Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

Parathyroid cell proliferation in normal and chronic renal failure rats. The effects of calcium, phosphate, and vitamin D.
T Naveh-Many, … , N Livni, J Silver
T Naveh-Many, … , N Livni, J Silver
Published October 1, 1995
Citation Information: J Clin Invest. 1995;96(4):1786-1793. https://doi.org/10.1172/JCI118224.
View: Text | PDF
Research Article

Parathyroid cell proliferation in normal and chronic renal failure rats. The effects of calcium, phosphate, and vitamin D.

  • Text
  • PDF
Abstract

Secondary hyperparathyroidism is characterized by an increase in parathyroid (PT) cell number, and parathyroid hormone (PTH) synthesis and secretion. It is still unknown as to what stimuli regulate PT cell proliferation and how they do this. We have studied rats with dietary-induced secondary hyper- and hypoparathyroidism, rats given 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and rats after 5/6 nephrectomy for the presence of PT cell proliferation and apoptosis. PT cell proliferation has been measured by staining for proliferating cell nuclear antigen (PCNA) and apoptosis by in situ detection of nuclear DNA fragmentation and correlated with serum biochemistry and PTH mRNA levels. A low calcium diet led to increased levels of PTH mRNA and a 10-fold increase in PT cell proliferation. A low phosphate diet led to decreased levels of PTH mRNA and the complete absence of PT cell proliferation. 1,25 (OH)2D3 (25 pmol/d x 3) led to a decrease in PTH mRNA levels and unlike the hypophosphatemic rats there was no decrease in cell proliferation. There were no cells undergoing apoptosis in any of the experimental conditions. The secondary hyperparathyroidism of 5/6 nephrectomized rats was characterized by an increase in PTH mRNA levels and PT cell proliferation which were both markedly decreased by a low phosphate diet. The number of PCNA positive cells was increased by a high phosphate diet. Therefore hypocalcemia, hyperphosphatemia and uremia lead to PT cell proliferation, and hypophosphatemia completely abolishes this effect. Injected 1,25 (OH)2D3 had no effect. These findings emphasize the importance of a normal phosphate and calcium in the prevention of PT cell hyperplasia.

Authors

T Naveh-Many, R Rahamimov, N Livni, J Silver

×

Usage data is cumulative from March 2022 through March 2023.

Usage JCI PMC
Text version 531 0
PDF 60 36
Scanned page 172 13
Citation downloads 24 0
Totals 787 49
Total Views 836
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts