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Abstract

 

Hepatic lipase (HL) is an endothelial-bound lipolytic en-

zyme which functions as a phospholipase as well as a tri-

acylglycerol hydrolase and is necessary for the metabolism

of IDL and HDL. To evaluate the feasibility of replacing an

enzyme whose in vivo physiologic function depends on its

localization on the vascular endothelium, we have infused

recombinant replication-deficient adenovirus vectors ex-

pressing either human HL (HL-rAdV; 

 

n

 

 

 

5

 

 7) or luciferase

cDNA (Lucif-rAdV; 

 

n

 

 

 

5

 

 4) into HL-deficient mice with pre-

treatment plasma cholesterol, phospholipid, and HDL cho-

lesterol values of 176

 

6

 

9, 314

 

6

 

12, and 129

 

6

 

9, respectively.

After infusion of HL-rAdV, HL could be detected in the post-

heparin plasma of HL-deficient mice by immunoblotting

and postheparin plasma HL activities were 25,700

 

6

 

4,810

and 1,510

 

6

 

688 nmol/min/ml on days 5 and 15, respectively.

Unlike the mouse HL, 97% of the newly synthesized human

HL was heparin releasable, indicating that the human en-

zyme was virtually totally bound to the mouse vascular en-

dothelium. Infusion of HL-rAdV in HL-deficient mice was

associated with a 50–80% decrease in total cholesterol, tri-

glyceride, phospholipids, cholesteryl ester, and HDL choles-

terol (

 

P 

 

, 

 

0.001) as well as normalization of the plasma fast

protein liquid chromatography lipoprotein profile by day 8.

These studies demonstrate successful expression and deliv-

ery of a lipolytic enzyme to the vascular endothelium for ul-

timate correction of the HL gene defect in HL-deficient

mice and indicate that recombinant adenovirus vectors may

be useful in the replacement of endothelial-bound lipolytic

enzymes in human lipolytic deficiency states. (

 

J. Clin. In-

vest.

 

 1996. 97:799–805.) Key words: gene therapy 
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Introduction

 

Hepatic lipase (HL)

 

1

 

 is a 60-kD lipolytic enzyme that plays an
important role in the hydrolysis of triglycerides and phospho-

lipids present in circulating plasma lipoproteins. As both a tri-
acylglycerol lipase and phospholipase, HL mediates the con-
version of IDL to LDL and HDL

 

2

 

 to HDL

 

3 

 

(1–3). In the HDL
process, HL may regenerate nascent pre-

 

b

 

 

 

HDL particles (4,
5) necessary for the removal of free cholesterol from periph-
eral cells, thus playing an important role in cholesterol homeo-
stasis (6, 7) and ultimately enhancing the process of reverse
cholesterol transport.

HL is synthesized and secreted primarily by parenchymal
liver cells (8, 9). In humans and most vertebrates this lipolytic
enzyme is almost entirely bound to the hepatic vascular endo-
thelium via heparin-like glycosaminoglycans (10). In contrast,
mouse HL has a relatively low affinity for heparin-like gly-
cosaminoglycans and is found in circulating plasma presum-
ably due to the lack of a high-affinity binding site (11). Al-
though mouse HL is 86% homologous to the human enzyme
there is a significant sequence divergence in the carboxy termi-
nus which may be responsible for the observed differences in
heparin-binding affinities of the two enzymes (12).

The important role that HL plays in lipid and lipoprotein
metabolism has been established by the identification of pa-
tients with HL deficiency that present with marked dyslipi-
demia including hypertriglyceridemia, hypercholesterolemia,
and accumulation of 

 

b

 

-

 

VLDL (13–15). Recently, the underly-
ing molecular defects leading to HL deficiency in some of
these kindreds have been reported (16–19). Affected individu-
als have increased plasma concentrations of HDL

 

2

 

 as well as
phosphatidylcholine enrichment of HDL (13), suggesting an
important role of HL not only in LDL but also in HDL metab-
olism. In addition, at least a subset of patients with HL defi-
ciency appears to be at an increased risk for developing pre-
mature coronary artery disease (13, 20).

The metabolic consequences of overexpressing the HL
gene in different animals models have also been investigated.
Overexpression of the human HL gene in transgenic rabbits
results in a fivefold decrease in plasma cholesterol concentra-
tion and a reduction in IDL (21). In addition, transgenic mice
that overexpress the human HL gene appear to have reduced
cholesterol accumulation in the aorta during a hyperlipidemic
diet (22), suggesting that at least in these animals increased HL
activity may result in relative protection against atheroscle-
rosis.

Recently, an animal model for human HL deficiency, the
HL-deficient mouse, has been reported (23). Unlike the hu-
man dyslipoproteinemia, HL-deficient mice do not appear to
develop marked hypertriglyceridemia or accumulation of

 

b

 

-

 

VLDL. However, like patients with HL deficiency, HL-defi-
cient mice have increased plasma concentrations of cholesterol
and phospholipids attributable to increased HDL levels.

In this study, we use this HL-deficient animal model to
evaluate the feasibility of replacing an endothelial-bound li-
polytic enzyme, human HL, using recombinant adenovirus
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vectors. The studies reported here indicate that the human HL
gene can be successfully delivered to the liver for synthesis and
ultimate binding to the vascular endothelium where it can
function physiologically to normalize the abnormal lipid pro-
file present in HL-deficient mice.

 

Methods

 

Animals.

 

The HL-deficient mice used in these studies have been de-
scribed previously (23). All animals were adult males between 2 and 3
mo old, 

 

z 

 

25–30 grams in weight, and were fed a regular chow diet
(NIH-07 chow diet 5% fat; Zeigler Brothers, Inc., Gardners, PA).

 

Generation of recombinant adenovirus.

 

The recombinant adenovi-
ruses HL-rAdV and Lucif-rAdV, containing the human HL cDNA
(24, 25) or the firefly luciferase (26, 27), respectively, were con-
structed as described by McGrory et al. (28). Briefly, pAd12-HL, a
pXCX2 plasmid derived from pXC1 (29) containing the CMV pro-
moter and enhancer elements, the SV40 splice donor, acceptor and
polyadenylation signal as well as the HL cDNA inserted into the E1
region of the human adenovirus (AdV5) genome, was cotransfected
with pJM17 using the method of Chen and Okayama (28, 30). pAd12-
Lucif was similarly constructed and cotransfected. Recombinant ade-
noviruses were identified by PCR as well as by the presence of either
HL or luciferase activity in the media and subjected to two rounds of
plaque purification before large scale amplification in human embry-
onal kidney 293 cells (American Type Culture Collection, Rockville,
MD) (31). Infected cells were harvested 48–72 h after infection and
subjected to five cycles of freeze/thaw lysis. Crude lysates were ex-
tracted with Freon (Halocarbon 113; Matheson Gas Products, Secau-
cus, NJ), banded twice in CsCl, supplemented with 0.2% mouse albu-
min (Sigma Chemical Co., St. Louis, MO), and dialyzed extensively
against 150 mM NaCl, 10 mM Hepes (pH 7.4), 5 mM KCl, 1 mM
MgCl

 

2

 

, and 1 mM CaCl

 

2

 

. Recombinant adenovirus was stored at

 

2

 

70

 

8

 

C and titered (32) before infusion into the animals. The absence
of contaminating wild-type adenovirus was confirmed by PCR
screening using oligonucleotide primers located within the structural
portion of the deleted Ela region (evaluating for the presence of
AdV5 sequences 562 to 899 bps; GenBank accession number
M73260). An appropriate volume (100–300 

 

m

 

l) of the purified recom-
binant adenovirus containing 10

 

8

 

–10

 

9

 

 plaque-forming units was in-
fused into the saphenous vein of the mice on day 0 of the study.

 

Blood sampling.

 

For all blood sampling, the mice were fasted for
4 h (water available) and anesthetized with methoxyflurane (33).
Bleeding was performed from the retroorbital plexus using capillary
tubes coated with heparin (Scientific Products, McGaw Park, IL).
Blood samples were placed into precooled tubes containing 0.2 M
EDTA (final concentration 4 mM) and kept on ice until centrifuged
at 2,500 

 

g

 

 for 20 min. Plasma was removed, aliquoted, immediately
frozen in dry ice, and stored at 

 

2

 

70

 

8

 

C.

 

Lipid and lipoprotein measurements.

 

Fasting mouse plasma (10 

 

m

 

l)
was diluted 1:50 with PBS and lipids were measured by enzymic as-
says using commercially available kits: total cholesterol (Sigma Diag-
nostics, St. Louis, MO); free cholesterol and phospholipids (Wako
Chemicals USA, Inc., Richmond, VA); and the Cobas Mira Plus au-
tomated chemistry analyzer (Roche Diagnostic Systems, Inc.,
Branchburg, NJ). Cholesteryl ester was calculated as the difference
between total cholesterol and free cholesterol. HDL cholesterol was
determined as the cholesterol remaining in the plasma after precipita-
tion of the apolipoprotein B–containing lipoproteins with heparin
and calcium as described previously (34).

 

Fast protein liquid chromatography (FPLC).

 

Plasma lipoproteins
were separated by gel filtration using two Superose 6 HR 10/30 col-
umns connected in series (Pharmacia Biotech Inc., Piscataway, NJ)
(35). Lipoproteins from 50 

 

m

 

l of plasma were eluted at 0.3 ml/min
with PBS buffer containing 1 mM EDTA and 0.02% sodium azide.
Lipids in the recovered fractions were quantitated without the dilu-
tion described above. Lipoprotein elution volumes were: VLDL,

15.0–16.0 ml; IDL/LDL, 20.0–24.0 ml; HDL, 30.0–31.0 ml. Plasmas
from at least three separate animals for each group were analyzed by
FPLC.

 

Lipase assays.

 

To obtain postheparin plasma, animals were anes-
thetized by intraperitoneal injection with 0.011 ml/gram of animal
weight using 2.5% Avertin prepared by dissolving 10 grams tribromo-
ethanol in 10 ml tertiary amyl alcohol. Anesthetized animals were in-
jected with heparin (500 U/Kg) through the tail vein using a 30-gauge
needle. Blood was sampled 5 min after the heparin injection as de-
scribed above. HL activity was assayed by incubation with a radiola-
beled triolein substrate in the presence of 1 M NaCl with no addi-
tional lipoprotein activator (36). Each assay tube contained 150 

 

m

 

l of
sonicated substrate (1.4 

 

m

 

M glycerol trioleate, Sigma Chemical Co.;
0.063 

 

m

 

Ci glycerol tri-[1-

 

14

 

C]-oleate, Amersham Corp., Arlington
Heights, IL; 150 

 

m

 

g phosphatidylcholine, Sigma Chemical Co.; 0.075 M
NaCl; 0.112 M Tris-HCl buffer, pH 8.5; and 8.5% BSA), 100 

 

m

 

l 5 M
NaCl, the appropriate volume of pre- or postheparin mouse plasma,
and 0.15 M NaCl to a total volume of 500 

 

m

 

l. The volume of mouse
plasma (0.5–10 

 

m

 

l) was adjusted as necessary to maintain linearity of
the assay.

 

Western blots.

 

Before electrophoresis, mouse postheparin plasma
(100 

 

m

 

l pooled from three mice) was bound to heparin-Sepharose
CL-6B (600 

 

m

 

l, Pharmacia Biotech Inc.) equilibrated with 0.01 M so-
dium phosphate buffer, pH 7.6. The resin and postheparin plasma
were gently rotated for 30 min at 7

 

8

 

C. Unbound protein (including al-
bumin) was removed by thorough washing with the equilibration
buffer. Elution of bound proteins was performed stepwise with elu-
tion buffer containing 0.4 M NaCl, 0.8 M NaCl, and 1.5 M NaCl. The
eluate was dialyzed into 0.01 M NH

 

4

 

HCO

 

3

 

 and dried on a Savant
SpeedVac concentrator (Savant Instruments, Inc., Farmingdale, NY).
The dried samples were resuspended in a minimal volume of sample
buffer, separated in a 10% Tris-glycine gel (Novex, San Diego, CA),
and transferred to polyvinylidene difluoride microporous membranes
(Immobilon PVDF; Millipore, Bedford, MA) as described previously
(37). Human HL was identified by blotting with a goat polyclonal an-
tibody (kindly provided by Dr. Ira Goldberg, Columbia University,
New York) and visualized by silver-enhanced detection of a gold-
labeled rabbit anti–goat antibody (Auroprobe, Amersham Corp.).
Protein standards of known molecular weight (SeeBlue, San Diego,
CA) and HL standard were used on each blot. Human HL standard
was isolated from media obtained from 293 cells transfected with HL
cDNA under the control of the CMV promoter/enhancer (37).

 

Luciferase assays.

 

Tissues were obtained 4 d after mice were in-
fused with Lucif-rAdV. The animals were killed by cervical disloca-
tion, and their organs were removed immediately and frozen in dry
ice. The tissues were homogenized in extraction buffer (100 mg in 0.5 ml;
0.1 M potassium phosphate buffer, pH 7.4, and 1 mM DTT) with a
hand-held homogenizer (Omni International, Inc., Marietta, GA).
After three freeze/thaw cycles, the homogenates were centrifuged
(10,000 

 

g

 

, 20 min, 4

 

8

 

C) and the supernatants were removed for assay.
The supernatant (30 

 

m

 

l) was then incubated with luciferin in the pres-
ence of 330

 

 

 

m

 

l of reaction mixture (16.4 mM MgCl

 

2

 

 and 5.4 mM
ATP), the resulting relative light units determined with the Mono-
light luminometer (Analytic Luminescence Laboratory, San Diego,
CA) (38).

 

Data analysis.

 

Data are presented as the mean

 

6

 

SEM. Compari-
sons between groups were made using the 

 

t

 

 test and paired compari-
sons were performed with the paired 

 

t

 

 test using Excel 5 (Microsoft,
Redmond, WA).

 

Results

 

Table I summarizes the plasma lipids, lipoproteins, and post-
heparin HL activity values for control and HL-deficient mice
used in the study. Compared with age- and sex-matched con-
trol animals, HL-deficient mice had 1.5–2-fold higher plasma
concentrations of total cholesterol, phospholipids, cholesteryl
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ester, and HDL cholesterol (

 

P 

 

, 

 

0.001) but similar levels of
fasting plasma triglycerides. HDL cholesterol represented
80% of the total cholesterol for both groups of mice. Previous
studies (11) have demonstrated that 

 

z 

 

50% of normal mouse
HL activity is present in plasma before heparin infusion. Con-
sistent with these earlier findings, the age- and sex-matched
control animals used in the current study had significant HL
activity present in both pre- and postheparin plasma (Table I)
indicating the presence of circulating, unbound active mouse
HL. As described previously (23), HL-deficient mice had vir-
tually no detectable HL activity in either pre- or postheparin
plasma, indicating an absolute deficiency of the enzyme.

The replication-deficient recombinant adenoviruses gener-
ated for these studies are illustrated in Fig. 1. These vectors
contained expression cassettes consisting of either the human
HL cDNA (HL-rAdV) or luciferase cDNA (Lucif-rAdV) un-
der the control of the CMV promoter and enhancer with an
SV40 splice donor and acceptor as well as an SV40 polyadenyl-
ation signal sequence.

Previous studies (39, 40) have demonstrated that systemic
infusions of recombinant adenovirus result in delivery of the
transgene primarily to the liver. These findings were con-
firmed by quantitation of the relative luciferase units present
in different tissues 4 d after infusion of Lucif-rAdV via the
saphenous vein in mice. Thus, analysis of mouse liver, brain,
heart, kidney, lung, spleen, and testes demonstrated expres-
sion of luciferase primarily in mouse liver (data not shown) in-

dicating that when infused into the systemic circulation adeno-
virus appears to be hepatotrophic and is a suitable vector for
the expression of hepatically derived proteins.

However, replacement of the HL gene in HL-deficient
mice is a more complex process. In addition to the human HL
gene being delivered to the liver for synthesis, posttransla-
tional modification, and secretion, the mature human HL must
also be transported to the capillary endothelium for binding to
mouse endothelial glycosaminoglycans followed by hydrolysis
of triglyceride and phospholipid present on circulating plasma
lipoproteins by the active endothelial-bound HL (Fig. 2). To
evaluate the feasibility of performing gene therapy for endo-
thelial-bound lipolytic enzymes in lipase deficiency syndromes
and other genetic dyslipoproteinemias, 

 

z 

 

10

 

9

 

 plaque-forming
units of HL-rAdV or control Lucif-rAdV were delivered via
saphenous vein infusion in HL-deficient mice. Gene expres-
sion was determined by quantitation of HL mass and activity
in postheparin plasma. Immunoblot analysis of postheparin
plasma isolated from HL-deficient mice before and after virus
infusion demonstrated the presence of a major 60-kD immu-
noreactive band in the plasma of treated animals (Fig. 3) which
was not detected in postheparin plasma of the same mice be-
fore HL-rAdV infusion. Thus, replacement of the HL gene
was achieved in HL-deficient mice using adenovirus vectors.

Table II summarizes the HL activity in postheparin plasma
of HL-deficient mice before and after infusion of either
HL-rAdV or Lucif-rAdV. Compared with preinfusion values,

 

Table I. Plasma Lipids, Lipoproteins, and Lipase Activity in Control and the HL-deficient Mice

 

TC TG PL CE HDL-C

HL activity

Preheparin Postheparin

 

mg/dl nmol/min/ml

 

HL-deficient 176

 

6

 

9* 54

 

6

 

4 314

 

6

 

12* 122

 

6

 

8* 129

 

6

 

9* 5

 

6

 

5 10

 

6

 

2

(

 

n

 

 

 

5

 

 7)

Controls 101

 

6

 

2 63

 

6

 

2 211

 

6

 

4 66

 

6

 

2 78

 

6

 

3

 

‡

 

130

 

6

 

1166 257

 

6

 

32

 

§

 

(

 

n

 

 

 

5

 

 13)

*

 

P

 

 

 

,

 

 0.001; 

 

‡

 

n

 

 

 

5

 

 10; and 

 

§

 

n

 

 

 

5

 

 6. 

 

TC

 

, total cholesterol; 

 

TG

 

, triglycerides; 

 

PL

 

, phospholipids; 

 

CE

 

, cholesteryl ester; and 

 

HDL-C

 

, HDL cholesterol.

Figure 1. Recombinant adenovirus con-
structs. The expression cassettes con-
tained either human HL cDNA or firefly 
luciferase cDNA under the control of the 
CMV promoter/enhancer as well as the 
SV40 splice site donor, acceptor, and 
polyadenylation signal which were in-
serted into the Ela/Elb region of the non-
replicative Ad5 genome by homologous 
recombination in 293 cells.
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postheparin plasma HL activity was increased significantly
(

 

P 

 

, 

 

0.05) 5 and 15 d after HL-rAdV infusion. 30 d after injec-
tion with HL-rAdV, 50% of the treated HL-deficient mice
demonstrated persistent HL activity. As expected, HL-defi-
cient mice treated with Lucif-rAdV had no detectable increase
in HL activity.

Table III summarizes the plasma lipids and lipoproteins in
HL-deficient mice before and after virus infusion. HL gene re-

placement in HL-deficient mice resulted in an 

 

z 

 

80% reduc-
tion of plasma cholesterol, phospholipids, and cholesteryl ester
and a 50% reduction in plasma triglycerides by day 4. By 8 d
after infusion with HL-rAdV, total cholesterol, triglycerides,
and phospholipids as well as HDL cholesterol levels were nor-
malized to control values.

FPLC profiles of plasma lipoproteins from control and HL-
deficient mice before and after HL-rAdV infusion are illus-
trated in Fig. 4. Representative plasma FPLC profiles for both
groups of animals indicate that the majority of cholesterol and
phospholipids are present in HDL-sized lipoprotein particles.
Compared with controls, HL-deficient mice have a relative en-
richment of cholesterol and phospholipid resulting in larger-
sized HDL. After infusion of HL-rAdV, the HDL cholesterol
and phospholipids in HL-deficient mouse are decreased and the
FPLC lipoprotein profiles of treated animals can be superim-

Figure 2. Schematic diagram 
for successful gene therapy of 
HL. Recombinant adenovirus 
is infused into the saphenous 
vein of the mice for delivery of 
the human HL gene to the 
liver. After synthesis, post-
translational modification, and 
secretion, the mature human 
HL must be transported to the 
capillary endothelium for bind-
ing to mouse endothelial gly-
cosaminoglycans. Hydrolysis 
of triglycerides and phospho-
lipids present on circulating 
plasma lipoproteins by the ac-
tive endothelial-bound HL re-
sults in particle remodeling.

Figure 3. Immunoblot analysis of postheparin plasma from HL-defi-
cient mouse infused with HL-rAdV. Molecular weight standards are 
shown on the left (M). HL standard was isolated from media of 293 
cells transfected with a human HL expression vector. Postheparin 
plasma from HL-deficient mice before (Pre Virus) and after (Virus 

Treated) infusion was chromatographed on heparin-Sepharose. Pro-
teins eluting in the 0.8 M NaCl fractions were analyzed by SDS-PAGE 
followed by immunoblotting with an HL monospecific antibody.

 

Table II. HL Activity in Postheparin Plasma of HL-deficient 
Mice after Infusion of HL-rAdV or Lucif-rAdV

 

Postheparin plasma-HL activity

Day 0 Day 5 Day 15

 

nmol/min/ml

 

HL-rAdV 10

 

6

 

2 25700

 

6

 

4810* 1510

 

6

 

688

 

‡

 

(

 

n

 

 

 

5

 

 7)

Lucif-rAdV 8

 

6

 

3 8

 

6

 

1 364

(n 5 4)

* P , 0.001; ‡ P , 0.05.
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posed on those of control mice. Thus, HL gene replacement us-
ing recombinant adenovirus resulted in normalization of the lipid
composition as well as lipoprotein profile in HL-deficient mice.

The time course of the changes in the mean total choles-
terol and phospholipid concentrations in the HL-deficient
mice after HL-rAdV or Lucif-rAdV infusion is illustrated in
Fig. 5. After infusion with HL-rAdV, there is a rapid decrease
in cholesterol and phospholipid levels observed by day 2 fol-
lowed by a gradual return to pretreatment values. In contrast,
no significant changes in either cholesterol or phospholipid
plasma concentrations were detected in animals infused with a
similar dose of Lucif-rAdV, indicating that the reduction in
plasma lipids in HL-rAdV–treated animals was a result of HL
expression and not secondary to nonspecific viral-induced
changes.

Previous studies (10) have demonstrated that in contrast to
mouse HL, more than 90% of the heparin-releasable human
enzyme is bound to the vascular endothelium in humans. To
determine if the expressed human HL would bind to native
mouse glycosaminoglycans in a similar manner, we compared
the HL activity in pre- and postheparin plasma of HL-deficient
mice injected with HL-rAdV with that of control mice. As de-

Table III. Plasma Lipids and Lipoproteins in HL-deficient 
Mice before and after Infusion of HL-rAdV

TC TG PL CE HDL-C

mg/dl

Day 0 17669* 5864 314612* 12268* 12969*

(n 5 7)

Day 4 3566 31611 73610 1366 2164

(n 5 7)

Day 8 94610 5165 207616 35612 6268

(n 5 5)

Controls 10162 6362 21164 6662 7863‡

(n 5 13)

*P , 0.001 versus control; ‡ n 5 10. Abbreviations as in Table I.

Figure 4. Representative FPLC profiles of plasma from control and 
HL-deficient mice separated on Superose 6 columns. The lipid pro-
files before (dotted lines) and after infusion with HL-rAdV (solid 

lines) are compared with those from control C57BL/6 mice (dashed 

lines).

Figure 5. Time course of the cholesterol and phospholipid changes in 
HL-deficient mice after infusion with HL-rAdV or Lucif-rAdV. The 
mean data6SEM are shown for the mice treated with HL-rAdV (cir-

cles) and Lucif-rAdV (squares).

Table IV. HL Activity in Pre- and Postheparin Plasma of 
HL-deficient Mice 5 d after Infusion of HL-rAdV or Lucif-
rAdV

HL activity

PostheparinPreheparin Postheparin*

nmol/min/ml %

HL-deficient: day 5

HL-rAdV 9186228 2570064810 97‡

(n 5 7)

Lucif-rAdV 364 861 —

(n 5 4)

Controls 130611 257632 51

(n 5 6)

* Postheparin activity contains both pre- and postheparin activities.
‡ P , 0.005.
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scribed previously in mice (11), 50% of total HL activity was
detected in the preheparin plasma of control animals (Table
IV), indicating that approximately half of the native mouse en-
zyme was present in the circulation unbound. In contrast, after
infusion with HL-rAdV z 97% of the expressed human HL
activity was bound and released by heparin (Table IV), dem-
onstrating that structural variability between the two enzymes
was responsible for the observed differences in binding to the
vascular endothelium.

Discussion

In the past several decades our understanding of the role that
different receptors, enzymes, and proteins play in lipid and li-
poprotein metabolism has been enhanced greatly. Thus, many
of the molecular defects that lead to the human genetic dysli-
poproteinemias have been elucidated. In addition, animal
models for different genetic disorders have been generated in
mice using homologous recombination. These advances now
permit the evaluation of different gene therapy approaches for
the treatment of human genetic dyslipoproteinemias.

As the major enzyme involved in the hydrolysis of triglyc-
erides and phospholipids present in IDL and HDL, HL plays a
central role in lipoprotein metabolism (2, 3). Thus, patients
with a deficiency of HL may present with hypercholester-
olemia, hypertriglyceridemia, increased plasma HDL concen-
trations, as well as accumulation of b-VLDL (13–15). Like
their human counterparts, HL-deficient mice have increased
total plasma cholesterol and HDL concentrations as well as
phospholipid enrichment of HDL (23), demonstrating the im-
portance of HL for in vivo HDL remodeling and metabolism
in mice.

In this paper we use replication-deficient recombinant ade-
novirus to replace the human HL gene in HL-deficient mice.
One of the major limitations of the currently used adenovirus
vector system is the short-term expression of the transgene
(40–45) which may be in part related to the development of an
immune response directed against viral late gene proteins (46,
47). Despite these limitations, the transient expression achieved
using the present generation of recombinant adenovirus per-
mits preliminary assessment of the feasibility of gene replace-
ment in appropriate animal models for ultimate human gene
therapy. Thus, recent studies have demonstrated successful
transfer of genes coding for circulating plasma proteins (40, 48,
49), cell membrane–associated receptors (39, 41, 50, 51), as
well as intracellular enzymes (52) using recombinant adenovi-
rus vectors.

Because of the unique location of HL on the vascular en-
dothelium, HL gene replacement is a more complex process.
In addition to delivery of the gene to the liver followed by syn-
thesis, posttranslational modification, and secretion, the ma-
ture, active enzyme must ultimately be transported to the cap-
illary endothelium and bind to endothelial glycosaminoglycans
for hydrolysis of triglycerides and phospholipids present in cir-
culating plasma lipoproteins (Fig. 2). Thus, we investigated the
feasibility of gene therapy for an endothelial-based lipolytic
enzyme using replication-deficient adenovirus vectors.

In this report we demonstrate that using this vector system
complete correction of the abnormal lipoprotein profile in HL-
deficient mice can be achieved. After HL-rAdV infusion, hu-
man HL could be detected in mouse postheparin plasma by
immunoblotting as well as quantitation of HL lipolytic activity.

Expression of the human enzyme was maintained for up to 30 d
in treated animals. Fasting plasma cholesterol and phospho-
lipid concentrations were reduced from 17669 and 314612
mg/dl to 94610 and 207616 mg/dl, respectively, and HDL-C
levels were likewise decreased, resulting in normalization of
the lipid and lipoprotein profile. The decrease in plasma cho-
lesterol and phospholipid levels due to the increase in HL ac-
tivity confirms that the expressed HL is active in vivo as a
phospholipase (53).

The replacement of the human HL gene in HL-deficient
mice has also provided new insights into the previously de-
scribed differences between the mouse and human enzymes.
Thus, in humans most of the HL is heparin releasable (10), in-
dicating that this enzyme is almost entirely bound to gly-
cosaminoglycans in the vascular endothelium. In contrast, a
significant amount of mouse HL is found circulating in plasma
(11). To date, it is unclear whether these differences in heparin
binding are related to variations in the structure of the two en-
zymes or are determined by differences between the mouse
and human endothelial glycosaminoglycans. This question was
addressed in the present study by expressing the human en-
zyme in HL-deficient mice. Our findings demonstrate that de-
spite high levels of expression, more than 95% of the human
HL was heparin releasable, indicating binding to the mouse
vascular endothelium and establishing that the difference in af-
finity of the two enzymes for endothelial glycosaminoglycans
resides in the structural differences between the mouse and
human HL. Thus, the structural variability between the mouse
and human HL is responsible for the observed differences in
binding to the vascular endothelium.

These combined studies demonstrate successful expression
and delivery of a complex lipolytic enzyme to the vascular en-
dothelium using recombinant adenovirus. In addition, ade-
novirus-mediated replacement of HL has provided new in-
sights into physiologically important structural differences
between the mouse and human enzymes, demonstrating a
novel application of this vector system for in vivo analyses of
lipase structure/function. The successful transport and binding
of human HL to mouse endothelial glycosaminoglycans after
gene delivery by recombinant adenovirus provides preliminary
evidence for replacement of endothelial-bound enzymes in hu-
man lipolytic deficiency states for ultimate correction of the
gene defects.
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