose correction, we analyzed the amount of 3H-labeled LLO intermediates. Except for dolichol-P-mannose, other precursors, including mannose, mannose-6-phosphate, mannose-1-phosphate, and GDP-mannose, all showed a 3-10-fold decrease in CDGS cells. Thus, there are no obvious lesions in the intracellular conversion of mannose into LLO, and, once inside the cell, [3H]mannose appeared to be metabolized normally. Initial velocities of [3H]mannose uptake were two- to threefold less in CDGS cells compared with controls, and this slower transport may partially explain the reduced [3H]mannose incorporation in CDGS cells. Since we previously showed that the enzymes converting glucose to mannose-6-phosphate appear to be normal, our results suggest that cells may acquire or generate mannose in other ways. Although we have not identified the primary defect in CDGS, these studies show that intracellular mannose is limited and that some patients might benefit from including mannose in their regular diets.

Version history
  • Version 1 (March 15, 1996): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts