Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

Adenosine A2b receptors evoke interleukin-8 secretion in human mast cells. An enprofylline-sensitive mechanism with implications for asthma.
I Feoktistov, I Biaggioni
I Feoktistov, I Biaggioni
Published October 1, 1995
Citation Information: J Clin Invest. 1995;96(4):1979-1986. https://doi.org/10.1172/JCI118245.
View: Text | PDF
Research Article

Adenosine A2b receptors evoke interleukin-8 secretion in human mast cells. An enprofylline-sensitive mechanism with implications for asthma.

  • Text
  • PDF
Abstract

Adenosine potentiates mast cell activation, but the receptor type and molecular mechanisms involved have not been defined. We, therefore, investigated the effects of adenosine on the human mast cell line HMC-1. Both the A2a selective agonist CGS21680 and the A2a/A2b nonselective agonist 5'-N-ethylcarboxamidoadenosine (NECA) increased cAMP, but NECA was fourfold more efficacious and had a Hill coefficient of 0.55, suggesting the presence of both A2a and A2b receptors. NECA 10 microM evoked IL-8 release from HMC-1, but CGS21680 10 microM had no effect. In separate studies we found that enprofylline, an antiasthmatic previously thought to lack adenosine antagonistic properties, is as effective as theophylline as an antagonist of A2b receptors at concentrations achieved clinically. Both theophylline and enprofylline 300 micro completely blocked the release of IL-8 by NECA. NECA, but not CGS21680, increases inositol phosphate formation and intracellular calcium mobilization through a cholera and pertussis toxin-insensitive mechanism. In conclusion, both A2a and A2b receptors are present in HMC-1 cells and are coupled to adenylate cyclase. In addition, A2b receptors are coupled to phospholipase C and evoke IL-8 release. This effect is blocked by theophylline and enprofylline, raising the possibility that this mechanism contributes to their antiasthmatic effects.

Authors

I Feoktistov, I Biaggioni

×

Usage data is cumulative from March 2022 through March 2023.

Usage JCI PMC
Text version 362 0
PDF 39 17
Figure 0 1
Scanned page 128 8
Citation downloads 20 0
Totals 549 26
Total Views 575
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts